Searches for an extended Higgs sector

Abideh (Nadjieh) Jafari UCLouvain, CP3, and FNRS r ATLAS & CMS collaborations

Higgs Tasting Workshop 15th – 21st May, Benasque, Spain

You might have heard about the "Big discovery"!

4 July 2012: Something IS there

A. Jafari, Hig

However the Question was:

Is it REALLY you Sir?!

And the beginning of a long journey ...

Does it behave as we expect, Standard-Modelwise?

Could it be e.g. one of many Higgs's expected in beyond Standard Model?

And the beginning of a long journey ...

Does it behave as we expect, Standard-Modelwise?

It's VERYSM like!!

4

And the beginning of a long journey ...

Still YES!

With uncertainties in measurements, still room for it to connect to BSM

Could it be e.g. one of many Higgs's expected in beyond Standard Model?

Where to look?

Measurements

Couplings – Differential

- Main modes: $h \rightarrow ZZ$, WW, $\gamma \gamma \tau \tau$, bb
- Lower rate: $\mu\mu$, $Z\gamma$, ee, ...
- Challenging (at LHC): ss, cc,

gg

• Couplings: ggh, qqh, Vh, tth, tqh, bbh

Direct searches

- Additional Higgs bosons: NMSSM, 2HDM, $h^{\pm\pm}$, ...
- FCNH: $t \rightarrow ch \dots$
- In decays of new particles: $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W^{\pm} \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}$
- Rare SM *h* decays: either SM-forbidden or highly SM-suppressed
- Di-*h* production: rare SM or in decay of new states

Where to look?

- Focus on the latest results, mainly 13 TeV
- Many Run I studies
 - Need more data at 13 TeV to be competitive
 - *Example:* Higgs rare decays
- Check them all in ATLAS and CMS public pages

Direct searches

- Additional Higgs bosons: NMSSM, 2HDM, $h^{\pm\pm}$, ...
- FCNH: $t \rightarrow ch \dots$
- In decays of new particles: $\tilde{\chi}^{\pm}_{\ l} \, \tilde{\chi}^{0}_{\ 2} \rightarrow W^{\pm} \tilde{\chi}^{0}_{\ l} h \, \tilde{\chi}^{0}_{\ l}$
- Rare SM *h* decays: either SM-forbidden or highly SM-suppressed
- Di-*h* production: rare SM or in decay of new states

Where to look?

Outline

- Di-*h* production
- Additional Higgs bosons
- Exotic *h* decays
- Invisible Higgs
- Charged Higgs

DI-HIGGS PRODUCTION

A. Jafari, Higgs Tasting, Benasque

Di-*h* production

Di-*h* production

Wide range of searches with Run I collisions

Di-h production: $b\overline{b}b\overline{b}$ 13 TeV (resolved)

Di-h production: $b\overline{b}b\overline{b}$ 13 TeV (boosted)

Di-*h* production: $b\overline{b}W^+W^-$ (lulu) 13 TeV

CMS Preliminary 2.30 fb⁻¹ (13 TeV) Events / 0.02 Data ti $\mu\mu$ + ee + μ e + e μ channels 160 Signal (1 pb) 🚺 Drell-Yan - my = 400 GeV Single top - m_x = 650 GeV VV 140 — m, = 900 GeV 🚺 tťV Uncertainty SM Higgs 120 100 80 20 Data / MC 1.4 12 ↓↓ ↓ ↓ ↓ 0.8 0.6 E -0.6 -0.4 -0.2 0 0.2 0.4 0.6 BDT output SR SB SR SB SB 125±δ 125±δ Ś

SB

Di-*h* production: $b\overline{b}W^+W^-$ (lulu) 13 TeV

HIG-16-011

Di-*h* production: $b\overline{b}\gamma\gamma$ 13 TeV

reson

- 2 high p_T photons
- 2 b-jets with $m_{b\overline{b}} \sim m_h$

$$\overrightarrow{\text{ant}}$$
Counting experiment
$$m_{\gamma\gamma} \sim m_h$$

$$m_{bb\gamma\gamma} \text{ window with } \varepsilon_{\text{sig.}} = 95\%$$

Di-*h* production: *bbyy* 13 TeV

Di-*h* production: $b\overline{b}\tau\overline{\tau}$ 13 TeV

• $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$

- BDT in $\ell \tau_h$ against tt
- Main backgrounds from data

Di-*h* production: $b\overline{b}\tau\overline{\tau}$ 13 TeV

Di-*h* **production:** towards **HL-LHC**

1.9 σ

inc. $bb\tau\tau$:

Expected significance: 1.3σ

- Improve identification performances
- Analysis techniques
- Additional final states
 - Beneficial also for Run II data

20

ADDITIONAL HIGGS BOSONS

In the framework of 2HDM, NMSSM, ...

21

Additional Higgs bosons

A Run I summary: Searches and measurements

Additional Higgs bosons

Η,

H.

Lepton

Η,

 H_1

23

No $H \rightarrow VV$

$\mathbf{H} \rightarrow \mathbf{ZA}: A \rightarrow b\overline{b}, \ \mathbf{Z} \rightarrow \ell^{-}\ell^{+} \ 13 \ \mathrm{TeV}$

Additional Higgs bosons

$A \rightarrow Zh: h \rightarrow b\overline{b}, Z \rightarrow \ell^{-}\ell^{+}/\nu\overline{\nu} 13 \text{ TeV}$

- **Resolved**: ≥ 2 small-R jets, m_{ii} compatible with m_h
- **Boosted:** \geq 1 large-R jet, m_i compatible with m_h
- 2 lepton: $m_{\ell\ell}$ compatible with m_{Z}

ATL-CONF-16-015

$A \rightarrow Zh: h \rightarrow bb, Z \rightarrow \ell^- \ell^+ / \nu \nu 13 \text{ TeV}$

ullet

Data/I

400

500

600

700

800

900

m_T(Vh) [GeV]

0.9<u>5</u> 200

1000

300 400 500 600

700

• Resolved: ≥ 2 small-R jets, m_{ii} compatible with m_{ii}

• **Boosted:** ≥ 1 large-R jet, m_i compatible with m_i

• 2 lepton: m_{μ} compatible with m_{z}

ATL-CONF-16-015

m(Vh) [GeV]

$A \rightarrow Zh: h \rightarrow b\overline{b}, Z \rightarrow \ell^- \ell^+ / v\overline{v} 13 \text{ TeV}$

MSSM H/A: $H/A \rightarrow \tau \tau$ 13 TeV

MSSM H/A: $H/A \rightarrow \tau \tau$ 13 TeV

New H boson to ZZ/WW

New H boson to $ZZ \rightarrow \ell^- \ell^+ \nu \overline{\nu}$ 13 TeV

- $\ell^-\ell^+$ compatible with Z
- Large missing E_T
- No b-jet \rightarrow against tr
- CMS: $0, \ge 1$ b, VBF

Search variable

Backgrounds

- WW, tt, ... : from $e\mu$ CR
- Z+jets:
 - ATLAS: yield from data, shape from MC
 - CMS: γ +jets data
- WZ:
 - ATLAS: from 3ℓ data
 - CMS: MC

New H boson to $ZZ \rightarrow \ell^- \ell^+ \nu \nu$ 13 TeV

A. Jafari, Higgs Tasting, Benasque

New H boson to $ZZ \rightarrow (\ell^- \ell^+ / \nu \nu) qq 13 \text{ TeV}$

- **Boosted:**
 - Z-tagged jet
 - Search over $m_{\rho\rho}$ distribution
- Resolved:
 - 2-b and less-b regions
 - Search over m_{elij}

- **Boosted**:
 - Z-tagged jet
 - Large missing E_T
 - Search over $m_T(E_T^{miss}, J)$ distribution

ATL-CONF-16-016

ATL-CONF-15-068

New H boson to $ZZ \rightarrow \ell^- \ell^+ \ell^- \ell^+ 13 \text{ TeV}$

Using the sample of the SM Higgs analysis in search for a resonance

New H boson to $WW \rightarrow \ell v q q' 13 \text{ TeV}$

Boosted W \rightarrow qq': W-tagged jet, $m_{I} \sim m_{W}$

Search over $m_{\ell_n I}$ distribution

Simultaneous fit

HIGGS EXOTIC DECAYS

A. Jafari, Higgs Tasting, Benasque

- LHC Run I: BR($h \rightarrow BSM$) < 0.34
 - A lot of room for rare & exotic decays of *h*
- Well motivated in the framework of NMSSM, 2HDM+S, ...

A pseudoscalar, interacts with fermions via mixing with Higgs

One of the light CP-even Higgs in the model identified as h(125)

- LHC Run I: BR($h \rightarrow BSM$) < 0.34
 - A lot of room for rare & exotic decays of h
- Well motivated in the framework of NMSSM, 2HDM+S, ...

Explored final states:

- ATLAS: $2\mu 2\tau$ (Phys. Rev. D92 (2015) 052002), 4γ (CERN-PH-EP-2015-187)
- CMS: $2\mu 2b$ (HIG-14-041), 4μ (CMS:Phys. Lett. B 752 (2016) 221), $2\mu 2\tau$ (HIG-15-011), 4τ (HIG-14-022, JHEP 01 (2016) 079)

Highly benefit from the upcoming large Run II data sample

Exotic *h* decays: $h \rightarrow aa \rightarrow (2b/2\tau)2\mu$ 8 TeV

Inspired from Phys. Rev. D 90, 075004 (2014)

INVISIBLE HIGGS

A. Jafari, Higgs Tasting, Benasque

Invisible Higgs: $ZH \rightarrow \ell^- \ell^+ + Inv$. 13 TeV

- 2 leptons compatible with Z
 Large E^{miss}₊
- Large E_t
- 0-jet and 1-jet categories
- Search variable: m_T

Background

• Z+jets from γ +jets data

HIG-16-008

• Non-resonant from eµ

Invisible Higgs: *VBF H*→*Inv*. 13 TeV

- 2 high p_T jets, large m_{jj}
- Large E^{miss}, well separated from jets

Background

From control regions
Z(ℓℓ), W(ℓυ), QCD

Search strategy

- Simultaneous fit in all regions
- Counting experiment

HIG-16-009

Invisible Higgs: in DM searches 13 TeV

- Mono-jet & mono-V
- Single jet (V-tagged)
- Large E_T^{miss}, search variable
- 10 mutually exclusive CR's for Z(υυ)/W(ℓυ)+jets

Simultaneous fit to signal regions and CR's:

- MC transfer factors to relate SR & CR yields
- Theory diff. $\sigma_Z^{}/\sigma_W^{}$ is used

HIG-16-013

Category	Exp. (Obs.)	1σ range	Expected signal
$\sigma \times Br(h \rightarrow Inv) / \sigma_{h}$	sensitivity		composition
Monojet	1.11 (1.46)	[0.76-1.64]	66% ggH, 25% VBF, 5% WH, 4% ZH
Mono-V	1.43 (1.04)	[1.02-2.10]	40% ggH, 7% VBF, 33% WH, 20% ZH
Mono-V + monojet	0.84 (0.85)	[0.59-1.22]	-

CHARGED HIGGS

A. Jafari, Higgs Tasting, Benasque

Charged Higgs: $H^{\pm} \rightarrow \tau^{\pm} \upsilon \ 13 \text{ TeV}$

- One hadronic τ
- At least 3 jets, at least 1 b
- Large E_t^{miss} , large m_T^W

Background

- "Jet $\rightarrow \tau$ " fake rate from data
- W/tt in τυ corrected/validated in CR's with 0 or 2 b jets

Search strategy

• Fit to m_T distribution

Summary

LHC Higgs discovery is accompanied by a big question: *Is this Higgs connected to BSM? How?!*ATLAS and CMS have looked into many possibilities Only a subset reviewed here!!

Prospects for HL-LHC are also being studied
Still many areas are not fully explored Benefits from more LHC data at higher energy
Efforts are ongoing with the current data *STAY TUNED!!*

BACKUP A. Jafari, Higgs Tasting, Benasque

Di-*h* **production:** $b\overline{b}b\overline{b}$ 13 TeV (boosted)

- 3-tag and >= 4-tag samples
- QCD shape from 2-tag sample with parametric tail
- QCD and ttbar from template fit

Di-h production: *bbbb* 13 TeV (*boosted*)

Di-*h* production: $b\overline{b}b\overline{b}$ 13 TeV (boosted)

A. Jafari, Higgs Tasting, Benasque

Di-*h* production: *bbbb* 13 TeV (resolved)

Combinatorics: pairs maximizing b-tag value mass dependent cuts on p_T and η of dijets

Trigger: 1 - 2 b-tag

Reject ttbar:

$$X_{tt} = \sqrt{\left(\frac{m_W - 80.4 \,\text{GeV}}{0.1 \,m_W}\right)^2 + \left(\frac{m_t - 172.5 \,\text{GeV}}{0.1 \,m_t}\right)^2} > 3.$$

Inverted cut: CR to estimate ttbar yield

Shape and yield corrections for QCD: 4–tag Multijet $= \frac{N_{\text{data}}^{4-\text{tag}} - N_{t\bar{t}}^{4-\text{tag}} - N_{Z+jets}^{4-\text{tag}}}{N_{\text{data}}^{2-\text{tag}} - N_{t\bar{t}}^{2-\text{tag}} - N_{Z+jets}^{2-\text{tag}}}$ $\mu_{\text{Multijet}} =$ N^{2-tag} Multiiet

Systematics: b-tag, JES

ATL-CONF-16-017 52

Di-h production: bbbb 13 TeV (resolved)

Recalibrate the b-jet energy using Higgs

Trigger: 4j2b, 4j3b

Parametric model for backgrounds

Used to model background In 2-b-jet region, the method is validated

Dominant systematics: Trigger, b-tag

Di-*h* production: $b\overline{b}W^+W^-$ (lulu) 13 TeV

- Two different BDT trainings below and above 450 GeV
- Similar training for spin 0 and spin 2
- Dominant systematics: trigger, b-tagging, ttbar background

A. Jafari, Higgs Tasting, Benasque

Di-*h* production: $b\overline{b}\gamma\gamma$ 13 TeV

- b-jet recalibration with Higgs mass
- Non-resonant bkg. shape:
 - exp. fit to $m_{\gamma\gamma}$ distribution in $m_{\gamma\gamma}$ side band
- Resonant bkg yield:
 - Estimation from side-band in $m_{\gamma\gamma}$ with efficiencies from 0-tag CR \rightarrow systematics for 0-tag 2-tag transfer
- Stat. limited ...

$$N_{SR}^{B} = N_{SB} \frac{\varepsilon_{m_{\gamma\gamma}}^{B}}{1 - \varepsilon_{m_{\gamma\gamma}}^{B}} \varepsilon_{m_{b\bar{b}\gamma\gamma}}^{B}$$

ATL-CONF-16-004

Di-*h* production: *bbyy* 13 TeV

ATL-CONF-16-004

A. Jafari, Higgs Tasting, Benasque

Di-*h* production: $b\overline{b}\tau\overline{\tau}$ 13 TeV

- QCD yield:
 - From SS where SS/OS ratio is obtained from non-iso sample
- QCD shape:
 - From SS non-iso sample
- Systematics: b-jet and τ identification, Q² scale

HIG-16-012 Non-resonant HIG-16-013 Resonant

$A \rightarrow Zh: h \rightarrow b\overline{b}, Z \rightarrow \ell^{-}\ell^{+}/\nu\nu$ 13 TeV

Variable	$\text{Low-}p_{ ext{T}}^{Z}$	High- $p_{\rm T}^Z$			
Common selection					
$p_{\rm T}^Z$ [GeV]	<500	≥ 500			
N _{b-tag jet}	1,2	1,2			
N _{small-R} jet	≥2	≥ 0			
Nlarge-R jet	≥ 0	≥ 1			
m_{dijet} or m_{jet} [GeV]	110-140	75–145			
0-lepton selection					
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	-			
$\sum_{i=1}^{N_{\text{jet}}=3(2)} p_{\text{T}}^{\text{jet}_i} \text{ [GeV]}$	> 150 (120) ^(*)	-			
$p_{\rm T}^{\rm miss}$ [GeV]	> 30	> 30			
$\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm miss})$	$< \pi/2$	$<\pi/2$			
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 2\pi/3$	$> 2\pi/3$			
$\min[\Delta \phi(\vec{E}_{T}^{\text{miss}}, \text{small-}R \text{ jet})]$	$> \pi/9^{(*)}$	$> \pi/9^{(*)}$			
$\Delta \phi(j,j)$	$< 7\pi/9$	-			
Number of hadronic taus	0	0			
Number of b-tag track-jets not		0			
associated to the leading large- R jet		U			
2-lepton selection					
m_{ee} [GeV]	70–110	70–110			
$m_{\mu\mu}$ [GeV]	70–110	55-125			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \left[\sqrt{{\rm GeV}}\right]$	< 3.5	—			

A T L A S

ATL-CONF-16-015

$A \rightarrow Zh: h \rightarrow b\overline{b}, Z \rightarrow \ell^- \ell^+ / \nu \overline{\nu} 13 \text{ TeV}$

Muon recalibration using Z in both high and low p_T^Z
Jet recalibration using Higgs mass in low p_T^Z

(c) 0- and 2-lepton, high- p_T^Z

ATL-CONF-16-015

Systematics:

- JES, JMR, JMS, b
 - tagging
- Signal modeling and background

CR

V+b

V+c.I

m_{bb} [GeV]

New H boson to $ZZ \rightarrow \ell^- \ell^+ v \overline{v}$ 13 TeV

ABCD method for Z+jets yield ATL-CONF-16-012

The Z + jets background is estimated from data by comparing the signal region (A) with two-dimensional sideband regions in which requirements on the fractional p_T difference (B), $\Delta \phi(\vec{p}_T^{\ell \ell}, \vec{E}_T^{\text{miss}})$ (C) or both variables (D) are reversed. The m_T^{ZZ} distributions in the signal and those three sideband regions after the dilepton mass requirement are shown in Figure 4. Since the variables $\Delta \phi(\vec{p}_T^{\ell \ell}, \vec{E}_T^{\text{miss}})$ and the fractional p_T difference are uncorrelated, an estimate of the number of background events in the signal region is given by $N_A^{\text{est}} = N_C^{\text{obs,sub}} \times (N_B^{\text{obs,sub}}/N_D^{\text{obs,sub}})$.

New H boson to $ZZ \rightarrow \ell^- \ell^+ \nu \nu$ 13 TeV

A. Jafari, Higgs Tasting, Benasque

New H boson to $WW \rightarrow \ell v q q' 13 \text{ TeV}$

QCD from a fit to m_{T} with shape from non-iso, non-id control region

$m_a \in [20,62.5] \text{ GeV}$

Higgs production ggF, VBF, Vh

All tau final states except μμ

 $h \rightarrow aa \rightarrow 2\mu 2\tau$

Signal

- Parametric model,
 - Voigt with or w/o Gauss component based on final state
 - Interpolated to regions w/o simulations (closure checked)

Background

- Modeled with Bernstein
 - ZZ: irreducible, estimated from MC
 - Fake $\tau/\mu/e$: reducible, estimated from control data
 - Fake rate method in $\boldsymbol{p}_{_{\mathrm{T}}}$ bins for yields
 - Shape from SS region
 - A. Jafari, Higgs Tasting, Benasque

$Br(h \rightarrow aa) \times Br(a \rightarrow \mu\mu)^2$

All types

 $\frac{\Gamma(a \rightarrow \mu \mu)}{\Gamma(a \rightarrow \tau \tau)} = \frac{m_{\mu}^2 \sqrt{(1 - 2m_{\mu}/m_a)}}{m_{\tau}^2 \sqrt{(1 - 2m_{\tau}/m_a)}}$

Type I - II

$$\frac{\Gamma(a \rightarrow \mu \mu)}{\Gamma(a \rightarrow bb)} = \int \frac{m_{\mu}^2 \sqrt{(1 - 2m_{\mu}/m_a)}}{3m_b^2 \sqrt{(1 - 2m_b/m_a)} \times QCD Corr}.$$

Invisible Higgs: $VBF H \rightarrow Inv. 13 \text{ TeV}$

QCD CR: inverting $\Delta \varphi$ (E_T^{miss}, jets)

A. Jafari, Higgs Tasting, Benasque

Charged Higgs: $H^{\pm} \rightarrow \tau^{\pm} \upsilon 13 \text{ TeV}$

Figure 3: Distribution of m_T in the control region enriched with $W \to \tau \nu$ events, which differs from the nominal event selection by the requirements that $m_T < 100$ GeV and that the number of *b*-tagged jets be zero. The $W \to \tau \nu$ background is normalised to the data through an overall scale factor. The total (statistical and systematic) uncertainties in the SM prediction are shown in the lower plot.

Charged Higgs: $H^{\pm} \rightarrow \tau^{\pm} \upsilon 13 \text{ TeV}$

Figure 4: Distribution of m_T in the control region enriched with $t\bar{t}$ events, which differs from the nominal event selection by the requirements that $m_T < 100$ GeV and that the number of *b*-tagged jets be at least two. The total (statistical and systematic) uncertainties in the SM prediction are shown in the lower plot.

Double-charged Higgs: $H^{\pm\pm} \rightarrow \ell^- \ell^- \ell^+ \ell^+ 8 \text{ TeV}$

• No lepton flavor conservation

SR

m_±δ

SB

Mu

- $\Phi \rightarrow ee, \mu\mu, e\mu, e\tau, \mu\tau$
- 3ℓ and 4ℓ final states

Background

- WZ/ZZ from side band in m_{ϕ}
- Validated in CR's

• Explains neutrino masses

• SM + scalar triplet $\Phi^{\pm\pm}$, Φ^{\pm} , Φ^{0}

Search strategy

• Counting experiment

A. Jafari, Higgs Tasting, Bena

HIG-14-039

- Allowed non-SM loop couplings with additional BSM contribution to Higgs width.
- $\kappa_v \leq 1$

HIG-16-007

A. Jafari, Higgs Tasting, Benasque

	2H	hMSSM	
	type I	type II/MSSM	
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\frac{s_d+s_u \tan\beta}{\sqrt{1+\tan^2\beta}}$
κ _u	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$s_u \frac{\sqrt{1 + \tan^2 \beta}}{\tan \beta}$
κ _d	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$s_d \sqrt{1 + \tan^2 \beta}$

HIG-16-007

- Many other channels could be covered
- More boosted analyses

• • •

13 TeV	Resolved	Boosted	Limit
4b	9–0.05 pb	0.05 - 0.1 pb	$\sigma imes Br$
bbWW	11 – 0.1 pb	—	$\sigma imes Br$
bbγγ	7.5 – 4 pb	_	σ
bbττ	5 – 0.09 pb	_	$\sigma imes Br$

TENTATIVESUMMARYONRESONANCESA. Jafari, Higgs Tasting, Benasque
- More sensitive with boosted jets
- Other channels could be covered
- *Results from one experiments could be cross checked with the other*

13 TeV	Resolved	Boosted	Limit
$H \rightarrow ZZ \rightarrow \ell \ell \upsilon \upsilon$	4 – 0.1 pb	_	—
$H \rightarrow ZZ \rightarrow \ell \ell q q$	5–0.5 pb		_
$H \rightarrow ZZ \rightarrow vvqq$	_	0.2 – 0.03 pb	_
$H \to ZZ \to \ell \ell \ell \ell$	0.005 – 0.002 pb	_	$Z \rightarrow \ell \ell$ inc.
$H \rightarrow WW \rightarrow qq\ell \upsilon$	_	0.3 – 0.03 pb	_

