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Naturalness Problem

I The SM is very successful, but unnatural (’t Hooft):

I The Higgs mass is sensitive to short-distance physics!

I SM is fine-tuned unless there is NP at 4πvew ∼ 1 TeV.

I But, the TeV machine (LHC) has not found NP yet!
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Dilaton model (DKH 2017)

I We propose a light-dilaton model that Higgs boson is
naturally light ∼ vew � Λ without fine-tuning.

I Furthermore the dilaton can be DM of mass 1 eV − 10 keV.

UV theory of Higgs sectorE

SM
+ dilaton

⇤SB

M

4⇡vew

� M

� TeV

⇠ TeV

Composite Higgs with 
walking dynamics
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Light dilaton as a Nambu-Goldstone boson

I Consider a SU(N) gauge theory with infrared fixed point,
studied by Casewell (1974) and also by Banks-Zaks (1982)

I The two-loop beta function with Nf fundamental Dirac
fermions and Ns Dirac fermions in the second-rank symmetric
tensor representation.

β(α) ≡ µ∂α
∂µ

= −bα2 − cα3 ,

with the coefficient b and c , known as

6πb = 11N − 2Nf − 2Ns(N + 2)

24π2c = 34N2 − 10NNf − 3

(
N − 1

N

)
Nf

−10NNs(N + 2)− 6

N
(N − 1)(N + 2)Ns(N + 2) .
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Conformal Window

I If b > 0, the theory is asymptotically free.

I If c < 0, there will be an IR fixed point, α∗ = −b
c , if chiral

symmetry is unbroken.

I The chiral symmetry will be broken if αc < α∗

αc(f ) =
2π

3

N

N2 − 1
, αc(s) =

2π

3

N

(N + 2)(N − 1)
.

-In ladder approximation (Georgi+Cohen, DKH+Rajeev, · · · )
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Conformal Window

I Consider a SU(2) gauge theory with Nf = 4 and Ns = 1;
α∗ = 0.84 < αc(s) = 1.05 < αc(f ) = 1.40.

Figure: Two-loop β-function of SU(2) with Nf = 4 and Ns = 1.
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Near Conformal Window

I We deform the theory by partially gauging the flavor
symmetry:

SU(2)1 SU(2)2

ψ1
aα

ψ2
aα

χ{ab} 1
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Near Conformal Window

I It then becomes near conformal, since χSB at α1 ≈ α∗ with
α1 + α2 = αc(f ):

�1(↵)

�2(↵)

↵
↵⇤•

�(↵)

↵2 ↵1

Figure: The chiral symmetry of ψi is broken at α1 ≈ α∗.
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Near Conformal Window

I Near α1 ≈ α∗ the beta function becomes (Miransky ’85;
Kaplan-Lee-Son-Stephanov ’09)

β(α) ≈ βNP(α) = −2α1

π

(
α

α1
− 1

)3/2

I The dynamical mass M of χSB is given by the
Miransky-Berezinskii-Kosterlitz-Thouless Scaling:

M = ΛSB(α1) exp

(
− π√

α∗/α1 − 1

)
I The theory is almost scale-invariant for M < E < ΛSB,

exhibiting walking dynamics.
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A very light dilaton

I When the scale symmetry is spontaneously broken at α = α1

or at ΛSB ∼ f , we should have a Nambu-Goldstone boson:

〈0|Dµ(x) |D(p)〉 = −ifpµe−ip·x ,

where the dilatation current Dµ = xνθµν .

I The scale symmetry is however anomalous:

∂µD
µ = θµµ .

(The energy-momentum tensor is that of UV theory.)
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A very light dilaton

I Consider WT identity:∫
x
∂µ 〈0|TDµ(x)θνν (y) |0〉 = 〈0|[D, θνν ] |0〉+

∫
x
〈0|T∂µDµ(x)θνν |0〉

−4 〈θνν 〉 ≈
∫
x ,p
〈0| ∂µDµ(x) |D(p)〉 i

p2 −m2
D

〈D(p)| θνν (y) |0〉
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PCDC and Very light dilaton

I Partially conserved dilatation current (PCDC) hypothesis:

f 2m2
D = −4

〈
θµµ
〉
≈ −16 Evac ∼ M4 .

⇡ �✓⌫⌫ (x) ✓⌫⌫ (y)
✓⌫⌫ (x) ✓⌫⌫ (y)

I Very light dilaton from quasi-conformal UV sector:

m2
D = −4 〈θνν 〉

f 2
∼ M4

Λ2
SB

� M2 .
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Dilaton effective theory

I If the scale symmetry is spontaneously broken, the theory is
described at low energy by the dilaton effective Lagrangian:

Leff
D =

1

2
∂µχ∂

µχ− VA(χ) ,

where χ = feσ/f describes the small fluctuations around the
asymetric vacuum,

θµµ ≈ 4Evac

(χ
f

)4
,

with 〈χ〉 = f at the vacuum.
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Dilaton effective theory

I The dilatation current in the dilaton effective theory becomes

Dµ =
∂Leff

D

∂(∂µχ)
(xν∂νχ+ χ)− xµLeff

D .

The scale anomaly then takes

∂µDµ = 4VA − χ
∂VA

∂χ
.

I Since ∂µDµ = −4θµµ = −16Evac(χ/f )4, we get

VA(χ) = |Evac|
(χ
f

)4 [
4 ln

(χ
f

)
− 1
]
.
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Dilaton effective theory

I Under the scale transformation M 7→ M ′ the effective theory
is covariant, since σ 7→ σ′ = σ + f ln(M ′/M) and

VA(σ)→ V ′A(σ) =
∣∣E ′vac

∣∣ e4σ/f

(
4σ

f
− 1

)
,

where E ′vac = Evac (M ′/M)4.

I In terms of the shifted dilaton field, σ′ = σ + f ln (M ′/M), the
dilaton potential becomes

V ′A(σ) = VA(σ′) = |Evac| e4σ′/f

(
4σ′

f
− 1

)
.
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SU(2)× SU(2) Composite Higgs model

I Since SU(2) spinors are pseudo-real, the chiral symmetry is
enhanced to SU(4)ψ × SU(2)χ:

ψ1
L

ψ2
L

iσ2ψ1∗
R

iσ2ψ2∗
R

 ,

(
χL

iσ2χ∗R

)

I
〈
ψ̄i
Lψ

i
R + h.c.

〉
6= 0 at α1(ΛSB) to break SU(4) 7→ Sp(4):

I There are 5 NG bosons, living on the vacuum manifold,

M = SU(4)/Sp(4) ∼ SO(6)/SO(5)
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SU(2)× SU(2) Composite Higgs model

I Embed SU(2)L ×U(1)Y into SO(5), the 5 NG bosons become
one Higgs doublet and one singlet scalar, η.

I The SM interaction lifts the vacuum degeneracy, U = e2iφ/fπ :
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Dilaton-Higgs coupling

SU(2)× SU(2) Composite Higgs model

I The Higgs potential becomes

V0(φ) = M2
φφ
†φ+ λ(M)

(
φ†φ
)2

+ · · · ,

I M2
φ = ξM2 with ξ ∼ αew or y2

t
4π and λ(M) ∼ αew or y2

t /(4π).

I We gauge U(1)ψ to remove the SM singlet Goldstone boson η
that gives a heavy vector meson, Mψ ∼ gψM.
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Composite Higgs model spectrum

I After the SU(4) chiral symmetry of ψ is broken, the SU(2)χ
chiral symmetry of χ{ab} will be broken to U(1)χ at E < M
and there will be two extra Goldstone bosons.

I To make them heavy and decouple, we identify
U(1)χ = U(1)em by assigning the electric charge to χ.

I The NG boson mass becomes ∼ eM and decouple at low
energy.
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Dilaton-Higgs coupling

I Since both Higgs boson and dilaton are from same dynamics,
they will couple:

0 =

∫
x
∂µ 〈0|T

{
Dµ(x)φ†φ(0)

}
|0〉

= 〈0|
[
D, φ†φ(0)

]
|0〉+

∫
x
〈0|T

{
θµµ(x)φ†φ(0)

}
|0〉 .

I In the second term we assume PCDC to get the dilaton
coupling,

e2σ/f φ†φ .
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scale symmetry
dark matter

Scale symmetry and naturalness

I The model has SM plus a very light dilaton with one heavy
vector and two massive scalars only below
M ≈ 10− 100 TeV, above which SM is UV complete!

LH =
1

2
e2σ/f ∂µσ∂

µσ + (Dµφ)† (Dµφ)− V (φ, σ) .

I The Higgs+dilaton potential below the cutoff scale Λ ∼ M is

V (σ, φ) = M2
φ e

2σ/f φ†φ+ λ
(
φ†φ
)2

+ VA(σ) + h.o. ,

VA(σ) = |Evac| e4σ/f

(
4σ

f
− 1

)
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scale symmetry
dark matter

Coleman-Weinberg mechanism and scale symmetry

I Now we further integrate out the higher frequency modes,
E > Λ, the effective potential at one-loop becomes:

Veff = VA+
(
M2
φe

2σ/f − c1Λ2
)
φ†φ+

β

8

(
φ†φ
)2
[

ln

(
φ†φ

v2
ew

)
− c2

]
.

I We impose the renormalization condition, after shifting
σ → σ′ = σ + σ̄0,

m2
φ(Λ) ≡ ∂2Veff

∂φ†∂φ

∣∣∣∣
φ=0=σ′

= M2
φe
−2σ̄0/f − c1Λ2 = 0 .
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scale symmetry
dark matter

Coleman-Weinberg mechanism and scale symmetry

I For any cutoff Λ we can choose σ̄0 or M such that quadratic
term in the potential vanishes at the origin:

∂2Veff

∂φ∂φ†

∣∣∣∣
σ=0=φ

= 0 .

I It is the only renormalization condition, consistent with the
scale symmetry.

I One can always shift σ → σ + σ̄0 to keep this condition.

24/33
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I It is the only renormalization condition, consistent with the
scale symmetry.

I One can always shift σ → σ + σ̄0 to keep this condition.
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Coleman-Weinberg mechanism and scale symmetry

I Then, the effective potential becomes

Veff(σ, φ) = M2
φ

(
e2σ/f − 1

)
φ†φ+ VCW(φ) + VA(σ) .

I At one-loop the CW potential takes

V 1−loop
CW (φ) =

1

2
β
(
φ†φ
)2
[

ln

(
φ†φ

v2
ew

)
− b

]
.
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Coleman-Weinberg mechanism and scale symmetry

I When the Higgs gets a vev, it breaks scale symmetry explicitly
and the dilaton gets extra contribution.

VD(σ) = |Evac| e4σ/f (4σ/f − 1)+VCW(vew)+M2
φ

(
e2σ/f − 1

)
v2

ew .
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Coleman-Weinberg mechanism and scale symmetry

I When the Higgs gets a vev, the dilaton also gets a vev

−〈σ〉
f
≈ M2v2

ew

8 |Evac|
� 1 .

I Higgs mass becomes with Evac = −cM4 and ξ = M2
φ/M

2

m2
H =

∂2

∂φ†∂φ
V (〈σ〉 , φ)

∣∣∣∣
φ=vew

=

(
ξ

4c
+
β

4

)
v2

ew .

I Because of the scale invariance the Higgs mass is determined
by the IR scale, set by the vev of Higgs fields, 〈φ〉 = vew.

I The scale symmetry of UV naturally explains why mH ∼ vew!
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Dark matter

I Our model consists of SM and one extra light scalar, dilaton,
below the UV scale M � vew.

I If the chiral symmetry is spontaneously broken near α∗, we do
have a very large separation of scales, M � ΛSB ∼ f , and
dilaton can be very light

m2
D =

4|Evac|
f 2

∼ M4

f 2
� M2 .
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Dark matter dilaton

I Decay of very light dilaton:

Γ(σ → γγ) ' α2
em

36π3

m3
D

f 2
|C|2

τD ' 1020 sec

(
5

C

)2(10 keV

mD

)3( f

1012 GeV

)2

.
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The relic abundance of dilaton

I The light dilatons are produced non-thermally by the vacuum
misalignment, θos = δσ/f

ρσ(Tos) =
∣∣VD(Tos)− Vmin

D

∣∣ ' M4 θos
2 .

I Follwoing Choi-DKH-Matsuzaki (2012), the density at present

ρD(T0) = ρD(Tos) ·
s(T0)

s(Tos)
.

The current relic density is given as

Ωntp
σ h2 ∼ 0.5

(
δσ

10−5f

)2( 110

g∗(Tos)

)(
M

10 TeV

)4(10 TeV

Tos

)3

.
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Very light dilaton as dark matter

I The UV scale of Higgs sector in our model has to be around
M = 10− 100 TeV for dilaton to be dark matter.

I The life time of dilaton τD ≥ 1018 sec and the relic abundance
Ωσh

2 ∼ 0.1 constrain

mD ∼ 1 eV − 10 keV and f ∼ 1012−16 GeV .
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Conclusion

I The SM is working very well. The properties of Higgs are
confirmed at percent level or better at LHC13 but not the
Higgs mechanism yet.

I No hint of NP is found yet at LHC, though we believe there
should be one above the electroweak scale.

I To solve the naturalness problem, we propose dilaton-assisted
composite Higgs model, where the Higgs mass is protected by
the shift symmetry and also by the scale symmetry.

I The model is based on SU(2)1 × SU(2)2 gauge theory with
Nf = 2 bi-fundamental and Ns = 1 second-rank symmetric
tensor Dirac spinors.
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Conclusion

I The UV theory is near the stable IR fixed point at the UV
scale of SM. (Its IR scale, mdyn ∼ M.)

I At very low energy E � M, the model contains SM and only
one extra particle, very light dilaton.

I In addition to light dilaton of mass mD ∼ 1 eV − 10 keV as
DM the model predicts just below M one heavy vector meson
and two massive, oppositely charged NG bosons, which might
be accessible at LHC if M is a few 10 TeV.

I Dilaton DM could be detected in the cavity experiments with
strong magnetic fields.

33/33



Introduction
Dilaton-Assisted Composite Higgs Model

Scale symmetry and Naturalness
Conclusion

conclusion

Conclusion

I The UV theory is near the stable IR fixed point at the UV
scale of SM. (Its IR scale, mdyn ∼ M.)

I At very low energy E � M, the model contains SM and only
one extra particle, very light dilaton.

I In addition to light dilaton of mass mD ∼ 1 eV − 10 keV as
DM the model predicts just below M one heavy vector meson
and two massive, oppositely charged NG bosons, which might
be accessible at LHC if M is a few 10 TeV.

I Dilaton DM could be detected in the cavity experiments with
strong magnetic fields.

33/33



Introduction
Dilaton-Assisted Composite Higgs Model

Scale symmetry and Naturalness
Conclusion

conclusion

Conclusion

I The UV theory is near the stable IR fixed point at the UV
scale of SM. (Its IR scale, mdyn ∼ M.)

I At very low energy E � M, the model contains SM and only
one extra particle, very light dilaton.

I In addition to light dilaton of mass mD ∼ 1 eV − 10 keV as
DM the model predicts just below M one heavy vector meson
and two massive, oppositely charged NG bosons, which might
be accessible at LHC if M is a few 10 TeV.

I Dilaton DM could be detected in the cavity experiments with
strong magnetic fields.

33/33



Introduction
Dilaton-Assisted Composite Higgs Model

Scale symmetry and Naturalness
Conclusion

conclusion

Conclusion

I The UV theory is near the stable IR fixed point at the UV
scale of SM. (Its IR scale, mdyn ∼ M.)

I At very low energy E � M, the model contains SM and only
one extra particle, very light dilaton.

I In addition to light dilaton of mass mD ∼ 1 eV − 10 keV as
DM the model predicts just below M one heavy vector meson
and two massive, oppositely charged NG bosons, which might
be accessible at LHC if M is a few 10 TeV.

I Dilaton DM could be detected in the cavity experiments with
strong magnetic fields.

33/33


	Introduction
	Introduction

	Dilaton-Assisted Composite Higgs Model
	Dilaton-Higgs coupling

	Scale symmetry and Naturalness
	scale symmetry
	dark matter

	Conclusion
	conclusion


