

Higgs Tasting Workshop 2016 Benasque, May 15-21, 2016

Use of Effective Field Theories at the LHC

José Santiago

Disclaimer

- This is not a standard review
- The goal is to trigger further questions/discussion
- I will shamelessly use examples from my own work (not necessarily the best, definitely not the only ones, but the ones I know best)
- Results and techniques are common to all physics, including Higgs, even if BEH does not appear explicitly

Outline

- EFTs: bottom-up approach
 - Use vs interpretation of EFTs at the LHC (and others)
 - Parametrization of experimental observables
 - Limit extraction
 - Interpretation: validity, dimension-8, how precise are the bounds obtained
- EFTs: top-down approach
 - UV/IR tree-level dictionary
 - UV/IR one-loop dictionary: automated matching
 - How to make a one-loop calculation in (top-down) EFTs

Effective theories: bottom-up

- Effective Lagrangians: model-independent description of new physics in the presence of a mass gap
- Bottom-up approach to EFTs: Map experimental (pseudo) observables to the Wilson coefficients in the effective Lagrangian to obtain all the experimental information in a model independent way
- Basis? Which basis?
 - All complete independent bases are equivalent
 - Some are more convenient than others for certain purposes (flat directions more explicit, ...)
 - Some are valid only under certain assumptions (flavor alignment, ...)

Effective theories: bottom-up

 Truly global fit to new physics now possible (EWPD plus LHC data -Higgs and otherwise-)

Ciuchini, Franco, Mishima, Silvestrini ('13); Blas, Chala, J.S. ('13, '15); Pomarol, Riva ('14); Falkowski, Riva ('15); Buckley, Englert, Ferrando, Miller, Moore, Russell, White ('15); Berthirer, Trott ('15), ...

- Efforts to extend to NLO already on the way

 Ghezzi, Gomez-Ambrosio, Passarino, Uccirati ('15), Hartmann, Trott ('15), David, Passarino ('15),
 Boggia, Gomez-Ambrosio, Passarino ('16) ...
- The use of EFTs at the LHC is not that different from LEP but the interpretation can be very different
 - On-shell SM particle production: Z-pole, Higgs/top production, ...
 - Looking at tails: LEP2, HH-production, contact interaction searches, ...

- Use of EFTs at the LHC (or any other experiment):
 - Classify all operators that contribute to a specific observable (educated assumptions might be needed to reduce # of dof)
 - Compute the simplest yet most general parameterization of the corresponding observable (brute force can also work)
 - Compare with experimental data and extract limits
 - Analyze range of validity of the results

 I will illustrate this process in dilepton searches at the LHC

Classify operators that contribute to the process

$$\mathcal{O}_{lq}^{(1)} = (\bar{l}\gamma^{\mu}l)(\bar{q}\gamma_{\mu}q), \quad \mathcal{O}_{lq}^{(3)} = (\bar{l}\sigma_{I}\gamma^{\mu}l)(\bar{q}\sigma_{I}\gamma_{\mu}q), \\
\mathcal{O}_{eu} = (\bar{e}\gamma^{\mu}e)(\bar{u}\gamma_{\mu}u), \quad \mathcal{O}_{ed} = (\bar{e}\gamma^{\mu}e)(\bar{d}\gamma_{\mu}d), \\
\mathcal{O}_{lu} = (\bar{l}\gamma^{\mu}l)(\bar{u}\gamma_{\mu}u), \quad \mathcal{O}_{ld} = (\bar{l}\gamma^{\mu}l)(\bar{d}\gamma_{\mu}d), \\
\mathcal{O}_{qe} = (\bar{q}\gamma^{\mu}q)(\bar{e}\gamma_{\mu}e), \quad \mathcal{O}_{qde} = (\bar{l}e)(\bar{d}q), \\
\mathcal{O}_{lq\epsilon} = (\bar{l}e)\epsilon(\bar{q}^{T}u), \quad \mathcal{O}_{ql\epsilon} = (\bar{q}e)\epsilon(\bar{l}^{T}u),$$

Do not interfere with SM plus are very constrained by pion decay

Other operators (vertex corrections) strongly constrained by Z-pole observables

- Dilepton searches at the LHC
 - Compute the Master Equation (most general contribution)

$$48\pi \frac{d\sigma}{d\hat{t}}(\bar{u}u \to \ell^{+}\ell^{-}) = \left[\left| \mathcal{A}_{uL\ell_{R}}^{\text{SM}} + \frac{\alpha_{qe}}{\Lambda^{2}} \right|^{2} + \left| \mathcal{A}_{uR\ell_{L}}^{\text{SM}} + \frac{\alpha_{lu}}{\Lambda^{2}} \right|^{2} + \frac{1}{2\Lambda^{4}} \left[|\alpha_{ql\epsilon}|^{2} + \text{Re}(\alpha_{lq\epsilon}\alpha_{ql\epsilon}^{*}) \right] \right] \frac{\hat{t}^{2}}{\hat{s}^{2}}$$

$$+ \left[\left| \mathcal{A}_{uL\ell_{L}}^{\text{SM}} + \frac{\alpha_{lq}^{(1)} - \alpha_{lq}^{(3)}}{\Lambda^{2}} \right|^{2} + \left| \mathcal{A}_{uR\ell_{R}}^{\text{SM}} + \frac{\alpha_{eu}}{\Lambda^{2}} \right|^{2} - \frac{1}{2\Lambda^{4}} \text{Re}(\alpha_{lq\epsilon}\alpha_{ql\epsilon}^{*}) \right] \frac{\hat{u}^{2}}{\hat{s}^{2}}$$

$$+ \frac{1}{2\Lambda^{4}} \left[|\alpha_{lq\epsilon}|^{2} + \text{Re}(\alpha_{lq\epsilon}\alpha_{ql\epsilon}^{*}) \right],$$

$$48\pi \frac{d\sigma}{d\hat{t}} (\bar{d}d \to \ell^{+}\ell^{-}) = \left[\left| \mathcal{A}_{dL\ell_{R}}^{\text{SM}} + \frac{\alpha_{qe}}{\Lambda^{2}} \right|^{2} + \left| \mathcal{A}_{dR\ell_{L}}^{\text{SM}} + \frac{\alpha_{ld}}{\Lambda^{2}} \right|^{2} \right] \frac{\hat{t}^{2}}{\hat{s}^{2}}$$

$$+ \left[\left| \mathcal{A}_{dL\ell_{L}}^{\text{SM}} + \frac{\alpha_{lq}^{(1)} + \alpha_{lq}^{(3)}}{\Lambda^{2}} \right|^{2} + \left| \mathcal{A}_{dR\ell_{R}}^{\text{SM}} + \frac{\alpha_{ed}}{\Lambda^{2}} \right|^{2} \right] \frac{\hat{u}^{2}}{\hat{s}^{2}} + \frac{|\alpha_{qde}|^{2}}{2\Lambda^{4}},$$

$$\mathcal{A}_{\psi\phi}^{\text{SM}} = \frac{e^2 Q_{\psi} Q_{\phi}}{\hat{s}} + \frac{g_{\psi} g_{\phi}}{\hat{s} - m_Z^2 + \mathrm{i} m_Z \Gamma_Z} \sim \frac{e^2 Q_{\psi} Q_{\phi} + g_{\psi} g_{\phi}}{\hat{s}}$$

$$\sim rac{e^2 Q_\psi Q_\phi + g_\psi g_\phi}{\hat{s}}$$

Dilepton searches at the LHC

Compute the Master Equation (most general contribution)

$$\sigma = \sigma^{\text{SM}} + \frac{1}{\Lambda^2} \sum_{q=u,d} \left[F_1^q A_1^q + F_2^q A_2^q \right] + \frac{1}{\Lambda^4} \sum_{q=u,d} \left[G_1^q B_1^q + G_2^q B_2^q + G_3^q B_3^q \right]$$

$$\begin{array}{lcl} A_{1}^{u} & = & [e^{2}Q_{u}Q_{e} + g_{u_{L}}g_{e_{L}}](\alpha_{lq}^{(1)} - \alpha_{lq}^{(3)}) + [e^{2}Q_{u}Q_{e} + g_{u_{R}}g_{e_{R}}]\alpha_{eu}, \\ A_{2}^{u} & = & [e^{2}Q_{u}Q_{e} + g_{u_{L}}g_{e_{R}}]\alpha_{qe} + [e^{2}Q_{u}Q_{e} + g_{u_{R}}g_{e_{L}}]\alpha_{lu}, \\ A_{1}^{d} & = & [e^{2}Q_{d}Q_{e} + g_{d_{L}}g_{e_{L}}](\alpha_{lq}^{(1)} + \alpha_{lq}^{(3)}) + [e^{2}Q_{d}Q_{e} + g_{d_{R}}g_{e_{R}}]\alpha_{ed}, \\ A_{2}^{d} & = & [e^{2}Q_{d}Q_{e} + g_{d_{L}}g_{e_{R}}]\alpha_{qe} + [e^{2}Q_{d}Q_{e} + g_{d_{R}}g_{e_{L}}]\alpha_{ld}, \\ B_{1}^{u} & = & 4(\alpha_{lq}^{(1)} - \alpha_{lq}^{(3)})^{2} + 4\alpha_{eu}^{2} - 2\operatorname{Re}(\alpha_{lq\epsilon}\alpha_{ql\epsilon}^{*}), \\ B_{2}^{u} & = & 4\alpha_{qe}^{2} + 4\alpha_{lu}^{2} + 2|\alpha_{ql\epsilon}|^{2} + 2\operatorname{Re}(\alpha_{lq\epsilon}\alpha_{ql\epsilon}^{*}), \\ B_{3}^{u} & = & 2|\alpha_{lq\epsilon}|^{2} + 2\operatorname{Re}(\alpha_{lq\epsilon}\alpha_{ql\epsilon}^{*}), \\ B_{1}^{d} & = & 4(\alpha_{lq}^{(1)} + \alpha_{lq}^{(3)})^{2} + 4\alpha_{ed}^{2}, \\ B_{2}^{d} & = & 4\alpha_{qe}^{2} + 4\alpha_{ld}^{2}, \\ B_{3}^{d} & = & 2|\alpha_{qde}|^{2}. \end{array}$$

- Dilepton searches at the LHC
 - Complementarity of LHC and LEP measurements

LHC

EWPT

```
[-0.032, 0.073]
           [-0.106, 0.019]
           [-0.032, 0.102]
\mathcal{O}_{eu}
           [-0.107, 0.068]
\mathcal{O}_{ed}
           [-0.043, 0.079]
\mathcal{O}_{lu}
           [-0.096, 0.076]
\mathcal{O}_{ld}
\mathcal{O}_{qe}
           [-0.040, 0.058]
```

[-0.012, 0.055] [-0.006, 0.012] [-0.097, 0.017] [-0.077, 0.040] [-0.041, 0.095] [-0.021, 0.106] [-0.055, 0.011]

Dilepton searches at the LHC

- The interpretation of the results in terms of EFT is NOT the same at LHC and LEP (different precision and energies probed)
- When can we trust the EFT description of LHC data? Depends on the value of the actual bound and the energies probed by experimental data
 - Power-counting rules to estimate range of validity
 - Compute and report bounds as a function of energy probed
 - Are we sensitive to dimension-8 operators?
 - How precise is the actual bound? We've checked a couple of examples
 - t-channel scalar: $\omega_1 \sim (3,1)_{-\frac{1}{3}}$
 - s-channel vector: $\mathcal{B}_{\mu} \sim (1,1)_0$
 - For simplicity we use only the ATLAS analysis [arxiv:1407.2410] and couplings only to e_R and u_R $1.2 \le M_{ee}/{\rm TeV} \le 3$

$$-0.021 \text{ TeV}^{-2} \le \frac{\alpha_{eu}}{\Lambda^2} \le 0.097 \text{ TeV}^{-2}$$

- Dimension 6 vs dimension 8:
 - Safe to neglect dimension 8 operators if contributions proportional to Λ^{-4} are negligible

$$\sigma \sim |\mathcal{A}_{SM}|^2 + \frac{\mathcal{A}_{SM}\mathcal{A}_6}{\Lambda^2} + \frac{|\mathcal{A}_6|^2 + \mathcal{A}_{SM}\mathcal{A}_8}{\Lambda^4} + \dots$$

$$N = 8.7 + 2.3 + 0.7 \qquad \frac{\alpha_{eu}}{\Lambda^2} = -0.021 \text{ TeV}^{-2}$$

$$N = 8.7 - 10.5 + 15.2 \qquad \frac{\alpha_{eu}}{\Lambda^2} = 0.097 \text{ TeV}^{-2}$$

- The sign of the interference is important (quartic terms can be necessary to stabilize)
- There can be exceptions (vanishing SM contribution, ...)

How precise are the bounds?

$$\omega_1 \sim (3,1)_{-\frac{1}{3}}$$

$$\alpha_{eu} > 0$$

How precise are the bounds?

$$\mathcal{B}_{\mu} \sim (1,1)_0$$

Summary of part 1

- Bottom-up approach to EFTs at the LHC:
 - Use of EFTs similar to other experiments, interpretation (and range of validity) can be quite different
 - If quartic terms are not negligible we are in principle sensitive to dimension-8 operators
 - Still, corresponding bounds can be quite accurate, even for low masses of new particles
 - It's useful to report bounds as a function of the scales probed (limits using smaller number of bins might be less stringent but more robust)
 - LHC can be competitive with EWPT on common observables (but attention must be paid to the difference in the interpretations)

Effective theories: top-down

- A complementary approach is to consider specific UV completions
 - Correlations among Wilson coefficients in specific models (eventually observable in data)
 - Validity of EFT can be explicitly checked

 Give up model-independence? Not if we can classify all UV models that contribute

 The goal is to generate a UV/IR dictionary: map all possible SM UV completions to the Wilson coefficients of the SM effective Lagrangian at certain order in mass dimension and loops

Tree-level dictionary (non-mixed contributions)

New Quarks: F. Aguila, M. Perez-Victoria, J.S., JHEP (00)

$Q^{(m)}$	U	D	$\begin{pmatrix} U \\ D \end{pmatrix}$	$\begin{pmatrix} X \\ U \end{pmatrix}$	$\begin{pmatrix} D \\ Y \end{pmatrix}$	$\begin{pmatrix} X \\ U \\ D \end{pmatrix}$	$\begin{pmatrix} U \\ D \\ Y \end{pmatrix}$
isospin	0	0	1/2	1/2	1/2	1	1
hypercharge	2/3	-1/3	1/6	7/6	-5/6	2/3	-1/3

New Leptons: F. Aguila, J. Blas, M. Perez-Victoria, PRD (08)

Leptons	N	Е	$\binom{N}{E^-}$	$\binom{E^-}{E^{}}$	$\begin{pmatrix} E^+ \\ N \\ E^- \end{pmatrix}$	$\begin{pmatrix} N \\ E^- \\ E^{} \end{pmatrix}$
Notation			Δ_1	Δ_3	Σ_0	Σ_1
$SU(2)_L \otimes U(1)_Y$ Spinor	1 ₀ Dirac or Majorana	1 ₋₁ Dirac	2 _{-(1/2)} Dirac	2 _{-(3/2)} Dirac	3 ₀ Dirac or Majorana	3 ₋₁ Dirac

New Vectors: F. Aguila, J. Blas, M. Perez-Victoria, JHEP (10)

Vector	\mathcal{B}_{μ}	\mathcal{B}^1_μ	\mathcal{W}_{μ}	\mathcal{W}^1_μ	${\cal G}_{\mu}$	\mathcal{G}_{μ}^{1}	\mathcal{H}_{μ}	\mathcal{L}_{μ}
Irrep	$(1,1)_0$	$(1,1)_1$	$(1, Adj)_0$	$(1, Adj)_1$	$(\mathrm{Adj},1)_0$	$(Adj, 1)_1$	$\left(\mathrm{Adj},\mathrm{Adj}\right)_{0}$	$(1,2)_{-\frac{3}{2}}$
Vector	\mathcal{U}_{μ}^2	\mathcal{U}_{μ}^{5}	\mathcal{Q}^1_μ	\mathcal{Q}_{μ}^{5}	\mathcal{X}_{μ}	\mathcal{Y}^1_μ	\mathcal{Y}^5_μ	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{\frac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, \mathrm{Adj})_{\frac{2}{3}}$	$(\bar{6},2)_{\frac{1}{6}}$	$(\bar{6},2)_{-\frac{5}{6}}$	

New Scalars: J. Blas, M. Chala, M. Perez-Victoria, J.S., JHEP (15)

Colorless Scalars	S	\mathcal{S}_1	\mathcal{S}_2	φ	Ξ_0	Ξ_1	Θ_1	Θ_3
Irrep	$(1,1)_0$	$(1,1)_1$	$(1,1)_2$	$(1,2)_{\frac{1}{2}}$	$(1,3)_0$	$(1,3)_1$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
Colored Scalars	ω_1	C	ω_2	ω_4	Π_1		Π_7	ζ
Irrep	$(3,1)_{-}$	$\frac{1}{3}$ (3,	$1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	(3, 2)	$\frac{1}{6}$ (3	$(3,2)_{rac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$
Colored Scalars	Ω_1	(Ω_2	Ω_4	Υ		Φ	
Irrep	$(6,1)_{\frac{1}{3}}$	(6, 1	$\left(-\frac{2}{3} \right)$	$(6,1)_{\frac{4}{3}}$	(6,3)	$\frac{1}{3}$ (8	$(3,2)_{\frac{1}{2}}$	

Tree-level dictionary (mixed contributions)

Mixed contributions: J. Blas, M. Chala, J.C. Criado, M. Perez-Victoria, J.S., to appear soon

• Dimensionful couplings imply that particles with different spins can simultaneously contribute to \mathcal{L}_6 at tree level

$$\kappa \phi_1 \phi_2 \phi_3 + \kappa' V^{\mu} D_{\mu} \phi + \kappa'' V^{\mu} V'_{\mu} \phi + \dots$$

We are currently classifying and computing all possible contributions

- Only a subset of the representations in the previous list contributes
- With this, the tree-level, dimension 6 UV/IR dictionary is complete: we can map arbitrary UV extensions to the SM EFT

One-loop UV/IR dictionary

- Many contributions to the effective Lagrangian can be only generated at the quantum level
- Even contributions that can potentially arise at tree-level only appear at loop level in specific models
- The dictionary should be extended to one loop if we want to account for these cases
- The one-loop dictionary would allow a consistent combination with EWPT and low energy experiments
- The number of possibilities increases dramatically: automation seems compulsory

Functional methods and matching

- An interesting attempt has been recently made using functional methods Henning, Lu, Murayama ('14); Gaillard ('86); Cheyette ('86)
- There has been a great deal of developments in the last year: Henning, Lu, Murayama ('14); Drozd, Ellis, Quevillon, You ('15)
 - Initial attemps were not complete in the case of linear couplings to heavy states F. Aguila, Z. Kunszt, J.S. ('16)
 - The missing terms are local and can only be recovered by matching which can be performed:
 - diagramatically
 Anastasiou, Carmona, Lazopoulos, J.S.
 - by functional methods Henning, Lu, Murayama ('16);
 Ellis, Quevillon, You, Zhang ('16)

Leading one-loop corrections

- One-loop corrections have log-enhanced and finite terms
 - Log-enhanced are typically larger and can be computed from RGEs (already available). They can give important constraints on otherwise unprobed operators

$$(\alpha_{lq}^{(3)})_{lltt} \in [-0.07, 0.29] \text{ TeV}^{-2}$$
 Blas, Chala, J.S. ('16)

 Finite terms can still be sizeable and will be fully computable soon

MatchMaker: automated matching in effective theories Anastasiou, Carmona, Lazopoulos, J.S., in progress

- We are developing an automated tool to perform tree-level and one-loop matching of arbitrary theories into arbitrary effective Lagrangians
- Based on standard, well-tested tools (FeynRules, QGRAF, FORM, Mathematica, Python)
- Flexible (from full matching to specific operators), fully automated and general
- Unified treatment (effective theory just another model)
- Off-shell matching with (initially) massless particles in the effective theory (e.g. unbroken phase of the SM)

MatchMaker: automated matching in effective theories

FeynRules model SM+...

QGRAF model All relevant data

QGRAF

Compute and dress relevant amplitudes

FeynRules

MatchMaker (PYTHON engine)

FORM

Bonus: (re)calculation of RGEs and basis translation

Perform the actual matching

MATHEMATICA

Evaluate amplitudes (momentum expansion, tensor reduction, Dirac algebra, partial fractioning, IBP ids, ...)

How to use EFTs (from the top-down) at one loop F. Aguila, Z. Kunszt, J.S., ('16)

• Sample result: T parameter from charge 2/3 vector-like quark singlet

 $\mathcal{L}_T = \overline{T}(i\mathcal{D} - M)T - \left[\lambda_T \ \overline{q_L}\tilde{\phi}T_R + \text{h.c.}\right]$

Computed in the physical basis (full model)

$$\Delta \hat{\mathbf{T}} = \frac{N_C}{32\pi^2} \frac{v^2}{M^2} \left[|\lambda_T|^4 + 2\lambda_t^2 |\lambda_T|^2 \left(\log \frac{M^2}{m_t^2} - 1 \right) \right]$$
 Carena, Ponton, J.S., Wagner ('06)

- Computed in an EFT approach (3 steps)
 - Matching at M
 - Running to m_t
 - Matching at m_t

The same of

How to use EFTs (from the top-down) at one loop

- Sample result: T parameter from charge 2/3 vector-like quark singlet
 - Matching at M: off-shell (3 independent operators)

$$\mathcal{O}_1 = |\phi^{\dagger} D_{\mu} \phi|^2$$
 $\mathcal{O}_2 = \phi^{\dagger} \phi \partial^2 \phi^{\dagger} \phi$ $\mathcal{R} = \phi^{\dagger} \phi \phi^{\dagger} D^2 \phi$

• Compute $\langle H_1H_1^*H_2H_2^*\rangle$ in full and effective theories

$$\alpha_1^{(1l)} = \frac{N_C |\lambda_T|^2}{16\pi^2 M^2} \left(\frac{1}{2} \lambda_t^2 - \frac{1}{2} |\lambda_T|^2 \right),$$

$$\alpha_2^{(1l)} = \frac{N_C |\lambda_T|^2}{16\pi^2 M^2} \left(\frac{3}{2} \lambda_t^2 - \frac{1}{3} |\lambda_T|^2 \right),$$

$$\alpha_R^{(1l)} = \frac{N_C |\lambda_T|^2}{16\pi^2 M^2} \left(-\frac{1}{2} \lambda_t^2 + \frac{1}{2} |\lambda_T|^2 \right),$$

$$\Delta \hat{T} = -v^2 \alpha_1$$

$$\Delta \hat{T} = \frac{N_C}{32\pi^2} \frac{v^2}{M^2} \left[|\lambda_T|^4 + 2\lambda_t^2 |\lambda_T|^2 \left(\log \frac{M^2}{m_t^2} - 1 \right) \right]$$

How to use EFTs (from the top-down) at one loop

- Sample result: T parameter from charge 2/3 vector-like quark singlet (Alonso), Jenkins, Manohar, Trott ('13); Elias-Miró, Espinosa, Masso, Pomarol ('13); Elias-Miró, Grojean, Gupta, Marzocca ('13)
 - Running to m₁: tree-level operators relevant

$$\Delta \hat{T} = -v^2 \alpha_1$$

$$16\pi^2 \frac{\mathrm{d} \alpha_1}{\mathrm{d} \log \mu} = 8N_C \lambda_t^2 \alpha_{\phi q}^{(1)} + \dots ,$$

$$\Delta \hat{T} = \frac{N_C}{32\pi^2} \frac{v^2}{M^2} \left[|\lambda_T|^4 + 2\lambda_t^2 |\lambda_T|^2 \left(\log \frac{M^2}{m_t^2} - 1 \right) \right]$$

$$\mathcal{O}_{\phi q}^{(1)} = i\phi^{\dagger} D_{\mu} \phi \bar{q} \gamma^{\mu} q \qquad \qquad \alpha_{\phi q}^{(1)} = \frac{|\lambda_T|^2}{4M^2}$$

$$\alpha_1(m_t) = \alpha_1(M) - \frac{N_C \lambda_t^2 \alpha_{\phi q}^{(1)}(M)}{2\pi^2} \log\left(\frac{M}{m_t}\right)$$

$$= \frac{N_C}{32\pi^2 M^2} \left[\lambda_t^2 |\lambda_T|^2 - |\lambda_T|^4 - 2\lambda_t^2 |\lambda_T|^2 \log\left(\frac{M^2}{m_t^2}\right) \right].$$

How to use EFTs (from the top-down) at one loop

 Sample result: T parameter from charge 2/3 vector-like quark singlet

Matching at m₊: top contribution with anomalous tree-level

couplings

$$g_{W_3 t_L t_L} = g_{W_3 t_L t_L}^{\text{SM}} [1 - 2v^2 (\alpha_{\phi q}^{(1)} - \alpha_{\phi q}^{(3)})] = g_{W_3 t_L t_L}^{\text{SM}} \left(1 - \frac{|\lambda_T|^2 v^2}{M^2} \right),$$

$$g_{W_1 t_L b_L} = g_{W_1 t_L b_L}^{\text{SM}} [1 + 2v^2 \alpha_{\phi q}^{(3)}] = g_{W_1 t_L b_L}^{\text{SM}} \left(1 - \frac{|\lambda_T|^2 v^2}{2M^2} \right).$$

 $3.5 \ (M = 1 \ \text{TeV})$

$$\hat{T}(m_t^+) = \frac{N_C}{32\pi^2} \lambda_t^2 \left(1 - \frac{|\lambda_T|^2 v^2}{M^2}\right) = \hat{T}_{SM} + \Delta \hat{T}_{SM}$$

$$\Delta \hat{T}(m_t^-) = -v^2 \alpha_1(m_t) + \Delta \hat{T}(m_t^+) = \frac{N_C}{32\pi^2} \frac{v^2}{M^2} \left[|\lambda_T|^4 + 2\lambda_t^2 |\lambda_T|^2 \left(\log \frac{M^2}{m_t^2} - 1 \right) \right]$$

Summary of part 2

- Top-down approach to EFTs at the LHC:
 - Specific UV completions can give further info: new correlations, control over range of validity, ...
 - It can be complete: UV/IR dictionary
 - Finished at tree level and dimension 6
 - At one loop it needs automation: MatchMaker
 - Consistent one-loop calculation in (top-down) EFT:
 - Matching at high scale
 - Running down to EW scale
 - Matching at top/W/Z/H mass
 - Further running if low energy experiment

Sometimes I feel like playing football

The I remember we're never more than 4 and forget about it

We're trying to organize a football game. If you are interested tell Roberto

