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Standard Disclaimer: Not a comprehensive
review of direct probes of CPV in Higgs sector

I will attempt to briefly mention various
possibilities, but will mainly focus on CPV in:
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Probes Higgs couplings to ZZ ,Z�, and �� pairs,
but little to say about CPV in hWW couplings

(see for example: H. de Sandes, C. Delaunay, G. Perez, W. Skiba: 1308.4903)



Many studies of direct probes of CPV in Higgs sector before and after

discovery...Considered CPV observables at LHC and lepton colliders
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Searching for CP Violation in hVV Couplings
I ‘Smoking gun’ of BSM physics which could perhaps be

connected with baryogenesis V matter/anti-matter asymmetry
I Many indirect constraints of CP violation:

I Constraints from EWPD
I Measurements of h ! SM decay rates
I The most severe constraints come from EDMs

I These are indirect and rely on model dependent assumptions

Christophe Grojean Higgs coupling puzzles Madrid, 25th Sept. 2o1311

The relevant (and difficult) CP question about the Higgs
A 0+ Higgs can have CP violating couplings

fermionic sector marginal operators (dim-4) phase of VCKM matrix➤

bosonic sector irrelevant operators (dim-6) only
➤

➤

➤

edm’s
Higgs signal strengths 
Higgs kinematical distribution

Among the 59 irrelevant directions, 3 of them induce CP Higgs couplings in the EW bosonic sector

Notice that Eqs. (B.94) and (B.95) are directly implied by Eq. (3.53), which follows from

custodial invariance. It is simple to verify that the identities (3.47) and (3.48) are satisfied

by the couplings appearing on the left-hand sides of respectively Eq. (B.94) and (B.95).

The above discussion shows explicitly that every operator in Eq. (3.46) can be dressed

up with NG bosons and made manifestly invariant under local SU(2)L � U(1)Y transforma-

tions. 26

The part of Eq. (B.86) which does not depend on the Higgs field h coincides with the

non-linear chiral Lagrangian for SU(2)L � U(1)Y [79], in the limit of exact custodial sym-

metry. This latter assumption can be relaxed by specifying the sources of explicit breaking

of the custodial symmetry, i.e. its spurions, in terms of which one can construct additional

operators formally invariant under SU(2)L � U(1)Y local transformations. For example, the

list of operators that follows in the case in which custodial invariance is broken by a field

with the EW quantum numbers of hypercharge has been recently discussed in Ref. [55].

Since the choice of quantum numbers of the spurions is model-dependent (and in fact the

strongest e�ects are expected to arise from the breaking due to the top quark, rather than

hypercharge), we do not report here any particular list of operators, and prefer to refer to

the existing literature for further details.

C Relaxing the CP-even hypothesis

If one relaxes the hypothesis that h is CP-even, there are six extra dimension-6 operators

that need to be added to the e�ective Lagrangian (2.2):
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26Notice that h is invariant under SU(2)L � SU(2)R (hence SU(2)L � U(1)Y ) transformations. In the

case in which h belongs to an SU(2)L doublet H, this follows from the fact that h parametrizes the norm of

the doublet: H†H = (v + h)2/2.
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⇠ hFF̃ �

h

S

FIG. 1. Left: the diagram that gives rise to fermionic EDMs via the insertion of the operator hF F̃ from Eq. (2). Right: the
two-loop diagram that leads to fermion EDMs in the model involving a VL lepton, �, coupled to a singlet, S, that mixes with
the Higgs. The cross on the scalar line indicates that this contribution is proportional to the mixing term, A, in the scalar
potential.

of ỸS , �, and m�:
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f �Q2

�ỸS
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where the loop function is given by
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2
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1
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z

�
, (14)

which satisfies g(1) ⇠ 1.17 and g ⇠ 1
2 ln z for large z. We

show the Feynman diagram responsible for this contribu-
tion on the right of Fig. 1.

It is instructive to consider di�erent limits of
(13). When mh � m�, mS , to logarithmic accuracy
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�/m2
h) � g(m2

�/m2
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h), where mmin

is the smaller of mS and m�. In this limit, the heavy
fields can be integrated out sequentially, with S and �
first, and h second. The first step is simplified by the
use of the chiral anomaly equation for �, �µ�̄�µ�5� =
2i�̄�5�+ �

8� Q2
�Fµ� F̃µ� . This leads to the following iden-

tification:
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; �UV � min(mS , m�). (15)

Apart from a smaller value for the logarithmic cuto�,
the result in this limit di�ers little from the contact op-
erator case above. Even if the value of the logarithm is
not enhanced, ln(m2

min/m2
h) ⇠ O(1), the corrections to

the Higgs diphoton rate will be limited to at most the
sub-percent level unless a fine-tuned cancellation of de is
arranged with some other CP -odd source.

We now consider a di�erent near-degenerate limit,
|mh � mS | � mh, which turns out to be more inter-
esting as it allows the EDM constraints to be bypassed.
If the di�erence between the masses is small, we can ap-
proximate
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and the EDM becomes
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where in the final step we made use of the large m� limit.
The limiting case (17) receives no logarithmic enhance-

ment. Moreover, the value of the A parameter can be
very small, comparable to the mass splitting between h
and S or less. An O(1 GeV) mass splitting would nat-
urally place Av2/(m2

hm�) in the O(10�2 � 10�3) range,
suppressing the EDM safely below the bound.

At the same time, as explicitly shown in Ref. [5], mod-
ifications to the h ! �� rate can be significant, and
enhancement can come from the Fµ� F̃µ� amplitude. Un-
like corrections to the Fµ�Fµ� amplitudes that can en-
hance or suppress the e�ective rate, the CP -odd chan-
nel always adds to R�� . Assuming that the mass di�er-
ence between the singlet and the Higgs is small enough
that they cannot be separately resolved (which requires
|mS � mh| ⇠< 3 GeV with current statistics [5]), the ap-
parent increase in the diphoton rate in this model is
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and �ĥ��� ⇠ �Ŝ��� then R�� simplifies to a �-
independent expression,

Re�
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�Ŝ���

�ĥ���

. (21)

The rate for the weak eigenstate Ŝ to decay to two pho-
tons via its pseudoscalar coupling to the VL fermions is

�Ŝ��� =
�2Q4

�Ỹ 2
s m3

S

256�3m2
�

����A
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1/2

�
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S

4m�

�����
2

, (22)

� operator: 
already severely constrained 

by e and q EDMs
McKeen, Pospelov, Ritz ’12

Higgs rates? 
poor constraints 

since no interference with SM 
effects ≈  dim-8 CP-even operators

➤

➤➤

need to look for CP-odd observables 
that are linear in the CP Wilson coeffs. 

Z operator(s):
studied in the kinematical distributions 

for h ➙ ZZ ➙ 4l

see the fa3 CMS study

already bounded by flavor physics

Higgs CP violation?
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Joseph Lykken                                                                      Workshop On Why M_H = 126 GeV?, IFT Madrid, September 25-27, 2013

Even here you need to 
close the circle, since 
EDM constraints 
assume 1st gen Higgs 
couplings that you 
can’t measure

(figure stolen from Joe Lykken Madrid Higgs workshop talk)

I Crucial to have direct probes of CPV free of these assumptions



‘Conventional’ CP Violation via Triple Products

I Typically rely on constructing a CP-odd triple products
I Need four visible 4-momenta to construct CPV observable
I One example is the azimuthal angle between decay planes of a

four-body Higgs decay such as in h ! 4` or h ! ⌧⌧

1 Introduction

The observation of the 125 GeV Higgs boson at the Large Hadron Collider (LHC) [1, 2] marked
the beginning of a long-term research program to look for physics beyond the Standard Model
(SM) through properties of the Higgs boson. So far measurements based on the signal strength
conform to SM predictions. However, some properties of the Higgs boson, in particular the tensor
structure of its coupling to matter, remain relatively unconstrained by publicly available experi-
mental data. One particularly interesting possibility is that the Higgs couplings to SM gauge bosons
and/or fermions contain new sources of CP-violation (CPV). While some of these couplings may
be significantly constrained by low-energy precision observables [3, 4], such constraints are not
model-independent. It is therefore important to directly constrain the possibility of CP violating
Higgs couplings in high-energy colliders [5–14].

There have been many works on direct measurements of CPV in Higgs physics [15–27], which all
rely on constructing a CP-odd triple product asymmetries. Such an observable, however, requires
presence of three linearly-independent vectors. Given that the Higgs is a scalar particle and carries
no spin, momentum conservation then implies measurements of four visible momenta in order to
probe CPV in the Higgs sector. One prime example is the azimuthal angle between the two decay
planes of a four-body Higgs decay:

cos � =
(�p1 � �p2) · (�p3 � �p4)

|�p1 � �p2| |�p3 � �p4|
, (1)

which appears in channels such as h ! 4` and h ! �� .
In general, CPV occurs through an interference of two amplitudes with di�erent weak phases,

that is phases which change sign under a CP transformation. If, in addition, the amplitudes
also contain di�erent strong phases, which do not change sign under CP, then one can construct
simpler CPV observables. One example is the asymmetry ACP of decays into CP conjugate final
states F and F̄ . Let us assume that the decay process is described by two interfering amplitudes,
MF = M1 + M2, which can be written as Mi = |ci|ei(�i+�i), where �i and �i are the strong and
weak phases, respectively. This then gives,

ACP =
d�F � d�F̄

d�F + d�F̄

� |c1||c2| sin(�1 � �2) sin(�1 � �2), (2)

where we see explicitly that both �i and �i need to be di�erent for the asymmetry to be non-
vanishing.

In flavor physics, where these types of e�ects have previously been studied, strong phases are
often incalculable because they arise from strong interactions. There are however exceptions when
strong phases come from propagation of intermediate state particles. One well-known example is
time evolution of intermediate states that mix with each other, such as the B0–B

0
system. Another

example that received less attention is strong phases from the propagation of weakly interacting
particles with finite widths [28–32]. In this paper we point out that this latter possibility may
arise in the context of decays and associated production of the Higgs boson. In this case, the weak
phases may arise from couplings of the Higgs boson to the SM particles in the Lagrangian, while
the strong phases could come from the finite width e�ects in the Breit-Wigner propagators of
intermediate particles.

2

CP#viola)on#from#weak#phase#in#4l#

•  When#there#are#both#CP#even#and#CP#odd#terms,#interference#
will#be#CP.odd#

•  Needs#two#decay#planes#to#observe#
–  CP#viola)ng#observable#is#this#angle#between#decay#planes#

AZγ cosφZγ hZ
µυFµυ + AZγ sinφZγ hZ

µυ !Fµυ

Example#

May#27,#2014# Yi#@#Higgs#Mee)ng# 3#

I For this type of CPV only need distinct ‘weak phases’ (phases
that change sign under CP) in amplitudes which are interfering



Proposals for Direct Probes of h�� CP Properties

I Can we directly probe the CP nature of h � �� couplings?
I Recent proposals include:

I Measuring correlations in VBF ! �� (M. Buckley, M. Ramsey-Musolf: 1208.4840)

I Measuring correlations between photons which convert in
detector (F. Bishara, Y. Grossman, R. Harnik, D. Robinson, J.Shu, J. Zupan: 1312.2955)
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I Interesting possibilities...experimentally challenging to measure



Probing CPV in hZZ and hV � with h ! 4`

I Sensitivity driven by interference between tree level ZZ
amplitude and the 1-loop VV = ZZ ,Z�, �� mediated decays
(Y. Chen, RVM: 1310.2893, Y. Chen, R. Harnick, RVM: 1404.1336, 1503.05855)
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I Effective couplings to VV provide the potential weak phases
I BUT...CPV also possible without 4 visible momenta!



CP Violation Without Triple Products
I Consider decay into CP conjugate final states F and F̄
I Conditions necessary for CPV without triple products:

I Interference between different amplitudes

1 Introduction

The observation of the 125 GeV Higgs boson at the Large Hadron Collider (LHC) [1, 2] marked
the beginning of a long-term research program to look for physics beyond the Standard Model
(SM) through properties of the Higgs boson. So far measurements based on the signal strength
conform to SM predictions. However, some properties of the Higgs boson, in particular the tensor
structure of its coupling to matter, remain relatively unconstrained by publicly available experi-
mental data. One particularly interesting possibility is that the Higgs couplings to SM gauge bosons
and/or fermions contain new sources of CP-violation (CPV). While some of these couplings may
be significantly constrained by low-energy precision observables [3, 4], such constraints are not
model-independent. It is therefore important to directly constrain the possibility of CP violating
Higgs couplings in high-energy colliders [5–14].

There have been many works on direct measurements of CPV in Higgs physics [15–27], which all
rely on constructing a CP-odd triple product asymmetries. Such an observable, however, requires
presence of three linearly-independent vectors. Given that the Higgs is a scalar particle and carries
no spin, momentum conservation then implies measurements of four visible momenta in order to
probe CPV in the Higgs sector. One prime example is the azimuthal angle between the two decay
planes of a four-body Higgs decay:

cos � =
(�p1 � �p2) · (�p3 � �p4)

|�p1 � �p2| |�p3 � �p4|
, (1)

which appears in channels such as h ! 4` and h ! �� .
In general, CPV occurs through an interference of two amplitudes with di�erent weak phases,

that is phases which change sign under a CP transformation. If, in addition, the amplitudes
also contain di�erent strong phases, which do not change sign under CP, then one can construct
simpler CPV observables. One example is the asymmetry ACP of decays into CP conjugate final
states F and F̄ . Let us assume that the decay process is described by two interfering amplitudes,
MF = M1 + M2, which can be written as Mi = |ci|ei(�i+�i), where �i and �i are the strong and
weak phases, respectively. This then gives,

ACP =
d�F � d�F̄

d�F + d�F̄

� |c1||c2| sin(�1 � �2) sin(�1 � �2), (2)

where we see explicitly that both �i and �i need to be di�erent for the asymmetry to be non-
vanishing.

In flavor physics, where these types of e�ects have previously been studied, strong phases are
often incalculable because they arise from strong interactions. There are however exceptions when
strong phases come from propagation of intermediate state particles. One well-known example is
time evolution of intermediate states that mix with each other, such as the B0–B

0
system. Another

example that received less attention is strong phases from the propagation of weakly interacting
particles with finite widths [28–32]. In this paper we point out that this latter possibility may
arise in the context of decays and associated production of the Higgs boson. In this case, the weak
phases may arise from couplings of the Higgs boson to the SM particles in the Lagrangian, while
the strong phases could come from the finite width e�ects in the Breit-Wigner propagators of
intermediate particles.
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I Distinct strong and weak phases for M1 and M2
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I Need a CP violating observable such as an asymmetry

1 Introduction

The observation of the 125 GeV Higgs boson at the Large Hadron Collider (LHC) [1, 2] marked
the beginning of a long-term research program to look for physics beyond the Standard Model
(SM) through properties of the Higgs boson. So far measurements based on the signal strength
conform to SM predictions. However, some properties of the Higgs boson, in particular the tensor
structure of its coupling to matter, remain relatively unconstrained by publicly available experi-
mental data. One particularly interesting possibility is that the Higgs couplings to SM gauge bosons
and/or fermions contain new sources of CP-violation (CPV). While some of these couplings may
be significantly constrained by low-energy precision observables [3, 4], such constraints are not
model-independent. It is therefore important to directly constrain the possibility of CP violating
Higgs couplings in high-energy colliders [5–14].

There have been many works on direct measurements of CPV in Higgs physics [15–27], which all
rely on constructing a CP-odd triple product asymmetries. Such an observable, however, requires
presence of three linearly-independent vectors. Given that the Higgs is a scalar particle and carries
no spin, momentum conservation then implies measurements of four visible momenta in order to
probe CPV in the Higgs sector. One prime example is the azimuthal angle between the two decay
planes of a four-body Higgs decay:

cos � =
(�p1 � �p2) · (�p3 � �p4)

|�p1 � �p2| |�p3 � �p4|
, (1)

which appears in channels such as h ! 4` and h ! �� .
In general, CPV occurs through an interference of two amplitudes with di�erent weak phases,

that is phases which change sign under a CP transformation. If, in addition, the amplitudes
also contain di�erent strong phases, which do not change sign under CP, then one can construct
simpler CPV observables. One example is the asymmetry ACP of decays into CP conjugate final
states F and F̄ . Let us assume that the decay process is described by two interfering amplitudes,
MF = M1 + M2, which can be written as Mi = |ci|ei(�i+�i), where �i and �i are the strong and
weak phases, respectively. This then gives,

ACP =
d�F � d�F̄

d�F + d�F̄

� |c1||c2| sin(�1 � �2) sin(�1 � �2), (2)

where we see explicitly that both �i and �i need to be di�erent for the asymmetry to be non-
vanishing.

In flavor physics, where these types of e�ects have previously been studied, strong phases are
often incalculable because they arise from strong interactions. There are however exceptions when
strong phases come from propagation of intermediate state particles. One well-known example is
time evolution of intermediate states that mix with each other, such as the B0–B

0
system. Another

example that received less attention is strong phases from the propagation of weakly interacting
particles with finite widths [28–32]. In this paper we point out that this latter possibility may
arise in the context of decays and associated production of the Higgs boson. In this case, the weak
phases may arise from couplings of the Higgs boson to the SM particles in the Lagrangian, while
the strong phases could come from the finite width e�ects in the Breit-Wigner propagators of
intermediate particles.

2

I Note also that last condition requires M
F

6= CP(M
F

) ⌘ M
F̄

I What kind of physics/processes can satisfy these conditions?
A well known effect in flavor physics and studied in BSM context by J. Berger, et al: 1105.0672



New Observables for CPV in Higgs Decays

I Our primary example of this type of CPV is h ! 2`V (V = �,Z)
(see Y. Chen, A. Falkowski, I. Low, RVM: 1405.6723 for other examples of this type of CPV)

I Observable as asymmetry in polar angle of final state lepton `�

I Generally asymmetry 6= CPV (e.g. e+e� ! f f̄ ,WW @ LEP)
I Need C violation since individual polarizations not measured
I Of course this type of CPV also possible in h ! 4` decays



CP Violation in h ! 2`� Decays
I We can parametrize the hZ� and h�� couplings as,

h

`�

`+

�

Z, �

Figure 1: Feynman diagrams for the processes h ! `�`+� where ` = e, µ.

There are a number of specific realizations of the above scenario, with applications in both a
hadron collider and a lepton collider. In this paper we focus primarily on the process h ! `+`��. In
the SM, the `+`� pair could come from an intermediate Z boson or a photon. We allow the interme-
diate vector boson to be on or o� shell and do not distinguish between them in our notation. This
process can be used to probe the possible CP violating h�� and hZ� couplings. Similarly one can
consider the decay h ! `+`�Z in which case CP violating hZ�, and hZZ couplings are probed. We
will also discuss ff̄ ! Z/� ! hV , which is related to h ! 2` + V by crossing symmetry, and can
also be used to probe CP violating h��, hZ� and hZZ couplings. For all of these cases the strong
phase is provided by the width of the Z boson propagating in the intermediate state, while the
weak phases may arise from new physics Higgs couplings to matter.

2 CP Violation in h ! `�`+� Decays

We first focus on the process h ! `�`+� shown in Fig. 1. The couplings of the Higgs boson to Z�
and �� can be parametrized with the following Lagrangian,

L � h

4v

�
2AZ�

2 F µ�Zµ� + 2AZ�
3 F µ� �Zµ� + A��

2 F µ�Fµ� + A��
3 F µ� �Fµ�

�
, (3)

where v = 246 GeV, Vµ� = �µV� � ��Vµ and �Vµ� = 1
2�µ���V ��. We work with e�ective Higgs

couplings for which the SM predicts AZZ
1 = 2 at tree level and Ai

2 � O(10�2 � 10�3) at 1-loop
(i = Z�, ��) . The Ai

3 are first induced at three loop order [33] and totally negligible. We take Ai
2,3

to be momentum independent and real as is done in [34–36]. Thus we are neglecting any potential
strong phases in the e�ective couplings, but which in the SM are negligible [25, 37]. Since the A2

operators are CP-even and A3 are CP-odd, CP violation must be proportional to products of Ai
2

and Aj
3 in Eq. (3). In h ! 4` we can have CP violation for i = j and i 6= j [27] because of the ability

to form CP-odd triple products from the four visible final state momenta. As we will see, in the
case of the 3-body h ! `�`+� decay we only obtain CP violation for i 6= j due to the strong phase
condition discussed above, i.e. the Breit-Wigner propagators of the intermediate vector bosons of
the interfering amplitudes must be distinct.

To see how CP violation arises in h ! `�`+� decays it is instructive to analyze the process in
terms of helicity amplitudes. Below we treat the leptons as massless and work in the basis where
they have the spin projection +1/2 (R) or �1/2 (L) along the direction of motion of `� in the rest
frame of the `�`+ pair. We define the z-axis by the direction opposite to the motion of photon,
which has the polarization tensor �±1 = (0, 1, ±i, 0)/

�
2. The angle �1 is then the polar angle of `�

in the rest frame of `+`�. Note that for massless leptons, `+ and `� must have the same helicity

3

I Can gain insight into CPV by examining helicity amplitudes

�1 = �2 ⌘ �, where � = L, R. We denote the helicity amplitudes as M(�, �±1) ⌘ �±1(cos �1). In
colliders we do not measure helicities, therefore we sum over � and �± in the amplitude-squared.

Under P symmetry all helicities are flipped, while C exchanges particles with anti-particle
(thus flipping fermion helicities), which corresponds to �1 ! � � �1. Thus, the CP transformation
relates amplitudes with the same fermion helicity, and opposite photon helicity. Up to a convention-
dependent phase, unbroken CP implies L+1(cos �1) = L�1(� cos �1), R+1(cos �1) = R�1(� cos �1),
in which case,

�

hel.

|M|2 = |L+1(cos �1)|2 + |L+1(� cos �1)|2 + |R+1(cos �1)|2 + |R+1(� cos �1)|2 , (4)

where clearly Eq. (4) is symmetric in cos �1. Therefore a forward-backward asymmetry in the angle
�1 is a signal of CP violation. Similarly, unbroken C implies L±1(cos �1) = R±1(� cos �1), which
implies that the forward-backward asymmetry also requires C violation.

Evaluating the diagram in Fig. 1, the helicity amplitudes from the intermediate V = Z, � are
given by

�V
±1 = �gV,�

(AV �
2 ± iAV �

3 )M1(m2
h � M2

1 )

2
�

2v(M2
1 � m2

V + imV �V )
(1 � � cos �1) , � = R, L (5)

where � = +1 for � = R and �1 for � = L. We have also defined M1 is the invariant mass of the
`�`+ pair. The couplings of the vector boson to left-handed and right-handed leptons are denoted
as gV,L and gV,R; for the photon we have gV,L = gV,R = �e. In this form we can easily see that the
conditions for CP violating asymmetry are satisfied. More specifically,

• Two di�erent intermediate particles, Z and �, contribute to the same amplitudes.

• Arg(AV �
2 + iAV �

3 ),V = Z, �, provide di�erent weak phases.

• Arg(M2
1 � m2

V + imV �V ), V = Z, �, give distinct strong phases.

It should be clear by now that the forward-backward asymmetry of the `� with respect to the
z-axis in the `�`+ rest frame is a CP-violating observable. We write the di�erential decay width
as,

d�

dM2
1 d cos �1

=
�
1 + cos2 �1

� d�CPC

dM2
1

+ cos �1
d�CPV

dM2
1

. (6)

The first term is CP conserving and symmetric in cos �1, whereas the second term violates CP
and gives rise to the forward-backward asymmetry. The forward-backward asymmetry can now be
computed:

AFB(M1) =

�� 1

0 �
� 0

�1

�
d cos �1

d�
dM2

1 d cos �1�� 1

0 +
� 0

�1

�
d cos �1d

d�
dM2

1 d cos �1

=
3

8

d�CPV/dM2
1

d�CPC/dM2
1

. (7)

Focusing on the CPV contribution we find,

d�CPV

dM2
1

= (AZ�
2 A��

3 � A��
2 AZ�

3 ) � e(gZ,R � gZ,L)mZ�Z(m2
h � M2

1 )3

512�3m3
hv

2 ((M2
1 � m2

Z)2 + m2
Z�2

Z)
. (8)
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I See that conditions for CPV are satisfied by amplitudes

�1 = �2 ⌘ �, where � = L, R. We denote the helicity amplitudes as M(�, �±1) ⌘ �±1(cos �1). In
colliders we do not measure helicities, therefore we sum over � and �± in the amplitude-squared.

Under P symmetry all helicities are flipped, while C exchanges particles with anti-particle
(thus flipping fermion helicities), which corresponds to �1 ! � � �1. Thus, the CP transformation
relates amplitudes with the same fermion helicity, and opposite photon helicity. Up to a convention-
dependent phase, unbroken CP implies L+1(cos �1) = L�1(� cos �1), R+1(cos �1) = R�1(� cos �1),
in which case,
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hel.

|M|2 = |L+1(cos �1)|2 + |L+1(� cos �1)|2 + |R+1(cos �1)|2 + |R+1(� cos �1)|2 , (4)

where clearly Eq. (4) is symmetric in cos �1. Therefore a forward-backward asymmetry in the angle
�1 is a signal of CP violation. Similarly, unbroken C implies L±1(cos �1) = R±1(� cos �1), which
implies that the forward-backward asymmetry also requires C violation.

Evaluating the diagram in Fig. 1, the helicity amplitudes from the intermediate V = Z, � are
given by
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(AV �
2 ± iAV �

3 )M1(m2
h � M2

1 )

2
�

2v(M2
1 � m2

V + imV �V )
(1 � � cos �1) , � = R, L (5)

where � = +1 for � = R and �1 for � = L. We have also defined M1 is the invariant mass of the
`�`+ pair. The couplings of the vector boson to left-handed and right-handed leptons are denoted
as gV,L and gV,R; for the photon we have gV,L = gV,R = �e. In this form we can easily see that the
conditions for CP violating asymmetry are satisfied. More specifically,

• Two di�erent intermediate particles, Z and �, contribute to the same amplitudes.

• Arg(AV �
2 + iAV �

3 ),V = Z, �, provide di�erent weak phases.

• Arg(M2
1 � m2

V + imV �V ), V = Z, �, give distinct strong phases.

It should be clear by now that the forward-backward asymmetry of the `� with respect to the
z-axis in the `�`+ rest frame is a CP-violating observable. We write the di�erential decay width
as,

d�

dM2
1 d cos �1

=
�
1 + cos2 �1

� d�CPC

dM2
1

+ cos �1
d�CPV

dM2
1

. (6)

The first term is CP conserving and symmetric in cos �1, whereas the second term violates CP
and gives rise to the forward-backward asymmetry. The forward-backward asymmetry can now be
computed:

AFB(M1) =

�� 1

0 �
� 0

�1

�
d cos �1

d�
dM2

1 d cos �1�� 1

0 +
� 0

�1
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d cos �1d
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dM2
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=
3

8

d�CPV/dM2
1

d�CPC/dM2
1

. (7)

Focusing on the CPV contribution we find,

d�CPV

dM2
1

= (AZ�
2 A��

3 � A��
2 AZ�

3 ) � e(gZ,R � gZ,L)mZ�Z(m2
h � M2

1 )3

512�3m3
hv

2 ((M2
1 � m2

Z)2 + m2
Z�2

Z)
. (8)

4

(Note: we also needed M(h ! 2`�) 6= CP[M(h ! 2`�)])

I Fully differential cross section can be written as CPC + CPV

�1 = �2 ⌘ �, where � = L, R. We denote the helicity amplitudes as M(�, �±1) ⌘ �±1(cos �1). In
colliders we do not measure helicities, therefore we sum over � and �± in the amplitude-squared.

Under P symmetry all helicities are flipped, while C exchanges particles with anti-particle
(thus flipping fermion helicities), which corresponds to �1 ! � � �1. Thus, the CP transformation
relates amplitudes with the same fermion helicity, and opposite photon helicity. Up to a convention-
dependent phase, unbroken CP implies L+1(cos �1) = L�1(� cos �1), R+1(cos �1) = R�1(� cos �1),
in which case,

�

hel.

|M|2 = |L+1(cos �1)|2 + |L+1(� cos �1)|2 + |R+1(cos �1)|2 + |R+1(� cos �1)|2 , (4)

where clearly Eq. (4) is symmetric in cos �1. Therefore a forward-backward asymmetry in the angle
�1 is a signal of CP violation. Similarly, unbroken C implies L±1(cos �1) = R±1(� cos �1), which
implies that the forward-backward asymmetry also requires C violation.

Evaluating the diagram in Fig. 1, the helicity amplitudes from the intermediate V = Z, � are
given by

�V
±1 = �gV,�

(AV �
2 ± iAV �

3 )M1(m2
h � M2

1 )

2
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2v(M2
1 � m2

V + imV �V )
(1 � � cos �1) , � = R, L (5)

where � = +1 for � = R and �1 for � = L. We have also defined M1 is the invariant mass of the
`�`+ pair. The couplings of the vector boson to left-handed and right-handed leptons are denoted
as gV,L and gV,R; for the photon we have gV,L = gV,R = �e. In this form we can easily see that the
conditions for CP violating asymmetry are satisfied. More specifically,

• Two di�erent intermediate particles, Z and �, contribute to the same amplitudes.

• Arg(AV �
2 + iAV �

3 ),V = Z, �, provide di�erent weak phases.

• Arg(M2
1 � m2

V + imV �V ), V = Z, �, give distinct strong phases.

It should be clear by now that the forward-backward asymmetry of the `� with respect to the
z-axis in the `�`+ rest frame is a CP-violating observable. We write the di�erential decay width
as,

d�

dM2
1 d cos �1

=
�
1 + cos2 �1

� d�CPC

dM2
1

+ cos �1
d�CPV

dM2
1

. (6)

The first term is CP conserving and symmetric in cos �1, whereas the second term violates CP
and gives rise to the forward-backward asymmetry. The forward-backward asymmetry can now be
computed:

AFB(M1) =

�� 1

0 �
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0 +
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Focusing on the CPV contribution we find,
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1
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4

(We see directly that any asymmetry implies CPV!)



CP Violation in h ! 2`� Decays

I Can compute the total integrated forward-backward asymmetry

The expression is non-zero only in the presence of both CP-even and CP-odd Higgs couplings. More-
over, we are only sensitive to the products of the Higgs couplings to Z� and �� since this is an
interference e�ect between Z and �. The condition of C violation is provided by the axial coupling
of the Z boson to leptons (the Higgs couplings in Eq. (3) are C-even), hence the asymmetry is
proportional to (gZ,R � gZ,L). The asymmetry vanishes in the limit when �Z goes to zero, as then
strong phases would be absent. On the left in Fig. 2 we plot the magnitudes of the symmetric
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Figure 2: Left: the di�erential decay rate d�
dM1

for the symmetric (black) and the asymmetric part � 5 (red)

for AZ�
3 = AZ�

2SM, A��
2 = A��

2SM, AZ�
2 = A��

3 = 0. Right: For the same parameters, the dependence of the signal
asymmetry on M1.

and asymmetric parts of the di�erential width for a choice of parameters giving rise to SM signal
strengths in �(h ! Z�) and �(h ! ��). The shapes of the symmetric and asymmetric parts are
very similar on the Z peak. The rise of the symmetric part for M1 ! 0 is due to the intermediate
photon contribution. On the right in Fig. 2 we show the di�erential asymmetry AFB(M1) for the
same choice of parameters. We can also define the total integrated asymmetry,

ĀFB ⌘
3
� mh

M0
dM1 M1

d�CPV
dM1

8
� mh

M0
dM1 M1

d�CPC
dM1

, (9)

where the cut M1 > M0 on the minimum `�`+ invariant mass is necessary to cut o� the IR
divergence due to the intermediate photon. As long as M0 is not too small, an accurate estimate can
be obtained in the narrow width approximation and setting A��

2,3 ! 0 in the symmetric part. This
way we get,

ĀFB � �Z

mZ

AZ�
2 A��

3 � A��
2 AZ�

3

(AZ�
2 )2 + (AZ�

3 )2

3e(gZ,R � gZ,L)

2(g2
Z,R + g2

Z,L)
� 0.07

AZ�
2 A��

3 � A��
2 AZ�

3

(AZ�
2 )2 + (AZ�

3 )2
(10)

Clearly, if the CP-odd couplings are of the same order as the CP-even ones, then the only parametric
suppression of the asymmetry is by �Z/mZ ⇠ 3%. The asymmetry can be larger if AZ�

2 is much
below the SM value, although that would require a cancellation between the SM W loop and new
physics contributions to h ! Z�.

To observe an asymmetry in this channel one must compete not only with the CP conserving
part of the h ! `�`+� decay, but also with the much larger irreducible qq̄ ! Z� and reducible
Z + X (with X faking a photon) backgrounds. We estimate the expected the significance as

5

I In narrow width approx. can get estimate for total asymmetry

The expression is non-zero only in the presence of both CP-even and CP-odd Higgs couplings. More-
over, we are only sensitive to the products of the Higgs couplings to Z� and �� since this is an
interference e�ect between Z and �. The condition of C violation is provided by the axial coupling
of the Z boson to leptons (the Higgs couplings in Eq. (3) are C-even), hence the asymmetry is
proportional to (gZ,R � gZ,L). The asymmetry vanishes in the limit when �Z goes to zero, as then
strong phases would be absent. On the left in Fig. 2 we plot the magnitudes of the symmetric
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Figure 2: Left: the di�erential decay rate d�
dM1

for the symmetric (black) and the asymmetric part � 5 (red)

for AZ�
3 = AZ�
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3 = 0. Right: For the same parameters, the dependence of the signal
asymmetry on M1.

and asymmetric parts of the di�erential width for a choice of parameters giving rise to SM signal
strengths in �(h ! Z�) and �(h ! ��). The shapes of the symmetric and asymmetric parts are
very similar on the Z peak. The rise of the symmetric part for M1 ! 0 is due to the intermediate
photon contribution. On the right in Fig. 2 we show the di�erential asymmetry AFB(M1) for the
same choice of parameters. We can also define the total integrated asymmetry,
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where the cut M1 > M0 on the minimum `�`+ invariant mass is necessary to cut o� the IR
divergence due to the intermediate photon. As long as M0 is not too small, an accurate estimate can
be obtained in the narrow width approximation and setting A��

2,3 ! 0 in the symmetric part. This
way we get,
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Clearly, if the CP-odd couplings are of the same order as the CP-even ones, then the only parametric
suppression of the asymmetry is by �Z/mZ ⇠ 3%. The asymmetry can be larger if AZ�

2 is much
below the SM value, although that would require a cancellation between the SM W loop and new
physics contributions to h ! Z�.

To observe an asymmetry in this channel one must compete not only with the CP conserving
part of the h ! `�`+� decay, but also with the much larger irreducible qq̄ ! Z� and reducible
Z + X (with X faking a photon) backgrounds. We estimate the expected the significance as

5

I Can estimate final asymmetry assuming �
h!2`�/�

BG

⇠ 1/60

follows. In Ref. [?] it was estimated that after cuts �h ⇠ 1.3 fb for the CP conserving h ! `�`+�
decay and �ib ⇠ 37 fb for the irreducible background at

�
s = 14 TeV LHC. We assume here that

the reducible background will be of the same order as the irreducible one, thus �b ⇠ 2�ib. Our signal
is S ⇠ AFB�hL, where L is the integrated luminosity, and the background is B ⇠ (�h +�b)L. Then
the significance is given by,

S�
B

⇠
�

ĀFB

0.1

� �
L

3000 fb�1 (11)

This suggests the high-luminosity phase of the LHC would have a chance to observe this asymmetry,
especially if a matrix element method analysis similar to what has been done in [?,?,?] is used to
boost the sensitivity significantly. This direction is currently under study [?].

On the other hand, a similar estimate indicates one should be able to probe AFB ⇠ 0.05 in a
100 TeV pp collider with 3000 fb�1 even using a simpler cut-based approach akin to Ref. [?].

3 CP Violation in Other Processes

We move to discussing other processes exhibiting this new class of CP violating observables. In
this section we restrict to order of magnitudes estimates of the asymmetry, and briefly comment
on the discovery prospects.

First, we consider the h ! `�`+Z decay with an on-shell Z boson. This process is very similar
to the h ! `�`+� decay discussed in the previous section, except that in this case the weak phases
may originate from the Higgs couplings to Z� and to ZZ. The former were given in Eq. (??) and
we parametrize the latter as,

L � h

4v

�
AZZ

1 ZµZµ + AZZ
2 Zµ�Zµ� + AZZ

3 Zµ� �Zµ�

�
. (12)

The new element here is the tree-level coupling AZZ
1 which is expected to be much larger than

the loop induced couplings Ai
2 and Ai

3. Thus, the AZZ
1 squared term will dominate the symmetric

CP-conserving part of the di�erential width, while the interference with AZ�
3 will dominate the CP

violating part. Thus, the forward-backward asymmetry parametrically behaves as,

ĀFB(h ! `�`+Z) ⇠ �Z

mZ

AZ�
3

AZZ
1

� 10�3. (13)
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in HL phase!
I Sensitivity can be improved with full MEM analysis (ongoing!)
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I Can also probe CPV in h ! 2`Z for hZ� and hZZ couplings
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I Difficult to observe at LHC, but perhaps at 100 TeV
I Again full MEM will help boost the sensitivity (more to follow)
I Also part of h ! 4` decay which includes h�� couplings



CP Violation in 2-to-2 Scattering
I Crossing symmetry implies f f̄ ! Z/� ! hV can also be utilized

I Can use signal/background interference to probe CPV
(M. Farina, Y. Grossman, D. J. Robinson: 1503.06470)

   New Section 2 Page 5    

I These are difficult to observe at LHC, but could be very
interesting at future e+e� machine or 100 TeV hadron collider



Anomalous Higgs Couplings in h ! 4`

I We consider h ! VV ! 4`
where 4` ⌘ 2e2µ, 4e, 4µ and
VV = ZZ ,Z�, ��

I Can parametrize the hVV
couplings with an effective
Lagrangian (up to D = 5)
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ID-ing the Higgs with Kinematic Distributions

I Sensitivity to Higgs couplings
and underlying loop effects
comes from the many
kinematic observables

I Contain information about
CP properties and tensor
structure of hVV couplings

Θ

(Y. Chen, R. Harnik, RVM: 1404.1336)
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Constructing a MEM Likelihood Analysis
I A likelihood can be formed out of probability density functions

(pdfs) using some set of observables as follows
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to. Furthermore, for a specific model one can take the predic-
tion for the values of the various couplings and simply multi-
ply by the numbers given in Fig. 4-5 to get a feel for whether
those couplings might be probed in the golden channel. For
most realistic models, all couplings apart from A1ZZ are gen-
erated by higher dimensional operators and are expected to
be small. Of course, these rates do not contain information
about the shapes in the various distributions so in principal
the sensitivity is greater than might be inferred from these
values. In Sec. VII A of the Appendix we also show the same
partial fractions for a ‘CMS-like’ phase space as well as show
the same tables for the standard model prediction. Of course
for a scalar resonance with a mass much larger or smaller than
125 GeV these numbers can change significantly.

B. Simplified Analysis

In order to demonstrate the flexibility and potential of our
framework, we perform a simplified generator level analy-
sis neglecting any detector e�ects and at a fixed center of
mass energy of

�
s = m� = 125 GeV . To do this we con-

struct a maximum likelihood analysis using the fully di�er-
ential cross sections in Eqs.(19) and (49) to build the signal
plus background pdf from which the total likelihood will be
constructed. Thus we have,

PS+B(O|FB , �A) = FB � PB(ŝ, M1, M2, ��) (50)

+(1 � FB) � PS(m2
h, M1, M2, ��|��)

where O = (ŝ, M1, M2, ��) is our final set of observables and f
is the background fraction, which we must also extract. The
signal and background pdfs are given by,

PS(m2
h, M1, M2, ��|��) =

d�h�4�

dM2
1 dM2

2 d��

PB(ŝ, M1, M2, ��) =
d�qq̄�4�

dM2
1 dM2

2 d��
, (51)

where they have been normalized over O (at fixed
�

s). With
the pdfs in hand we can now write the likelihood of obtaining
a particular data set containing N events as,

L( �A) =
N�

O

P(O| �A) (52)

After constructing L(f,��) we then maximize with respect to

f and �� to extract the values which maximize the likelihood
�̂ and f̂ for a given data set. To asses the error we then re-
peat this for a large number of pseudo experiments to obtain
distributions for �̂ and f̂ with a corresponding spread. Below
we show the results for an example parameter point. More
details on this procedure can be found in [30] and [31].

C. Fit Definition

To examine the Higgs couplings to neutral gauge bosons,
we take as our hypothesis the vertex in Eq.(1). We can use an
overall phase rotation to make one of the parameters real. Fur-
thermore, we can avoid the need for the absolute normaliza-
tion if we instead fit to ratios of couplings. Which parameter

to make real and which ratios to construct explicitly is a mat-
ter of choice the most convenient of which depends on the fit
being performed. Thus, in terms of the vertex as defined in
Eqs.(2), we are explicitly fitting to,

�µ�
ij (k, k�) � Rij

1 V µ�
1 + Rij

2 V µ�
2 + Rij

3 V µ�
3 (53)

where Rij
n are complex ratios defined as Rij

n = Anij/|A| where
|A| is some normalization to be chosen for each fit. Since one
of the Rij

n can always be made real there are in principal
twelve undetermined parameters to fit for when neglecting
the overall normalization (note RZ�

1 = R��
1 = 0). Fitting to

ratios also makes any dependence on the production variables,
�pT and Y minimal since they mainly only a�ect selection ef-
ficiencies when detector e�ects are eventually included [30].

D. Example Parameter Extraction

As a demonstration of our ability to perform parameter
extraction, we analyze the following example parameter point:

• �� � (A1ZZ = 1, A2ZZ = 0, A3ZZ = 5.1, A2Z� =
0.05, A3Z� = �0.1, A2�� = 0.07, A3�� = �0.08).

Note that even though A2ZZ is zero we still fit for it and there-
fore it is floated when performing the maximization. Thus we
allow for all operators in Eq.(3) to be ‘turned on’ simultane-
ously, but we assume all coe�cients to be real. Our framework
can easily also allow for non-zero phases, but we do not con-
sider them here for simplicity. The pseudo-data set to which
we fit is obtained by generating large samples from the an-
alytic expressions using a simply constructed event genera-
tor5. We generate both signal and background events at fixed
energy

�
s = 125 GeV and M1,2 > 4 GeV . Since we seek

only to demonstrate the validity of our parameter extraction
framework, we focus on the 2e2µ final state for simplicity. It
would be interesting, however, to perform a dedicated study
and examine how the sensitivity of the 2e2µ final state com-
pares to the 4e/4µ final state for di�erent choices of phase
space, but we leave this for future work. The parameter ex-
traction is performed by maximizing the likelihood function
as described above.

We first perform a simultaneous extraction of all param-
eters including the correlations assuming a pure signal sam-
ple. We show in Fig. 6 one dimensional results for a large set
of pseudo experiments containing 1000 events each. We have
explicitly fit to the ratios of couplings Rij

n = Anij/|A| where
here we take |A| = |A1ZZ | (thus fixing RZZ

1 = 1). The dis-
tribution for the extracted parameters obtained for the set of
pseudo experiments is shown in blue with the true value indi-
cated by the red vertical line. One can see that the true value
sits near the center of the distribution, an indication that
the maximization procedure is working properly and that the
global maximum of the likelihood function is in fact being
obtained in each pseudo experiment. The e�ciency of con-
vergence in our maximization is � 99% and takes on the order
of a few minutes to complete [31].

Of course there are also correlations between the param-
eters. To see this we can examine the di�erent parameters

5 The event generator can be obtained from [38].

(where O is set of observables and ~
A a set of undetermined parameters)

I For pp ! h ! 4` we construct the pdf from the differential cxn:

4

of Hermitian operators,

L � 1

4v
h
�
2ghm2

ZZµZµ + gZZµ�Zµ� + g̃ZZµ� �Zµ�

+ 2gZ�Fµ�Zµ� + 2g̃Z�Fµ� �Zµ�

+ g�Fµ�Fµ� + g̃�Fµ� �Fµ�

�
, (2)

where we have taken h real and allowed only up to di-
mension five operators and Zµ is the Z field while Vµ� =
�µV� ���Vµ is the usual bosonic field strengths. The dual

field strengths are defined as �Vµ� = 1
2�µ���V ��. Thus for

this Lagrangian we would have all couplings real with
AZZ

1 ⌘ gh, AZZ
2 ⌘ gZ , AZZ

3 ⌘ g̃Z and similarly for Z�
and ��. This makes Eq.(1) a convenient parametrization
for fitting to Lagrangian parameters that might be gen-
erated in various models at dimension five or less. For a
purely Standard Model Higgs we have AZZ

1 ⌘ gh = 2,
while all other coe�cients are � 0. The parameteriza-
tion in Eq.(1) can of course be mapped onto Lagrangians
with dimension greater than five with appropriate trans-
lation of the parameters. We work explicitly with the
vertex in Eq.(1) used to calculate the fully di�erential
cross section for h ! 4` and when performing parameter
extraction, but again this can easily be changed in our
framework. We also define the full set of parameters as,

~A ⌘ (AZZ
1 , AZZ

2 , AZZ
3 ; AZ�

2 , AZ�
3 ; A��

2 , A��
3 ), (3)

which will be used for the remainder of this study.

C. Signal and Background
Di�erential Cross Sections

In the case of signal we have computed analytically the
fully di�erential cross section in the observables described
in Sec.IIA for the process h ! ZZ + Z� + �� ! 4`
using the parametrization in Eq.(1). We have included all
possible interference e�ects between tensor structures as
well as identical final states in the case of 4e/4µ. For the
irreducible background we have computed analytically
the process qq̄ ! ZZ +Z� +�� ! 4` which includes the
s-channel (resonant) 4` process as well as the t-channel
(diboson production) 4` process and again includes all
possible interference e�ects. All vector bosons are allowed
to be on or o�-shell and we do not distinguish between
them in what follows. The details of these calculations
can be found in [19, 35, 36] along with the validation
procedures and detailed studies of the distributions as
well as the various interference e�ects. We have combined
these analytic expressions with functions parametrizing
the production spectra and implemented them into our
analysis framework.

We note that it is important to include all possible
Higgs couplings including the Z� and �� contributions
in the signal di�erential cross section since the Higgs ap-
pears to be mostly Standard Model-like [40] and we are
primarily searching for small anomalous deviations from

the Standard Model prediction. Thus when attempting to
extract specific couplings we must be sure that one small
e�ect is not being mistaken for another. This is particu-
larly relevant because we find many of the couplings are
correlated. Including all possible couplings and doing a
simultaneous fit ensures that we minimize the possibility
of misinterpretation or of introducing a bias when at-
tempting to extract these couplings. Searching for these
small e�ects is also why it is important to include the in-
terference e�ects between the identical final state leptons
as well as the relevant detector e�ects and background.

III. CONSTRUCTION OF THE PDF

To be able to perform a fit for the e�ective Higgs cou-
plings, we must first obtain the probability density func-
tion (pdf ) for the observables as a function of the unde-
termined parameters ( ~A). This pdf consists of two com-
ponents which we assume to be factorized: the parton
level (‘decay’) di�erential cross section as discussed in
Section II C, and the production spectrum. This can be
expressed as,

P (~pT , Y, �, ŝ, M1, M2, ~�| ~A) = (4)

Wprod(~pT , Y, �, ŝ) � d�4`(ŝ, M1, M2, ~�| ~A)

dM2
1 dM2

2 d~�
.

The parton level fully di�erential cross section is treated
as being at fixed ŝ where one obtains the input ŝ value
from the production spectrum Wprod. The production
spectrum for the signal and background depend on the
parton distribution functions and can not be computed
analytically. For the signal in which we assume decays
on-shell, the ŝ spectrum is taken to be a delta function
centered at m2

h. We discuss in more detail how Wprod is
obtained for the signal and background in Sec. III D.

We explicitly assume that the decay process can be
factorized from the production mechanism and as men-
tioned previously will eventually average over ~pT , Y and
�. Of course the expression in Eq.(4) represents the gen-
erator level pdf, while a realistic treatment involves the
pdf after taking into account detector e�ects. We study
this in more detail below and discuss the basic proce-
dure for obtaining the detector level pdf via an explicit
integration over all of the center of mass variables. The
particular details of the various steps as well as a number
of validations can be found in an accompanying technical
note [36].

A. Obtaining pdf in Terms of Detector Observables

A realistic treatment of the signal and background re-
quires obtaining the pdfs in terms of detector level ob-
servables. This can be done by a convolution of the gen-
erator level pdf introduced in Eq.(4) with a transfer func-
tion which parametrizes the e�ects of the lepton selec-

I Construct ratios ⇤ = L(A
a

)/L(A
b

) ) hypothesis testing
I Perform parameter extraction via maximization of the likelihood
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give one important example, we generate pdfs with nar-
rower or wider lepton response functions to parameterize
our knowledge of the lepton momentum resolution. If we
define the nominal pdf to be P0(O) and the alternative
as P1(O), one can parameterize the dependence of the
likelihood on a nuisance parameter n by interpolating
between the nominal and the alternative pdfs as follows:

P(O|n) = (1 � n) P0(O) + n P1(O)

= P0(O) + n [P1(O) � P0(O)] . (27)

It is instructive to observe that, for all values of n, the
normalization of the total pdf stays the same. Given the
asymmetric nature of many systematic uncertainties, it is
more appropriate to generate many “check-points” along
the axis of n and to do piece-wise interpolation with-
out the need of worrying about the normalization. Non-
central values of n are a priori disfavored, therefore one
can impose a prior on top of the interpolated likelihood:

P(O|n) = P(O|n)G(n), (28)

where G(n) is typically a Gaussian centered at the central
value of n. In the case of multiple systematic uncertain-
ties, one can replace n by a vector of nuisance parameters
~n, and the prior G(n) by G(~n). In general G(~n) is a mul-
tivariate Gaussian-like function with primary axes which
are some combination of di�erent nuisance parameter di-
rections. However one can carefully define the nuisance
parameters such that correlations between them are neg-
ligible. In this limit G(~n) can be written as the product
of many Gaussian-like functions.

In this paper, we have included the dominant system-
atic uncertainties resulting from imperfect knowledge of
the lepton momentum scale and resolution. Future work
will incorporate a more exhaustive list of systematic un-
certainties, including those resulting from uncertainties
in the production spectra, uncertainties in the Higgs
boson mass, and uncertainties on sub-dominant back-
grounds.

V. FIT AND STATISTICAL PROCEDURE

Here we discuss the maximization procedure used to
extract the undetermined parameters and the use of
pseudo experiments to quantify the uncertainty as well as
present our fit definition. To perform the maximization
of the likelihood we have incorporated the MINUIT [49]
function minimization code into our framework. Further
details of these procedures can be found in [36].

A. Maximization Procedure

One important feature of the procedure is that the
computationally intensive component of evaluating the
likelihood only needs to be done for the events in the final
dataset used in the fit for a given experiment. Therefore

the computationally expensive pieces can be calculated
on the computing grid prior to the analysis of the data,
and the fit for parameter extraction itself is then com-
pleted within a few seconds. This allows for a great deal
of flexibility when fitting the undetermined parameters.

Once the likelihood L( ~A) for a particular dataset is
obtained, a simple maximization procedure to find the
global maximum is performed to obtain the value of
the parameters which maximizes the likelihood, Â. Thus
Â represents the most likely value of ~A for a given
dataset. Schematically we have,

�L( ~A)

� ~A

���
�A=Â

= 0. (29)

To quantify the uncertainty on the extracted value Â we
perform a large number of pseudo-experiments N each
containing N events and perform the maximization for
each pseudo-experiment. A distribution for Â is obtained
with a spread � and average value Ā. The true value Ao

will sit within some interval of the extracted value Â for
a given pseudo experiment and as the number of pseudo
experiments is taken to infinity the average value of Â will
converge to the true value; i.e. Ā ! Ao as N ! �. The
results to be shown in Sec. VI represent a rough esti-
mate of the final precision of the analysis, while a precise
quantification of the measurement precision including all
sub-dominant backgrounds and systematic uncertainties
are left to an ongoing study [37].

B. Finding the Global Maximum

In practice the maximization in Eq.(29) is done by
a simple scan of the likelihood function starting from
some random initial point in the parameter space. Of
particular importance in this step is ensuring that the
point in parameter space that this procedure converges
to is actually the global maximum and not simply a local
maximum, as the statistical fluctuations of a particular
dataset can lead to the appearance of multiple local max-
ima in the likelihood. This can lead to biases or imprecise
estimations of the undetermined parameters.

We illustrate this e�ect in Fig. 8 where we show ‘arrow
plots’ for an example two-dimensional fit to two di�erent
datasets containing the same number of events and same
‘true’ value for the undetermined parameters. We show a
large number of arrows whose tails begin at some initial
point in a two dimensional parameter space and whose
heads point to the final point reached in the maximiza-
tion scan. On the left we see the same endpoint is reached
regardless of the initial starting point indicating there is
a clear global maximum. On the right we see two separate
accumulations to which the arrow heads point indicating
two local maxima. We have carefully accounted for this
e�ect in our maximization procedure and find a very high
convergence rate in general (� 99%) to the global maxi-
mum of the likelihood. More details of this procedure can
be found in [36].
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Framework in CMS Analysis
CMS PAS HIG-14-014, arXiv: 1411.3441

I A multi-dimensional Higgs couplings extraction framework
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I Used in recent CMS study of hVV couplings in h ! 4`
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Figure 4: Expected and observed likelihood scans for fa2(left) and fa3(right) obtained using the
kinematic discriminant method (KD, black) and multidimensional distribution method (MD,
red). The likelihoods are computed assuming the a2/a1 and a3/a1 coupling ratios are real.

coverage is expected in the asymptotic limit [89].

For the scans shown in Figure 5a the likelihood is computed from the kinematic discriminant
method assuming ��1 is 0 or � and all other amplitudes have their SM values. Here the dis-
crimination is based on three-dimensional probability density functions (Dbkg, D�1, D0h+). The
fit finds (expects) the best fit points at f�1 cos(��1) = 0.22+0.10

�0.16(0.00+0.16
�0.87) when the phase is 0

or �, f�1 = 0.22+0.10
�0.16(0.00+0.16

�0.00) when ��1 = 0, and f�1 = 0.00+0.08
�0.00(0.00+0.87

�0.00) when ��1 = �.
In Figure 5b ��1 is profiled while all other parameters are set to the SM predictions or a second
ZZ amplitude and its phase �ai are profiled along with ��1 ( fa2, �a2 or fa3, �a3). The fits find
(expect) the best fit points to be at f�1 = 0.35+0.15

�0.29(0.00+0.87
�0.00) when profiling ��1. Furthermore,

f�1 = 0.28+0.20
�0.15(0.00+0.87

�0.00) when profiling ��1, fa2, and �a2 and f�1 = 0.42+0.10
�0.33(0.00+0.88

�0.00) when
profiling ��1, fa3, and �a3. In this case the likelihood is computed from the kinematic discrimi-
nant method only and the discrimination power is based on the three-dimensional probability
density functions (Dbkg, D�1, D0� or D0h+).

For the scans shown in Figure 5c the likelihood is computed from the kinematic discriminant
method assuming the a2/a1 amplitude ratio is real and all other amplitudes have their SM
values. Here the likelihood is based on three-dimensional probability density functions (Dbkg,
D0h+, Dint). The best fit values when the amplitude ratio is real, �a2 = 0 or � are reported
above. In Figure 5d �a2 is profiled while all other parameters are set to the SM predictions or a
second ZZ amplitude and its phase �ai are profiled along with �a2 ( f�1,��1 or fa3,�a3). The fits
find (expect) the best fit points to be at fa2 = 0.32+0.28
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more, fa2 = 0.11+0.16
�0.11(0.00+0.73

�0.00) when profiling �a2, f�1, and ��1 and fa2 = 0.28+0.29
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For the scans shown in Figure 5e the likelihood is computed from the kinematic discriminant
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kinematic discriminant method (KD, black) and multidimensional distribution method (MD,
red). The likelihoods are computed assuming the a2/a1 and a3/a1 coupling ratios are real.

coverage is expected in the asymptotic limit [89].

For the scans shown in Figure 5a the likelihood is computed from the kinematic discriminant
method assuming ��1 is 0 or � and all other amplitudes have their SM values. Here the dis-
crimination is based on three-dimensional probability density functions (Dbkg, D�1, D0h+). The
fit finds (expects) the best fit points at f�1 cos(��1) = 0.22+0.10

�0.16(0.00+0.16
�0.87) when the phase is 0

or �, f�1 = 0.22+0.10
�0.16(0.00+0.16

�0.00) when ��1 = 0, and f�1 = 0.00+0.08
�0.00(0.00+0.87

�0.00) when ��1 = �.
In Figure 5b ��1 is profiled while all other parameters are set to the SM predictions or a second
ZZ amplitude and its phase �ai are profiled along with ��1 ( fa2, �a2 or fa3, �a3). The fits find
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For the scans shown in Figure 5c the likelihood is computed from the kinematic discriminant
method assuming the a2/a1 amplitude ratio is real and all other amplitudes have their SM
values. Here the likelihood is based on three-dimensional probability density functions (Dbkg,
D0h+, Dint). The best fit values when the amplitude ratio is real, �a2 = 0 or � are reported
above. In Figure 5d �a2 is profiled while all other parameters are set to the SM predictions or a
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discriminant method (KD, black) and multidimensional distribution method (MD, red). The
likelihoods are computed assuming the a2/a1 and a3/a1 coupling ratios are real.

alternative signal hypotheses are taken to be the same as for the SM Higgs boson (the 2e2µ
channel is taken as a reference). Since the observed signal strength is very close to unity, the
two results for the expected separations are also similar.

In case of the spin-one studies, we have performed hypothesis testing for a discrete set of val-
ues for parameter fb2. The distribution of test statistic and observed value in the case of the SM
Higgs boson versus an example spin-one hypothesis with mixture fb2=0.8 using decay only
information are shown in Figure 9 (left). The expected and observed separations from the test
statistic distributions are summarized in Table 8 and in Figure 10. Figure 9 (right) shows a like-
lihood scan of �2� ln L as a function of f (JP), in case of the qq̄ production mode. The expected
and observed non-interfering fraction measurements are also summarized in Table 8, as well as
in Figure 11. In case of production independent scenarios the f (JP) results are extracted using
the efficiency of qq ! X. All the results are consistent with the expected SM contribution to
the signal.

In case of the spin-two studies, we have computed the test statistics and performed hypothesis
testing for all models and discriminants discussed in Section 5.2.2. The following terms are
tested here for the first time; c2(2+

h2), c3(2+
h3), c6(2+

h6), c7(2+
h7), c9(2�

h9), c10(2�
h10). Previous CMS

results tested c1 = c5(2+
m) in all three production scenarios, as well as c1 << c5(2+

b ), c4(2+
h ) and

c7(2�
h ) terms from gg production [10]. This analysis tests both qq̄ and production independent

scenarios for these three untested cases. The results presented here and previous CMS results
cover all lowest order terms in the amplitude when we do not consider mixing of these spin-
two scenarios.

The example distribution of test statistic and observed value in the case of the SM Higgs boson
versus the spin-two hypothesis any ! 2�

h10 are shown in Figure 12 (left). Figure 12(right)
shows the likelihood scan of the spin-two hypotheses as a function of f (JP), in the decay only
discriminant case.

I Used in a limited scope and validated with other frameworks
I Can begin utilizing full power of framework in future studies



Testing SU(2)L ⌦ U(1)Y Gauge Invariance and EFT
I Wilson coefficients in SU(3)

c

⌦ SU(2)
L

⌦ U(1)
Y

invariant theory
are generated at high scale ⇤ and RG evolved to weak scale
(LHC Higgs Cross Section Working Group 2: LHCHXSWG-INT-2015-001 cds.cern.ch/record/2001958)

I Construct SM + D6 EFT and perform fits to WCs

   New Section 1 Page 2    

I Gauge invariance implies correlations among 4` components



Extracting Wilson Coefficients at LHC (ongoing)

I WCs give a more direct connection with UV theories

(Y. Chen, A. Falkowski, R. Harnik, RVM: PRELIMINARY)

SN
310 410

) ij
(c

σ

-210

-110

1

10

Tc

WWc

WWc~
WBc

WBc~
BBc

BBc~

SN
310 410

) ij
(c

σ

-210

-110

1

10

Zc

ZZc

ZZc
~

γZc

γZc
~

γγc

γγc~
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(B. Grzadkowski, et. al.: 1008.4884, R. S. Gupta, A. Pomarol, F. Riva: 1405.0181)



Probing top and W Loop Effects in h ! 4`

I The W and top loops contribute to effective hVV couplings

Thursday, January 21, 2016 9:46 AM

   New Section 1 Page 1    

I Can study the CP nature of the top couplings to the Higgs

2

h

V1

V2

`

`

`�

`�

FIG. 1. Schematic representation of the hV V corrections to
the h � 4� amplitude where V1,2 = Z, � and � = e, µ.

PROBING CUSTODIAL SYMMETRY IN h � 4�

We parametrize the Higgs couplings to ZZ and WW
vector boson pairs as,

LZW � h

v

�1

2
gZZm2

ZZµZµ + gWW m2
W W+µW�

µ

�
, (3)

where mZ and mW are the Z and W pole masses and
gZZ = gWW = 2 in the SM. The top Yukawa couplings
are parametrized as,

Lt � mt

v
ht̄(yt + iỹt�

5)t, (4)

D�� = 1.282
�
|1 � 0.21875

ct

cV
|2 + |0.335938

c̃t

cV
|2

�
(5)

ghtt = �i
mt

v
(ct + ic̃t�

5), (6)

where mt is defined to be the pole mass found in the
top quark propagator with yt = 1, ỹt = 0 at tree level in
the SM. We will also define the following ratios,

�W =
gWW

gZZ
, �t =

yt

gZZ
, �̃t =

ỹt

gZZ
. (7)

To be more explicit, we can write the h ! 4` amplitude
up to one loop as follows,

M4` = M0
ZZ + M1

W + M1
t . (8)

There are also real non-Higgs backgrounds, whose leading
contributions must be accounted for as well and will be
discussed below.

As discussed above, the sensitivity to the higher di-
mensional hZZ e�ective couplings is significantly weaker
than for the hZ� and h�� e�ective couplings [43]. Fur-
thermore, though the hZZ e�ective couplings receive
contributions from top and W loops, there are also a
number of other one-loop contributions involving Z and
Higgs bosons. The already weak sensitivity to these hZZ
couplings makes disentangling the top contribution from

other contributions di�cult. We therefore simply will
model these with the set of dimension 5 operators:

LZZ � h

4v

�
AZZ

2 Zµ�Zµ� + AZZ
3 Zµ� �Zµ�

+ 4AZZ
4 �µZ�Zµ�

�
, (9)

where the AZZ
n are taken as real and constant. To study

the potential e�ects of these contributions we treat AZZ
n

as nuisance parameters in our parameter extraction pro-
cedure allowing them to vary along with the top quark
Yukawa. As we will see, the e�ects of the operators
in Eq. (9) do not greatly a�ect our sensitivity to the top
Yukawa via the Z� and �� e�ective couplings, especially
once su�cient statistics are accumulated.

There is of course a non-Higgs background which
comes dominantly from the continuum qq̄ ! 4` pro-
cess [46] and can have important e�ects. As discussed
in [43] this background enters almost entirely due to de-
tector resolution e�ects. If detectors had perfect energy
resolution the signal region would essentially be a delta
function centered at the Higgs mass leading to an e�ec-
tively background free sample. However, imperfect de-
tector resolution has the e�ect of widening the signal re-
gion, thus introducing more non-Higgs background into
the sample and degrading the sensitivity to the hV V ef-
fective couplings [43].

For this qq̄ ! 4` background we utilize the analytic
expressions computed in [31, 39] and follow the pro-
cedure in [22, 43] to build a signal plus background
likelihood which includes the parton distribution func-
tions (pdfs) as well as crude modeling of detector reso-
lution e�ects. More details on this implementation can
be found in [22, 31, 39, 43]. For a more realistic anal-
ysis, careful treatment of detector resolution and addi-
tional background e�ects can be done with the frame-
work in [42, 46, 47], but is left to future work. However,
these detector e�ects are not expected to qualitatively
change the results obtained here.

TESTING CUSTODIAL SYMMETRY
AT THE LHC AND BEYOND

µ(h ! ��) � (0.64 gWW � 0.28 yt)
2 + (0.43 ỹt)

2 (10)

µ(h ! Z�) � (0.53 gWW � 0.06 yt)
2 + (0.09 ỹt)

2,

Show � vs. L/NS , money plots, etc. for yt, ỹt (or
Yt, �). Perhaps a Yt vs. mt money plot.

CONCLUSIONS
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I Interference between tree level hZZ amplitude and top loop
diagram gives sensitivity to CPV



Probing Top Yukawa CP Properties in h ! 4`

I Compare with other probes
such as h ! ��, h ! Z�, tth

I Qualitatively different probe
of the top Yukawa CP

(Y. Chen, D. Stolarski, RVM: 1505.01168)
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Summary

I Direct probes of CPV in the Higgs sector are crucial and
complementary to indirect searches (EDMs, decay rates,...)

I Can construct a number of CPV violating observables in
processes involving Higgs boson production and decay

I Higgs decays in h ! 4` and h ! 2`� are particularly promising
for probing CP properties of hV � couplings

I Especially useful when utilizing all observables in a fully
differential matrix element method analysis

I Can also probe underlying loop effects to search for CPV
in top quark Yukawa sector for example

I These channels will become especially important at HL-LHC
I Other direct probes would also be very interesting at future

linear e+e� machine or 100 TeV hadron collider



THANKS!

(and let me know if interested in football!)
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Matrix Element Method (MEM) Analysis
I We use all decay observables to construct a MEM analysis using

normalized (analytic) fully differential cxns for h ! 4` & qq̄ ! 4`
I Pseudo experiments are performed to examine sensitivity to hVV loop

induced couplings as a function of number of events (or luminosity)
I Fix AZZ

1 = 2 and perform 8D parameter fit to ‘anamolous’ couplings:
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FIG. 4. The same as Fig. 3, but with AZZ
1 = 2 and all

other couplings to � 0.008. These values are useful to estimate
the sensitivities of the various terms at late stages of LHC
running. We see that interference terms with the SM (first
row) dominate over squared terms for all Ai

2,3.

terference terms between the signal operators and AZZ
1

dominate, with integrated magnitudes of ⇠ 10�2 � 10�3,
and much smaller magnitudes for terms that involve two
loop operators. These small magnitudes may give the im-
pression that there is no sensitivity in the golden channel
to couplings other than AZZ

1 for parameter points ‘close
to’ the SM. However as the discussion in previous sec-
tions indicates, one has much more information in the
h ! 4` fully di�erential decay width than just the inte-
grated magnitudes.

From our discussions of the integrated magnitudes and
di�erential spectra we naively expect that we should have
the strongest sensitivity to the �� couplings followed by
the Z� couplings and the weakest sensitivity to the loop
induced ZZ couplings. As we will show below, this indeed
turns out to be the case.

III. RESULTS

To obtain our results we use the machinery devel-
oped and described in detail in [31]. We will take the
SM tree level prediction of AZZ

1 = 2 as input and fit
to the remaining six couplings simultaneously. Floating
all parameters simultaneously ensures that we account
for potentially important correlations between the vari-
ous couplings [31]. Note also that by fixing AZZ

1 = 2 we
are implicitly fitting to ratios of couplings and taking the
overall normalization as input since it can be obtained
from measurements of the total rate. This also serves to
minimize the dependence of our results on any produc-
tion e�ects we have neglected.

For all of our results we combine the 2e2µ, 4e, and
4µ channels by computing the fully di�erential decay
width for each final state [24, 31] (including identical fi-
nal state interference for 4e and 4µ) and combining them
into one likelihood. The data sets which we fit to are gen-
erated from these expressions and contain a mixture of
all three final states whose proportions are determined
by the overall normalization of the di�erential widths for
each channel. Though we do not examine this issue here,
we note that the three channels do not possess the same
sensitivity. We leave a detailed examination of this inter-
esting point to an ongoing followup study [43].

A. Fit and Phase Space Definition

We define our six dimensional parameter space as,

~A = (AZZ
2 , AZZ

3 , AZ�
2 , AZ�

3 , A��
2 , A��

3 ). (6)

To estimate the sensitivity we obtain what we call an
‘e�ective’ � or average error defined as [44],

� =

�
�

2
�|Â � ~Ao|�, (7)

where Â is the value of the best fit parameter point ob-
tained by maximization of the likelihood with respect
to ~A. Here ~Ao represents the ‘true’ value with which our
data sets are generated. The average error is then found
by conducting a large number of pseudoexperiments with
a fixed number of events and obtaining a distribution for
Â which will have some spread centered around the av-
erage value. We then translate the width of this distri-
bution into our e�ective � which converges to the usual
interpretation of � when the distribution for Â is per-
fectly gaussian. We repeat this procedure for a range of
fixed number of signal events to obtain � as a function
of number of signal events NS .

We take the Higgs mass to be mh = 125 GeV and limit
our phase space to approximate the cuts used by CMS
as indicated by following cuts and reconstruction:

• pT ` > 20, 10, 7, 7 GeV for lepton pT ordering,

• |⌘`| < 2.4 for the lepton rapidity,

• 40 GeV  M1 and 12 GeV  M2.

Here M1 and M2 are the reconstructed masses of the two
lepton pairs. In reconstructing M1 and M2 we always
impose M1 > M2 and take M1 to be the reconstructed
invariant mass for a particle and anti-particle pair which
is closer to the Z mass. Note however that two other
lepton pairings are possible and equally valid, but we
leave an exploration of these alternate reconstructions
to ongoing work [43]. For further details on the fitting
(maximization) procedure and on the statistical analysis
see [31, 32].

(In SM A

i

2

generated at 1-loop and O(10�2 � 10�3) while A

i

3

only appear at 3-loop)

I All couplings floated independently and all correlations included
I As test statistic we define ‘average error’ on best fit value:
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FIG. 4. The same as Fig. 3, but with AZZ
1 = 2 and all

other couplings to � 0.008. These values are useful to estimate
the sensitivities of the various terms at late stages of LHC
running. We see that interference terms with the SM (first
row) dominate over squared terms for all Ai

2,3.

pression that there is no sensitivity in the golden channel
to couplings other than AZZ

1 for parameter points ‘close
to’ the SM. However as the discussion in previous sec-
tions indicates, one has much more information in the
h ! 4` fully di�erential decay width than just the inte-
grated magnitudes.

From our discussions of the integrated magnitudes and
di�erential spectra we naively expect that we should have
the strongest sensitivity to the �� couplings followed by
the Z� couplings and the weakest sensitivity to the loop
induced ZZ couplings. As we will show below, this indeed
turns out to be the case.

III. RESULTS

To obtain our results we use the framework devel-
oped and described in detail in [37]. We will take the
SM tree level prediction of AZZ

1 = 2 as input and fit
to the remaining six couplings simultaneously. Floating
all parameters simultaneously ensures that we account
for potentially important correlations between the vari-
ous couplings [37]. Note also that by fixing AZZ

1 = 2 we
are implicitly fitting to ratios of couplings and taking the
overall normalization as input since it can be obtained
from measurements of the total rate. This also serves to
minimize the dependence of our results on any produc-
tion e�ects we have neglected.

For all of our results we combine the 2e2µ, 4e, and
4µ channels by computing the fully di�erential decay
width for each final state [36, 37] (including identical fi-
nal state interference for 4e and 4µ) and combining them

into one likelihood. The data sets which we fit to are gen-
erated from these expressions and contain a mixture of
all three final states whose proportions are determined
by the overall normalization of the di�erential widths for
each channel. Though we do not examine this issue here,
we note that the three channels do not possess the same
sensitivity. We leave a detailed examination of this inter-
esting point to an ongoing followup study [47].

A. Fit and Phase Space Definition

We define our six dimensional parameter space as,

~A = (AZZ
2 , AZZ

3 , AZ�
2 , AZ�

3 , A��
2 , A��

3 ). (6)

To estimate the sensitivity we obtain what we call an
‘e�ective’ � or average error defined as [48],

�(A) =

�
�

2
�|Â � ~Ao|�, (7)

where Â is the value of the best fit parameter point ob-
tained by maximization of the likelihood with respect
to ~A. Here ~Ao represents the ‘true’ value with which our
data sets are generated. The average error is then found
by conducting a large number of pseudoexperiments with
a fixed number of events and obtaining a distribution for
Â which will have some spread centered around the av-
erage value. We then translate the width of this distri-
bution into our e�ective � which converges to the usual
interpretation of � when the distribution for Â is per-
fectly gaussian. We repeat this procedure for a range of
fixed number of signal events to obtain � as a function
of number of signal events NS .

We take the Higgs mass to be mh = 125 GeV and limit
our phase space to approximate the cuts used by CMS
as indicated by following cuts and reconstruction:

• pT ` > 20, 10, 7, 7 GeV for lepton pT ordering,

• |⌘`| < 2.4 for the lepton rapidity,

• 40 GeV  M1 and 12 GeV  M2.

Here M1 and M2 are the reconstructed masses of the two
lepton pairs. In reconstructing M1 and M2 we always
impose M1 > M2 and take M1 to be the reconstructed
invariant mass for a particle and anti-particle pair which
is closer to the Z mass. Note however that two other
lepton pairings are possible and equally valid, but we
leave an exploration of these alternate reconstructions
to ongoing work [47]. For further details on the fitting
(maximization) procedure and on the statistical analysis
see [37, 38].

B. Sensitivity as Function of Number of Events

Using the definition in Eq.(6) we fit to a ‘true’ param-
eter point,

~Ao = (0, 0, 0, 0, 0, 0), (8)

(Â is best fit point, ~
A

o

is‘true’ value, and average taken over large set of PE)
I Consider two sets of cuts (‘CMS-like’ and ‘Relaxed’):

I p
T` > 20, 10, 7, 7 GeV, |⌘`| < 2.4, 40 GeV  M1, 12 GeV  M2

I p
T` > 20, 10, 5, 5 GeV, |⌘`| < 2.4, 4 GeV  M1,2 /2 (8.8, 10.8) GeV



‘Detector level’ Likelihood
I Of course what we really want is to do all of this at ‘detector level’
I Need a likelihood that takes reconstructed observables as input
I This can be done by a convolution of the analytic ‘generator level’ pdf

with a transfer function T (~XR |~XG ) over generator level observables
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tion e�ciency and the imperfect momentum measure-
ment resolution of the detector. This can be represented
schematically as follows,

P ( ~XR| ~A) =

�
P ( ~XG| ~A)T ( ~XR| ~XG)d ~XG. (5)

Here we take ~X to represent the full set of center of
mass variables, including production and the flat o�-
set angle �, as ~X ⌘ (~pT , Y, �, ŝ, M1, M2, ~�). The trans-
fer function T ( ~XR| ~XG) is loosely based on the approxi-
mate performance of the CMS detector. It takes us from
generator (G) level to reconstructed (R) (detector level)
observables and is described in more detail in the Ap-
pendix. It represents the probability of reconstructing the
observables ~XR given the generator level observable ~XG

and is treated as a function of ~XR which takes ~XG as
input. The set of variables ~X exhausts the twelve de-
grees of freedom (note that ~pT has 2 components and
~� contains 5 angles) available to the four (massless) final
state leptons. The di�erential volume element is given by
d ~X = dŝdM2

1 dM2
2 d~� · d~pT dY d�. Upon integration over

all ~XG variables one obtains a pdf which encapsulates
the relevant detector e�ects.

The integral in Eq.(5) is the main result of this pa-
per and we emphasize that it has not been obtained
via Monte Carlo methods. Instead we have explicitly
performed the integration by utilizing various change
of variables and well-established numerical techniques
(see [31, 41–43] for new studies that perform similar
convolutions using Monte Carlo methods). This ensures
that (arbitrarily) high precision is maintained at each
step, producing what is e�ectively an ‘analytic function’
in terms of detector level variables once the convolu-
tion has been performed. After averaging over the pro-
duction variables (~pT , Y, �), this allows us to ultimately
construct a complete unbinned detector level likelihood,
which utilizes the full set of eight reconstructed decay
observables and is a continuous function of the e�ec-
tive couplings. Having the detector level likelihood as a
continuous function of all the e�ective Higgs couplings
allows us to easily perform multi-parameter extraction
with great speed and flexibility as was done at genera-
tor level [35]. By obtaining the 8-dimensional detector
level likelihood explicitly we avoid the need to fill large
multi-dimensional templates that require an impractical
amount of computing time; we also thus avoid the collat-
eral binning and often ‘smoothing’ side-e�ects.

While conceptually simple the convolution integral is
operationally challenging and in fact is most easily done
with a di�erent set of variables than those in the cen-
ter of mass frame. Since this step is crucial for perform-
ing the convolution we describe below an overview of
the necessary change of variables. The explicit details
of these transformations and their validations are given
in [36]. We note for now that the manner in which the
qq̄ ! 4` and h ! 4` expressions are calculated, as a sum
of the individual contributions [19, 35], makes the con-

volution feasible since one can perform the integration
on each smaller piece and then simply sum the separate
contributions. This is much more practical to do com-
putationally than to integrate the entire expressions at
once.

B. Changing Variables for Background pdf

We first discuss the construction of the background
detector level pdf and continue with the construction of
the signal as there is a subtle di�erence between these
two cases. Since there are no undetermined parameters in
the background the generator- and detector-level pdfs are
given simply by PB( ~XG) and PB( ~XR) respectively. In or-
der to perform the convolution with the transfer function
we first transform to a more convenient set of variables
in which the detector smearing is parametrized before
performing the integration.

To begin, we transform from the twelve center of mass
variables to the three momentum for the four final state
leptons. This can be represented as follows,

PB( ~XR) =

�
PB( ~XG)T ( ~XR| ~XG)d ~XG

=

�
PB( ~XG)T (~PR|~PG)

|J�P
G|

|J�P
R|

d~PG, (6)

where the di�erential volume element is now given by,

d~PG =
4�

i=1

d~p G
i , (7)

and ~p G
i is the generator level three momentum of the

i’th lepton. The |J�P
G| is the Jacobian associated with the

twelve dimensional change of variables from ~XG ! ~PG

in the di�erential volume element. The |J�P
R| arises from

the change of variables ~XR ! ~PR in the transfer function
(remembering T ( ~XR| ~XG) is treated as a function of ~XR)
which we loosely also refer to as a Jacobian, as we will do
for all subsequent change of variables to follow. Ideally
to find these Jacobian factors one should construct the
12�12 matrix associated with these transformations and
then calculate the determinant, but this is untenable an-
alytically since it must be constructed for each point in
phase space. We therefore implement a straightforward
numerical algorithm to calculate these factors for each
phase space point. This procedure is described in detail
and validated in [36].

Since we make the assumption that detector smear-
ing will only a�ect the component of the lepton momen-
tum parallel to the direction (pi||) of motion and not the
two components perpendicular to the direction of mo-
tion (~pi�) (which are zero at generator level) we find it
convenient to decompose the lepton three momenta ~pi

in terms of pi|| and ~pi�. Note that this assumption is
equivalent to assuming angular resolution e�ects due to
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Note: Not done by MC integration ) done via C.O.V. and numerical techniques

I T (~XR |~XG ) represents probability to observe ~XR given ~XG

I Can be optimized for specific detector and included in convolution
I This integration takes us from generator level observables (~XG ) to

detector level (reconstructed) observables (~XR)
I Conceptually simple, but requires a number of steps to perform (and

massive computing) details in arXiv:1401.2077 and technical note arXiv:1410.4817

I We have performed this 12-D convolution for signal and background


