Measuring Higgs couplings to quarks Inclusively and exclusively

Emmanuel Stamou

emmanuel.stamou@weizmann.ac.il

Weizmann Institute of Science

Higgs Tasting Workshop 2016, Benasque

May 17, 2016

In collaboration with:

G. Perez, Y. Soreq, and K. Tobioka

arXiv:1503.00290 & 1505.06689

NO			
because I have better things			
to do			

YES

because radiative corrections are physical

Like what?

Where is NP?

understanding new data looking for them in hidden from LHC corners

Higgs couplings are new data and are sensitive to NP

- Introduction
- *h* → quark quark methods and prospects to measure light quark Yukawas at LHC →inclusively →exclusively
- Conclusions

The Higgs boson within the Standard Model

THEORY

Role (I)

- o minimal VV scattering unitarisation
- induces W/Z masses
- single extra d.o.f., h

Quantitatively tested at LHC

- direct: observing $h \rightarrow WW, ZZ$
- indirect: electroweak precision

Role (II) [this talk]

- unitarises $f\bar{f} \rightarrow VV$ scattering
- induces fermion masses, and CKM

Many (small) parameters

- overconstrained system
- observation of 3rd gen. couplings only
- significant progress can and is being made

EXPERIMENT

Characterisation by observation of:

Mass	Charge	Spin	
	Couplings		

o
$$m_h = 125.4 \pm 0.37(\text{stat}) \pm 0.18(\text{sys}) \text{ GeV [ATLAS]}$$

 $m_h = 125.7 \pm 0.3(\text{stat}) \pm 0.3(\text{sys}) \text{ GeV [CMS]}$ a new SM parameter ✓
o neutral ✓
o $J^P = 0^+$ preferred (at 97.8% over 0^-) ✓
o couplings predicted $g_X \propto \frac{m_X}{V}$ SO far ✓
- overconstrained in SM, test of the SM
- Yukawa couplings may not be related to EWSB
- window to new physics

Direct observations of fermionic Higgs couplings

Unitarity bounds

A stretched, but phenomenologically viable, scenario:

higgs does not couple at all to light fermions

i.e. they obtain masses from a different (TC) sector

[Giudice et al 08;Kagan et al 09;Delaunay et al 13; Altmannshofer et al 15; Ghosh et al 15]

- o new d.o.f. at the unitarity breaking scales
- scales inaccesible to LHC or realistic future colliders

$$\sqrt{s} < \frac{8\pi v^2}{m_{b,c,s,d,u}\sqrt{6}} \simeq 2.10^2, 1.10^3, 1.10^4, 2.10^5, 5.10^5 \text{ TeV}$$
[Appelquist, Chanowitz 87]

Improved unitarity bounds

- improve unitarity bounds by looking at $f\bar{f} \rightarrow V_{I}^{n}$
- phase-space competes with energy enhancements

 $b\bar{b}$: 23 TeV $c\bar{c}$:31 TeV $s\bar{s}$:52 TeV $d\bar{d}$:77 TeV $u\bar{u}$:64 TeV [Dicus, He 04] Too weak to be tested \rightarrow look for enhancements in Yukawa

couplings

Effective theory

If deviations from SM small and no new d.o.f.:

 $\circ~\mbox{EFT}$ applies, effects controlled by dim-6 operators, i.e.

$$\mathcal{L} \supset \lambda_{ij}^{u} \overline{Q}_{i} \ \tilde{H} \ U_{j} + \frac{g_{ij}^{u}}{\Lambda^{2}} H^{\dagger} H \ \overline{Q}_{i} \ \tilde{H} \ U_{j}$$

Example: anomalous charm Yukawa

- SM case challenging to observe $y_c^{\text{SM}} \simeq 0.4\%$ and $\mathcal{BR}(h \to c\bar{c}) \simeq 4\%$
- ∘ But dominant mode $\mathcal{BR}(h \to b\bar{b}) \simeq 60\%$ also small Yukawa $y_b \simeq 2\%$
- deviations of a few significantly modify higgs phenomenology [Delauna

$$\sim rac{v}{\sqrt{2}} \left(\lambda^u_{ij} + g^u_{ij} rac{v^2}{2\Lambda^2}
ight)$$

$$\Lambda \simeq \frac{25 {\rm TeV}}{\sqrt{|y_c/y_c^{\rm SM}|-1}}$$

a) here
$$g^u = 16\pi^2$$

b) assummed $c_V = 1$
c) main constraint \mathcal{BR}_{inv}

[Delaunay et al 13]

 $\sim \frac{1}{\sqrt{2}} \left(\lambda_{ii}^u + \mathbf{3} g_{ii}^u \frac{v^2}{2\Lambda^2} \right)$

 In EFT, couplings correlated to radiative corrections to mass (→ cancellations/fine-tuning necessary?)

- Introduction
- *h* → quark quark methods and prospects to measure light quark Yukawas at LHC →inclusively →exclusively
- Conclusions

$h \rightarrow$ light-quark light-quark

Challenges

- SM-higgs branching ratios tiny
- huge QCD background
- o need some sort of flavour tagging

(c-tag seems possible at the LHC)

Directions

- Be exclusive
 - $-h \rightarrow M \gamma$ as a flavour proxy (*M* vector meson)
 - possible for *u*, *d*, *s*, *c* $(h \rightarrow J/\Psi\gamma, h \rightarrow \phi\gamma, h \rightarrow \rho\gamma)$

[Bodwin et al 13; Kagan et al 14; Bodwin et al 14; König et al 15;

ATLAS:1501.03276; CMS:1507.03031]

• Be inclusive

- limited by b- and c-tag
- higher statistics

[Delaunay et al 13; ATLAS arXiv:1501.01325; ATLAS-CONF-2013-063; this works]

Impressive progress in c-tag in ATLAS used already in SUSY

Find the missing purple line

[Peskin 12 @ ILC-TDR]

• focus on **charm** LHC8 does constrain y_c , but mildly $|\kappa_c| < 245$ LHC14 we can expect substantial improvements $|\kappa_c| < O(10)$

 $\circ\,$ ATLAS and CMS constrain the higgs total width with shape analyses of the $\gamma\gamma$ and ZZ signal

 $\Gamma_{tot} < 2.6 GeV[ATLAS]$

 $\circ~$ to be compared with $\Gamma^{\rm SM}_{tot} = 4.15 MeV$

 $\Gamma_{tot} < 1.7 \text{GeV}[\text{CMS}]$

Saturate width with $h \rightarrow c\bar{c}$ $\Rightarrow \frac{y_c}{y_c^{SM}} < 150[ATLAS] \quad 120[CMS]$ @ 95% CL

 not much hope for future improvement due to resolution of experiments

ATLAS's c-tagger, a breakthrough

ATLAS's c-tag working point

 $\epsilon_c = 19\%$ $\epsilon_b = 12\%$

– calibrated from data containing D* mesons employing multivariate techniques with information on *"impact parameter on displaced tracks and topological properties of secondary and tertiary decay vertices"*.

- factor of 5 rejection of *b*'s w.r.t. standard medium point by calibrating on simulated $t\bar{t}$ events

ATLAS search for $\tilde{t} \rightarrow c \chi_0$

Search for pair-produced top squarks decaying into charm quarks and the lightest neutralinos using 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC

[ATLAS arXiv:1501.01325]

ATLAS search for $\tilde{c}\tilde{c}^*$ with $\tilde{c} \to c\tilde{\chi}_1$ Search for Scalar-Charm Pair Production in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

Recasting $H \rightarrow b\bar{b}$: Idea

b-jets at LHC are NOT b-quarks

- b quarks hadronize to B mesons
- \circ *B*-mesons are long lived \sim 440 μ m/c
- o they fly in detector before decaying
- b-tagging is based on looking for such displased vertices

Jet-tagging efficiencies are correlated

[CMS arXiv:1211.4462]

- experiments can and do use different working points
- $\circ \epsilon_b$ correlated with misstag propabilities

in reality: complicated function of p_T , rapidity, channel, ...

What is the bound on y_c from mistagging?

Recasting $H \rightarrow b \bar{b}$: ATLAS and CMS analyses

ATLAS [1409.6212] and CMS [1310.3687] $h \rightarrow b\bar{b}$ analyses • *h* produced in association with W/Z

- different channels for W/Z decays
 - $Z \to \nu \bar{\nu}$ [Olepton] $Z \to \ell \bar{\ell}$ [2lepton] $W^- \to \ell^- \bar{\nu}$ [1lepton]
- different categories for $p_T(W/Z)$
- two b-jets required

b-tag working point depends on category

(2 in ATLAS, 4 in CMS)

Recasting $H ightarrow b ar{b}$: signal strength

Signal strength

$$\mu_{b}^{Vh} = \frac{N_{observed}^{Vh}}{N_{expected}^{Vh}} = \frac{\mathcal{L} \cdot \sigma \cdot \mathcal{BR}_{b} \cdot \epsilon_{b_{1}} \cdot \epsilon_{b_{2}} \cdot \epsilon}{\mathcal{L} \cdot \sigma^{SM} \cdot \mathcal{BR}_{b}^{SM} \cdot \epsilon_{b_{1}} \cdot \epsilon_{b_{2}} \cdot \epsilon} = \frac{\sigma \cdot \mathcal{BR}_{b}}{\sigma^{SM} \cdot \mathcal{BR}_{b}^{SM}}$$

- use multi-variate techniques to find best S/B discriminators
- minimize χ^2 over all this BDT output based on poisson statistics

$$\mu_b^{Vh} = 0.52 \pm 0.32 \pm 0.24 \qquad [ATLAS]$$

$$\mu_b^{Vh} = 1.0 \pm 0.5 \qquad [CMS]$$

$$\rightarrow Information on y_b$$

What if y_c was modified by a lot?
$$\rightarrow \chi^2 \text{ of two signal strenghts}$$

Recasting $H \rightarrow b\bar{b}$: signal strength

Signal strength including c-mistag

- \circ the larger $\epsilon_{c/b}$ (the misstag) the more sensitivity
- can only constrain the combination (degeneracy)

→ need different $\epsilon_{c/b}$ working points

the more different the better

Recasting $H \rightarrow b\bar{b}$: an example

ATLAS: $pp \rightarrow Z(\ell \ell) H(b\bar{b})$ with $p_T(Z) > 120 \text{ GeV}$

- Signal, Background, Data binned in BTD output

- Each bin is one independent measurement entering the χ^2

- Unfortunately, they don't give tables → digitize plots

Recasting $H \rightarrow b\bar{b}$ **: ATLAS**

Recasting $H \rightarrow b\bar{b}$ **: CMS**

- \circ reproduced ATLAS and CMS μ_b result and error up to 10% \checkmark
- o statistical error dominating (otherwise impossible to reproduce)
- \circ USE only S/B> 2.5% (because we cannot control sys. of bkg like the exp.)

Recasting $H \rightarrow b\bar{b}$: Breaking the degeneracy

Fit assuming two signal strenths in ATLAS and CMS

Recasting $H \rightarrow b\bar{b}$: Breaking the degeneracy

Fit assuming two signal strenths in ATLAS and CMS

Recasting $H \rightarrow b\bar{b}$: production enhancement

- assume no modification of production
- assume $\mathcal{BR}(h \to c\bar{c}) = 100\%$
 - → μ_c ~ 33, our bound is trivially satisfied

However, a new production mechanism kicks in around $v_c/v_c^{SM} \sim 100$

o depends on channel, category, due to cuts

Recasting $H \rightarrow b\bar{b}$ **: constraining** κ_c

Exclusive way: $h \rightarrow J/\psi \gamma$

Use robust LEP bound $\kappa_V = 1.08 \pm 0.07$ [Falkowski, Riva 13]

Combination: what we know about y_c from LHC8

- $\circ~$ width bound will not improve much in the future
- \circ recast bound competes with $J/\psi\gamma$ bound
- o collaborations can improve our analysis

yt from tth and up-quark universality

Can we make any statements about up-quark universality?

$$\mu_{tth}^{\rm avg} = 2.41 \pm 0.81$$

[ATLAS and CMS average]

this translates to a lower bound on the top Yukawa

$$|\kappa_t| > 0.9 \sqrt{\frac{\mathcal{BR}_{h \rightarrow relevant modes}^{SM}}{\mathcal{BR}_{h \rightarrow relevant modes}}} > 0.9$$

• Since $\frac{y_c}{y_t} \simeq \frac{1}{280} \frac{\kappa_c}{\kappa_t}$ the combination of κ_c / κ_t bounds means

$$y_c < y_t$$

LHC8 data excluded up-quark universality

Global fit

Fit dominated by untagged Higgs decay driven by VBF production.

$$\mu_{\text{VBF} \rightarrow h \rightarrow WW^*} = \kappa_V^2 \times \frac{\kappa_V^2}{\Gamma_{\text{tot}}/\Gamma_{\text{tot}}^{\text{SM}}} \quad \Rightarrow \quad \Gamma_{\text{tot}} < 4\Gamma_{\text{tot}}^{\text{SM}}$$

Robust as long as there is no new VBF production channel.

Prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

No data, but ATLAS $h \rightarrow b\bar{b}$ 14 TeV study

[ATL-PHYS-PUB-2014-011]

- MC simulation of all backgrounds ($t\bar{t}$, $Wb\bar{b}$,...)
- binned analysis (1-lepton, 2-lepton, $p_T(V)$, $m_{b\bar{b}}$,...)
- based on med-med working point
- need at least two working points
 - → choose c-tagging working points (I,II,III)

	€b	€c	εı
b-tagging	70%	20%	1.25%
c-tagging I *	13%	19%	0.5%
c-tagging II	20%	30%	0.5%
c-tagging III	20%	50%	0.5%

- → rescale B's and S appropriately
- → each event categorised according to tagging info
- small dependence on correlation between *b* and *c*-tagged jets

μ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging I

Grey region unphysical unless Higgs production modified w.r.t. SM

$$\mu_c \mathcal{BR}_{c\bar{c}}^{SM} + \mu_b \mathcal{BR}_{b\bar{b}}^{SM} < 1$$

Expect $\Delta \mu_c = \pm 15, \pm 5.6$ at Run 2, HL-LHC

μ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging II

Grey region unphysical unless Higgs production modified w.r.t. SM

$$\mu_c \mathcal{BR}_{c\bar{c}}^{\mathrm{SM}} + \mu_b \mathcal{BR}_{b\bar{b}}^{\mathrm{SM}} < 1$$

Expect $\Delta \mu_c = \pm 10, \pm 3.7$ at Run 2, HL-LHC

μ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging III

Grey region unphysical unless Higgs production modified w.r.t. SM

$$\mu_{c} \mathcal{BR}_{c\bar{c}}^{\mathrm{SM}} + \mu_{b} \mathcal{BR}_{b\bar{b}}^{\mathrm{SM}} < 1$$

Expect $\Delta \mu_{c} = \pm 5.8, \pm 2.0$ at Run 2, HL-LHC

κ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging I

κ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging II

κ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging III

Boosted Higgses at 100 TeV

What improvement can we expect at 100 TeV?

- specifications of a possible 100 TeV pp collider are vague
- no dedicated binned study of all backgrounds
- to compete with HL-LHC need regions of large S/B

boosted Higgses + jet-substructure to reduce B's look for a fat jet ($p_T > 350 \text{ GeV}$) with 2 *b*-tagged subjets

• use jet-substructure results from 13 TeV analysis for $h \rightarrow b \bar{b}$

[Backovic, Juknevich, Perez 12]

- o assume same rejection power at 100 TeV as at 13 TeV
 → main background tt rejected 20 more than signal
- include W/Z h and the B's $t\bar{t}$, $W/Z b\bar{b}$, $W/Z c\bar{c}$

κ_c at 100 TeV with boosted Higgses

c-tagging I

κ_c at 100 TeV with boosted Higgses

c-tagging II

κ_c at 100 TeV with boosted Higgses

c-tagging III

"Unboosting" the Higgs at 100 TeV

• Jet-substructure cuts did great, but cut too much $h \rightarrow c \bar{c}$

Challenge: keep most Higgses ("unboosted") cut away $t\bar{t}$ **One way:** $t\bar{t}$ heavier system \rightarrow peaks at larger H_T

\rightarrow low H_T bins have an increased S/B

- $\circ \ H_T < 340 \, {\rm GeV}, \quad 340 \, {\rm GeV} < H_T < 500 \, {\rm GeV}, \quad 500 \, {\rm GeV} < H_T$
- + usual $h \rightarrow b\bar{b}$ cuts $(m_{b\bar{b}},...)$
- o the rest similar to boosted analysis

Accessing $|\kappa_c| \approx 2$ seems possible and conservative

κ_c at 100 TeV with "unboosted" Higgses

c-tagging I

κ_c at 100 TeV with "unboosted" Higgses

c-tagging II

κ_c at 100 TeV with "unboosted" Higgses

c-tagging III

Exclusive possibilities

o only known way to access light-quark Yukawas

[Kagan et al 14]

- predictions under control
- [Bodwin et al 13/14, König et al 15]
- \circ interference effect \rightarrow amplitude-level info.

[König et al 15]

Exclusive approach: $h \rightarrow J/\psi \gamma$ result

ATLAS $\sigma \cdot \mathcal{BR}(h \to J/\psi \gamma) < 33 \text{fb}$ at 95% CL

[ATLAS 1501.03276]

Important for 2 reasons:

- translates to a weak $|\kappa_c| < 220$ bound (after normalising to $h \rightarrow ZZ^*$, and assuming κ_V, κ_γ like in SM) [arXiv:1502.00290]
- first measurement of a tough QCD background

→ QCD+real photon and QCD with jet mistagged as a γ $P(j \rightarrow \gamma) \simeq 2.9 \cdot 10^{-2}$

[ATL-COM-PHYS-2010-1051]

- → expect similar background for other modes
- \rightarrow use new data to project sensitivy in ϕ mode

[arXiv:1505.06689]

Exclusive projection for y_c and y_s

Assumptions for extrapolation: $S_E/\sqrt{B_E} \sim S_8/\sqrt{B_8}$, unchanged signal efficiencies, $S_E/\sqrt{B_E}$ same in J/ψ and ϕ mode, PYTHIA simulation to rescale B

Results for charm-Yukawa

 $|\kappa_c| < 91, 56, 33$ at LHC run 2, HL LHC, and a 100 TeV with 2×3000 fb⁻¹

Results for strange-Yukawa

 $|\kappa_s| < 3300, 2000, 1200$ at LHC run 2, HL LHC, and a 100 TeV with 2×3000 fb⁻¹

→ exclusive approach struggles with QCD background ← possible to reduce in other production modes? Vh, VBF, tth?

[Perez et al, 15]

Higgs couplings sensitive to deviations from the SM

- directly accessible for the first time at the LHC
- a lot of progress made in extracting fermion Yukawas (both theo. and exp.)
- complementary approaches inclusive - limited applicability (b,c) exclusive - limited statistics (QCD bkg)
- sensitivity of the LHC higher than anticipated, good prospects and valuable information to extract