EDMS AND CP VIOLATION IN THE HIGGS SECTOR

JURE ZUPAN U. OF CINCINNATI

1

borrowed heavily from talks by V. Cirigliano and J. Brod

Higgs Tasting, Benasque, May 17 2016

EDMs

- many complementary probes
 - **n**,p
 - light nuclei: 2 H, 3 He, 3 H, ...
 - atoms: diamagnetic (¹²⁹ Xe, ¹⁹⁹ Hg, ²²⁵ Ra,...); paramagnetic (²⁰⁵ Tl, ...)
 - polar molecules: **YbF**, **ThO**, ...

EDMs

- the measured EDMs of the probe need to be related to fundamental EDMs
 see a review by Dzuba, Flambaum, Roberts, 1412.6644
- for instance eEDM induces an EDM in an atom or molecule

$$D = Kd_e$$

electron EDM

• K calculated from atomic physics

atom

- for paramagnetic atoms $K \sim 10^2 10^3$ (e.g. has $K_{Tl} \sim -600$)
- for diamagnetic atoms *K* is small (e.g. $K_{Hg} \sim 10^{-2}$)
- for polar molecules $K \sim 10^7 10^{11}$ possible (e.g. electric field in ThO ~84 GV/cm, one of largest known)

EDMs

- a big gap between present bounds and the SM "floor"
- significant exp progress predicted in the "near" future

EDMs in $e \cdot cm$									
System	current	projected	SM (CKM)						
е	$\sim 10^{-28}$	10-31	$\sim 10^{-38}$						
μ	$\sim 10^{-19}$	10-21	$\sim 10^{-35}$						
au	$\sim 10^{-16}$		$\sim 10^{-34}$						
n	$\sim 10^{-26}$	10^{-28}	$\sim 10^{-31}$						
p	$\sim 10^{-23}$	$10^{-29} **$	$\sim 10^{-31}$						
¹⁹⁹ Hg	$\sim 10^{-29}$	10^{-30}	$\sim 10^{-33}$						
¹²⁹ Xe	$\sim 10^{-27}$	10^{-29}	$\sim 10^{-33}$						
225 Ra	$\sim 10^{-23}$	10^{-26}	$\sim 10^{-33}$						
	•••								

ay 17 2016

J. Zupa

talk by V. Cirigliano at MIAPP workshop, July 2015+ additions

OUTLINE

- CP violating couplings of the Higgs
 - couplings to fermions
 - couplings to gauge bosons

CPV IN HIGGS COUPLINGS TO LEPTONS

CPV HIGGS YUKAWAS

- Higgs is our new window to NP
- if SM an EFT, then Yukawas get corrected by higher dim. ops

$$\mathcal{L}_{SM} = -\left[\lambda_{ij}(\bar{f}_L^i f_R^j)H + h.c.\right]$$

 $\Delta \mathcal{L}_Y = -\frac{\lambda'_{ij}}{\Lambda^2}(\bar{f}_L^i f_R^j)H(H^{\dagger}H) + h.c. + \cdots$

decouples mass terms from yukawas

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots,$$

- can lead to flavor violating Higgs decays
- can lead to CPV Higgs decays
 - how tight are constraints from EDMs?

CPV HIGGS COUPLINGS

• the notation

$$\mathcal{L} \supset -rac{y_f}{\sqrt{2}} \left(\kappa_f ar{f} f + i ilde{\kappa}_f ar{f} \gamma_5 f
ight) h
ight)$$

will cover CPV couplings to all SM fermions

ELECTRON YUKAWA

- $\tilde{\kappa}_e \neq 0$ induces electron EDM
- dominant contributions at 2-loop
 Altmannshofer, Brod, Schmaltz, 1503.04830

• several checks: $\kappa_e = 1$ reproduces Higgs contrib. contributions in muon *g*-2 (first indep. check)

Gribouk, Czarnecki, hep-ph/0509205

- agree with Barr-Zee contrib. Barr, Zee, Phys.Rev.Lett. 65:21, 1990
- analytic results with an internal Z boson are new
 - parametric expressions available before, but numerically 10% difference with these
 Leigh, Paban, Xu, Nucl.Phys. B352:45, 1991

J. Zupan Constraints on CPV Higgs...

9

Benasque, May 17 2016

ELECTRON YUKAWA

• $\tilde{\kappa}_e \neq 0$ induces electron EDM

Altmannshofer, Brod, Schmaltz, 1503.04830

• dominant contributions at 2-loop

10

• experimental bound ACME coll., 1310.7534

$$\left| \frac{d_e}{e} \right|_{\rm exp} < 8.7 \times 10^{-29} \ {\rm cm} \ @ 90\% \ {\rm C.L.} \,,$$

$$\left|\tilde{\kappa}_e\right| < 1.7 \times 10^{-2}$$

• for
$$c_0 = i \Rightarrow M > 1000 \ TeV$$

$$g_{eeh} = y_e + \frac{3c_0}{2}\frac{v^2}{M^2} = \frac{\sqrt{2}m_e}{v} + c_0\frac{v^2}{M^2}$$

• compare with

CMS-HIG-13-007 Br $(h \to e^+e^-) < 0.0019$ @ 95% C.L.

J. Zupan Constraints on CPV Higgs...

 $\sqrt{|\kappa_e|^2 + |\tilde{\kappa}_e|^2} < 611$

COMMENTS

- there is always ambiguity in low energy observables
 - need to assume which Yukawa(s) CP violating
 - in complete theories there are other contributions to EDMs
- in principle one could cancel Higgs and other contribs.

11

here always assume no such cancellations

MUON YUKAWA

- similarly, $\tilde{\kappa}_{\mu} \neq 0$ induces muon EDM
 - dominant contributions at 2-loop

• experimental bound Muon (g-2) Collaboration, 0811.1207

12

$$|d_{\mu}| < 1.9 \times 10^{-19} \ e \cdot cm \ (95\% \ C.L.).$$
 | $\tilde{\kappa}$

$$|\tilde{\kappa}_{\mu}| < 1.8 \times 10^5$$

thanks to J. Brod

• compare with CMS-HIG-13-007; ATLAS 1406.7663

$$Br(h \to \mu^+ \mu^-) < 1.5 \times 10^{-3}$$

$$\sqrt{|\kappa_{\mu}|^2 + |\tilde{\kappa}_{\mu}|^2} < 7.0$$

Benasque, May 17 2016

TAU YUKAWA

- need to assume the value for electron
 Yukawa

• here: $\kappa_e = 1$, $\tilde{\kappa}_e = 0$

• present exp. eEDM constr. then give

13

$$(8.7 \times 10^{-29} \text{ cm} @ 90\% \text{ C.L.})$$

 $|\tilde{\kappa}_{\tau}| \lesssim 2$

CPV COUPLING TO τ

- impressive improvement in el. EDM is projected
 - 3 orders of magnitude
- in the plot no direct CPV measnt. at the LHC is assumed

• O(0.2) measrmnt. on $\tilde{\kappa}_{\tau}$ maybe possible (at LHC 3 ab⁻¹)

CPV IN HIGGS COUPLINGS TO QUARKS

GENERAL COMMENTS

- at 2-loops sensitivity to quark Yukawas from electron EDM
 - requires assumptions about electron Yukawa
- from neutron EDM, Hg EDM, ... also constrains on quark EDMs

- requires control of nuclear physics
- will take top CPV yukawa as a working example
 - then comments on all the other quarks

ELECTRON EDM

 dominant contribution from 2-loop Barr-Zee type diagram

$${\cal L}_{
m eff} = - d_e\, {i\over 2}\, ar e\, \sigma^{\mu
u} \gamma_5 e\, F_{\mu
u} ig)$$

depends on electron yukawa

$$\frac{d_e}{e} = 3.49 \cdot 10^{-27} \,\mathrm{cm} \,\kappa_e \tilde{\kappa}_t \, f_1(x_{t/h}) = 9.6 \cdot 10^{-27} \,\mathrm{cm} \,\kappa_e \tilde{\kappa}_t$$

• setting $\kappa_e = 1$ is then quite constraining

$$\left| \frac{d_e}{e} \right| < 8.7 \cdot 10^{-29} \, \mathrm{cm} \,, \qquad \qquad \left| \tilde{\kappa}_t \right| < 0.01 \,,$$

17

Brod, Haisch, JZ, 1310.1385

e

e

- the constraint vanishes, if the Higgs does not couple to electrons
 - e.g. if it only couples to the 3rd gen.

t

h

e

NEUTRON AND MERCURY EDM

 neutron and Hg EDM also dominated by Barr-Zee type diagrams (SM-like couplngs. of the Higgs to light quarks)

$$\mathcal{L}_{\text{eff}} = -d_q \, \frac{i}{2} \, \bar{q} \sigma^{\mu\nu} \gamma_5 q \, F_{\mu\nu} - \tilde{d}_q \, \frac{ig_s}{2} \, \bar{q} \sigma^{\mu\nu} T^a \gamma_5 q \, G^a_{\mu\nu} - w \, \frac{1}{3} f^{abc} \, G^a_{\mu\sigma} G^{b,\sigma}_{\nu} \widetilde{G}^{c,\mu\nu} \, \bigg|$$

- however, an important difference is that at 2-loop also Weinberg operator is generated
 - is nonzero also, if CPV <u>is only</u> in the Higgs couplings to the 3rd gen. quarks!

18

h

HADRONIC MATRIX ELEMENTS

talk by V. Cirigliano at MIAPP workshop, July 2015

- important improvements recently in nonpert. matching at ChPT scale
 - at hadronic ~1GeV scale

$$\begin{aligned} \mathcal{L}_{\text{CPV}} &= -\frac{i}{2} \sum_{i=u,d,s} \, \mathbf{d}_{i} \, \bar{\psi}_{i} \sigma_{\mu\nu} \gamma_{5} \psi_{i} \, F^{\mu\nu} - \frac{i}{2} g_{s} \sum_{i=u,d,s} \, \mathbf{\tilde{d}}_{i} \, \bar{\psi}_{i} \sigma_{\mu\nu} \gamma_{5} T^{a} \psi_{i} \, G^{\mu\nu,a} \\ &+ \frac{\mathbf{c}_{w}}{\Lambda^{2}} \, f^{abc} G^{a}_{\mu\nu} \tilde{G}^{\nu\beta,b} G^{\mu,c}_{\beta} &+ 4 \text{-fermion} \end{aligned}$$

• Leading pion-nucleon CPV interactions characterized by few LECs

no info. from symmetrieswell determined from symmetries
$$\mathcal{L}_{CPV} = -\frac{i}{2} \bar{N} \bar{d}_N \sigma_{\mu\nu} \gamma_5 N F^{\mu\nu} - \bar{N} \begin{bmatrix} \bar{g}_0 \vec{\tau} \cdot \vec{\pi} + \bar{g}_1 \pi^0 \end{bmatrix} N - \frac{\bar{\Delta}}{F_{\pi}} \pi^0 \vec{\pi} \cdot \vec{\pi} + \dots$$
 Λ Λ Nucleon EDM $\bar{d}_N = \begin{pmatrix} \bar{d}_p & 0 \\ 0 & \bar{d}_n \end{pmatrix}$ T-odd P-odd pion-
nucleon couplingsShort-range 4N and
2N2e coupling

HADRONIC MATRIX ELEMENTS

talk by V. Cirigliano at MIAPP workshop, July 2015

• At LO all hadronic EDMs are expressed in terms of these LECs

$$d^{A} = c_{n}^{A} d_{n} + c_{p}^{A} d_{p} + c_{0}^{A} \bar{g}_{0} + c_{1}^{A} \bar{g}_{1} + c_{\Delta}^{A} \bar{\Delta} + \dots$$

- light nuclei *d*, *He3*, *t*,...: chiral EFT calc. \Rightarrow O(10%) uncertainty
- diamagnetic atoms (¹⁹⁹Hg,...): *O*(1-10) uncertainties
- recent first LQCD determ. of neutron and proton tensor charges

• still missing pieces: cEDM ops., Weinberg operator

 $d_{n} = (-0.22 \pm 0.03) d_{u} + (0.74 \pm 0.07) d_{d} + (0.008 \pm 0.010) d_{s}$ + (-0.55 \pm 0.28) $e\tilde{d}_{u} + (-1.1 \pm 0.55) e\tilde{d}_{d} + (\pm (50 \pm 40) \text{ MeV}) ed_{W}$ Pospelov-Ritz hep-ph/0504231 QCD Sum Rules (50%) QCD Sum Rules + NDA (~100%)

CPV COUPLING TO TOP

- Brod, Haisch, JZ, 1310.1385 • comparing with the LHC reach see also Cirigliano, de Vries, Dekens, Mereghetti, 1603.03049
 - assuming that no CPV measurements at the LHC
 - central values only for hadronic matrix elements

Pospelov-Ritz hep-ph/0504231

for 1st gen. Yukawas equal to the SM

J. Zupan

CPV COUPLING TO TOP

• comparing with the LHC reach

Brod, Haisch, JZ, 1310.1385

- assuming that no CPV measurements at the LHC
- central values only for hadronic matrix elements
- 1st gen. Yukawas set to zero

LIGHT QUARK YUKAWAS

- for CPV light quark Yukawas: *b,c,s,d,u*
 - need to run down to lower energies
 - *b* integrated out at $\mu \sim m_b$
 - *c* integrated out at $\mu \sim m_c$
 - nonperturbative matching at μ~1GeV

CPV COUPLING TO b quark

- here one extra scale $m_b \ll m_h$
 - need to re-sum $\alpha_s log(x_{b/h})$ (here $x_{b/h} = m_b^2/m_h^2$)

RESUMMATION

CPV COUPLING TO b quark

- the EDM constraints on CPV Higgs coupling to *b* quark are weaker than the LHC data
 Brod, Haisch, JZ, 1310.1385
 - this can change in the future
 - EDMs scale linearly with $\tilde{\kappa}_b$

CPV COUPLING TO b quark

- the EDM constraints on CPV Higgs coupling to *b* quark are weaker than the LHC data
 Brod, Haisch, JZ, 1310.1385
 - this can change in the future
 - EDMs scale linearly with $\tilde{\kappa}_b$

LIGHT QUARK YUKAWAS

• for light quarks need to include 2-loop matching at EW scale

• without resummation gives bounds

Chien, Cirigliano, de Vries, Dekens, Mereghetti, 1510.00725

		$\kappa_u <$	$< 0.56 \kappa$	$z_d < 0.13$	$\kappa_c < 2.4$	$\kappa_s < 25$
		$v^2 { m Im} Y'_u$	$v^2 \mathrm{Im} Y_d'$	$v^2 { m Im} Y_c'$	$v^2 { m Im} Y_s'$	5
	d_e	x	x	0.022	0.42	
	d_n Con.	$2.8\cdot 10^{-6}$	$1.4\cdot 10^{-6}$	$6.1\cdot10^{-3}$	$5.1\cdot 10^{-3}$	K
	$d_{ m Hg}$ Con.	$1.6\cdot 10^{-5}$	$2.9\cdot 10^{-6}$	0.015	0.011	
No.	Contraction of the local division of the loc				And and a state of the local division of the local division of the local division of the local division of the	

however, resummation can be important

J. Zupan Constraints on CPV Higgs...

LIGHT QUARK YUKAWAS

talk by J. Brod at Beauty 2016

- Complete analytic result [work in progress]
- PRELIMINARY results:

$$\frac{d_n}{e} = (1.0 \pm 0.5) \left[0.36 \,\tilde{\kappa}_u + 1.70 \,\tilde{\kappa}_d \right] \kappa_t \times 10^{-25} \,\mathrm{cm} \,.$$

• \Rightarrow $|\tilde{\kappa}_u| \lesssim 0.8$, $|\tilde{\kappa}_d| \lesssim 0.2$

CPV IN HIGGS COUPLINGS TO W, Z, γ

CPV TERMS

the HEFT Lagrangian contains CPV couplings to gauge fields

$$\mathcal{L}_{\text{eff}} \supset \tilde{c}_{\gamma\gamma} \frac{\alpha}{2\pi v} h F_{\mu\nu} \tilde{F}^{\mu\nu} + \tilde{c}_{\gamma Z} \frac{\alpha}{2\pi v} h F_{\mu\nu} \tilde{Z}^{\mu\nu} + \tilde{c}_{ZZ} \frac{\alpha}{2\pi v} h Z_{\mu\nu} \tilde{Z}^{\mu\nu} + \tilde{c}_{WW} \frac{\alpha}{2\pi v} h W_{\mu\nu} \tilde{W}^{\mu\nu}$$

- each of these induces EDMs
- much less work has been done on these

EDM CONSTRAINTS

• constraint on $\kappa_e \tilde{c}_{\gamma\gamma}$ from electron EDM

- gives $\tilde{c}_{\gamma\gamma} \leq 0.3$ for SM electron yukawa, similar bound for $\tilde{c}_{\gamma Z}$
 - vanishes if the Higgs does not couple to *e*
 - or if there is cancel. with CPV coupling to *e*
 - $\tilde{c}_{\gamma\gamma} \leq 30$ from nEDM, requires SM *u*,*d* yukawas
- note this is a divergent diagram
 - μ scale dependent, requires a counter term
 - the bound should be interpreted only as rough (NDA) estimate

EDM CONSTRAINS

- from *č*_{ZZ},*č*_{WW}, chromo
 EDM at 2-loop
- *u,d,s* cEDM suppressed
- by light yukawa

- *b* (*t*) cEDM from *c̃*_{WW}(*č*_{ZZ}) chirality flip from top internal line
- contributes at 1-loop to Weinberg operator
- resulting constraints on $\tilde{c}_{ZZ}, \tilde{c}_{WW}$ of $\sim O(10^7)$

CONCLUSIONS

- EDMs important constraints on new physics models
- here: interpreted as nontrivial constraints on CPV Higgs yukawa couplings

BACKUP SLIDES

MOTIVATION

• compare NP contribs. to $h \rightarrow \gamma \gamma$ and $h \rightarrow ZZ$

$$\begin{pmatrix} \mathcal{L}_{\text{eff}} \supset c_V \frac{m_Z^2}{v} h Z^{\mu} Z_{\mu} + \hat{c} \frac{\alpha}{\pi v} h F_{\mu\nu} F^{\mu\nu} + \hat{c}_{ZZ} \frac{\alpha}{\pi v} h Z^{\mu\nu} Z_{\mu\nu} \\ \downarrow^{\text{loop}}_{\rho \sigma \rho} + \tilde{c}_{ZZ} \frac{\alpha}{2\pi v} h Z_{\mu\nu} \tilde{Z}^{\mu\nu} + \tilde{c} \frac{\alpha}{2\pi v} h F_{\mu\nu} \tilde{F}^{\mu\nu}, \end{cases}$$

- 0^+ Higgs: \tilde{c} and \tilde{c}_{ZZ} ops. are P and CP violating
- CPV only in dim 5 ops., generated at 1-loop from NP

- in $h \rightarrow \gamma \gamma$ the CP conserving (SM) at 1-loop
 - large *O*(1) CPV effects possible
- unlike $h \rightarrow ZZ$ which has a tree level c_V
 - to see CPV in $h \rightarrow ZZ$ need a measrmnt. at $O(10^{-2}) O(10^{-3})$

LECs: symmetry relations

Prototype: theta term and mass splitting are chiral partners

$$\left(\begin{array}{c} \bar{q}i\gamma_5 q\\ \bar{q}\boldsymbol{\tau}q\end{array}\right) \xrightarrow{SU_A(2)} \left(\begin{array}{c} -\bar{q}\boldsymbol{\alpha}\cdot\boldsymbol{\tau}q\\ \boldsymbol{\alpha}\bar{q}i\gamma_5 q\end{array}\right)$$

Nucleon matrix elements are related. At LO (soft pion theorem)

 $\langle N_f \pi^a | \bar{q} i \gamma_5 q | N_i \rangle \propto F_\pi^{-1} \langle N_f | \bar{q} \tau^a q | N_i \rangle$

 $\frac{2M_{n-p}}{m_d - m_u} \frac{2m_d m_u}{m_d + m_u} \bar{\theta}$

Crewther-DiVecchia-Veneziano-Witten 1979

$$\frac{\bar{g}_0}{F_{\pi}} = (15 \pm 2) \cdot 10^{-3} \sin \bar{\theta}$$
(with LQCD input)

Mereghetti, van Kolck

1505.06272 and refs therein

• Corrections appear at NNLO, not log enhanced

 \bar{g}_0

talk by V. Cirigliano at MIAPP workshop, July 2015

J. Zupan Constraints on CPV Higgs...

37

Benasque, May 17 2016

Mereghetti, & van Kolck 1505.06272, and references therein

 $\bar{\theta} \ \bar{g}_0$ from $\bar{\theta}$ determined by $(m_n - m_p)_{\rm st}$

qCEDM \bar{g}_0 and \bar{g}_1 determined by corrections to meson and baryon spectrum induced by CP-even qCMDM

4-quark $\bar{g}_0, \bar{g}_1 \& \bar{\Delta}$ determined by CP-even 4-q chiral partner

talk by V. Cirigliano at MIAPP workshop, July 2015

- No info from symmetry on 4-N
- No info from symmetry on d_n, d_p
- Large uncertainties from QCD/model estimates [O(1)→O(10)] greatly dilute impact of experimental searches

