trip report

Workshop on interfacing
math software and
low level libraries

Enrico Guiraud, ROOT team

lﬁﬁ’ nthiery commented on Nov 23, 2017 « edited ~ Contributor

Workshop on interfacing (math) software with
low level libraries

Dates: April 30th-May 4th
Location: Cernay-la-Ville, near Paris, France

l @i nthiery commented on Nov 23, 2017 - edited ~ Contributor
¥
e

Workshop on interfacing (math) software with
low level libraries

Dates: April 30th-May 4th
Location: Cernay-la-Ville, near Paris, France

Math computational systems employ
e high level languages (e.g. Python) for expressivity, ease of use and prototyping
e Jow-level languages (e.g. C,C++) for performance, reusability

There are many existing different approaches to bind the two worlds together
The workshop brought together developers to share their expertise on this topic

Sponsored by opendreamkit, an Horizon2020 project that funds development of computational math software

Links to program, participants, shared workshop notes etc. are available here 3

https://opendreamkit.org/
https://ec.europa.eu/programmes/horizon2020/
https://github.com/OpenDreamKit/OpenDreamKit/issues/251

Who

~20 developers from
SageMath, CoCalc, pythran, cython, numba, QuantStack, DIANA, ROOT, ...
full list here

How

very informal setting: a farmhouse in the countryside

participants took turns cooking/serving food

most people slept in shared rooms, one or two camped in the garden
first round of per-project presentations

then spontaneous formation of work groups, projects

regular plenaries with project updates during the whole week

http://www.sagemath.org/
https://cocalc.com/
https://github.com/serge-sans-paille/pythran
http://cython.org/
https://numba.pydata.org/
http://quantstack.net/
http://diana-hep.org/
https://root.cern.ch/
https://annuel2.framapad.org/p/opendreamkit-cernay-2019-participants

Sharing my experience: ROOT::RDataFrame

"low-to-high-level” development:
e build C++ library, make it easy to extend in C++

#include <ROOT/RDataFrame.hxx>

ROOT: :EnableImplicitMT () ;

auto df = ROOT: :MakeDataFrame("data/*.root");

auto rHist = tdf. ([J(float x) { return x > .55 }, {"x"})
(llrll, Sqrtsumsqr, {llxll,llyll})
<float>("r");

full presentation here

https://docs.google.com/presentation/d/1C_xRrISJAwd5xxusHtfV163y9uTNxUC4anfAn5Erl9c/edit?usp=sharing

Sharing my experience: ROOT::RDataFrame

"low-to-high-level” development:

e build C++ library, make it easy to extend in C++
® automatic generation of python bindings via pyROOT, cling

ROOT
ROOT.EnableImplicitMT();
df = ROOT.MakeDataFrame('"data/*.root")
rHist = tdf. ("x > .5")
("r'y Usgrt(xxx o+ yxy)")
(1" I,-ll)

full presentation here

https://docs.google.com/presentation/d/1C_xRrISJAwd5xxusHtfV163y9uTNxUC4anfAn5Erl9c/edit?usp=sharing

Sharing my experience: ROOT::RDataFrame

"low-to-high-level” development:

e build C++ library, make it easy to extend in C++
e automatic generation of python bindings via pyROOT, cling
e augment user experience with SWAN notebooks

*— [cernboxl EOS I cvmfs }

: ROOT.EnableImplicitMT();

In []: df = ROOT.MakeDataFrame("data/*.root");

In []: rHist = tdf.Filter("x > 0").Define("r", "sqrt(x*x + y*y)").HistolD("r");

- [bous | bomen | spanc | concor |

full presentation here

https://docs.google.com/presentation/d/1C_xRrISJAwd5xxusHtfV163y9uTNxUC4anfAn5Erl9c/edit?usp=sharing

What the audience heard...

eeeeeeeeeeeeeeeeeee

AUTOMATIC
GENERATION OF
PYTHON
BINDINGS

eeeeeeeeeeeeeeeeeee

AUTOMATIC
GENERATION OF
PYTHON nded p preparn
BINDINGS 7.

https://github.com/bluehood/cppyy_tutorial

Python bindings 1/3

user writes: python
dev writes: python

numba L

for python users and library developers who want C speed at zero cost

jit subset of python (numpy, if, for, numerical computations) to LLVM IR to binary
jit only when arguments are passed to the function to optimize for argument types
generate C code that can be called from python code

@numba.jit(nopython=True, nogil=True)
def sum2d(arr):

M, N = arr.shape

result = 0.0

for i in range(M):

for j in range(N):
result += arr[i,]]
return result

more on numba e.g. at this past DIANA topical meeting 12

https://indico.cern.ch/event/709711/

Python bindings 2/3

user writes: cython
Cyth on [dev writes: cython }

a programming language that looks like python with C type annotations

a compiler for this language to C-with-python-bindings

for python library developers who need to speed up part of them: compile
functions to binary and expose them as C symbols

for python users which need to speed-up hot loops that numba cannot handle
for intermixing C (or a subset of C++) with python, when writing python

can be used to call into existing C libraries

Generated by Cython 0.28

Yellow lines hint at Python interaction.
Click on a line that starts with a "+" to see the C
code that Cython generated for it.

Raw output: example.c

+01: def primes(int nb primes):

02: cdef int n, i, len p
03: cdef int p[1000]
+04: if nb primes > 1000: 13

+05: nb primes = 1000

Python bindings 3/3

user writes: python 1

CPPYY L dev writes: C++

for developers of C++ libraries that want to expose them from python
automatic, lazy generation of bindings

leverages cling'’s reflection to inspect C++ objects and callables

and create their “equivalents” in python

very fast thanks to usage of FFI rather than jit compilation

cppyy.cppdef ("""
struct Integer {

Integer(int i) : num(i) {}

int num; :
private: can also import .so
. B or parse header
int p_num = -1;

I
IIIIII)
from cppyy.gbl import Integer

ml = Integer(42) 14

QuantStack: a modern C++ software stack

for quantitative analysis

in all these languages

loading data (in full

or in batches) from

whatever backend
storage

15

recently founded startup of ~4 devs

jokes about demo-driven development, but already a lot of meat

offer a performant software stack in C++ and bindings in python, julia and R
xtensor would become the lingua franca for multi-dimensional arrays

7

in-memory data structure

\

N

\L

xtensor. expression
system to manipulate n-d
arrays

J
)

J

Vs

&

high-level operations
between labeled data

o\

J

_

xframe: expression
system to manipulate
n-d tables (collections

of labeled arrays)

J

[interactive dev & viz]

xeus-cling: c++ jupyter
notebook

efficient computation

Y
J\

xsimd: vectorized
algorithms

http://quantstack.net/

QuantStack: bits and pieces 1/2

xtensor: numpy-like C++ n-dimensional array C++ jupyter kernel with widgets and live docs
File Edit View Insert Cell Kernel Widgets Help Trusted \C-«M (@]
xt: :xarray<double> arrl
{1.0, 2.0, 3.0};
xt::xarray<unsigned int> arr2 in [1]4 [SEFATAYRC OT
14, 5, 6, 7}; e 1
arr2.reshape({4, 1});
xt::xarray<double> res xt::pow(arrl,
cout res;
16, 81},
32, 243}, sce 2
64 72 9% - cppreference.com Create account
1 2 -, ‘2 1 8 7 } } Page Discussion View

C++ Containers library std::vector

std::vector

Defined in header <vector>
template<
class T, m
class Allocator = std::allocator<T>
> class vector;

namespace pmr {
16 template <class T> ;e
usina vector = std::vector<T. std::omr::nolvmornphic allacator<T>>: (2) (since’Cark7)

QuantStack: bits and pieces 2/2

np.sum(a, axis=[0,
np.sum(a)
np.prod(a, axis=1)
np.prod(a)
np.mean(a, axis=1)
np.mean(a)

np.trapz(a, dx=2.0,

numpy to xtensor cheat-sheet

Python 3 - numpy C++ 14 - xtensor

11)

axis=-1)

xt::isum(a, {0, 1})

xt::sum(a)

xt::prod(a, {1})

xt::prod(a)

xt::mean(a, {1})

xt::mean(a)

np.trapz(a, x=b, axis=-1) xt::trapz(a, 2.0, -1) xt::trapz(a, b, -1)

xleaflet widget for C++ jupyter kernel

*

auto right_layer = xleaflet

auto left layer = xleaflet

hpp
:_layer.hpp
layer.hpp

auto map = xleaflet::map_generator()

.center({50, 354})
+zoom(5)
.finalize(); I

map

tile_layer_generator()
.url("https://mapl.vis.earthdat .gov/s
.name ("NASAGIBS .ModisTerraTrueColorCR")
.attribution("Imagery provided by services from the Global Imagery Browse Services (GIBS), ¢
.max_zoom(9)

.finalize();

MODIS_Terra_CorrectedReflectance_Tru¢

ile_layer_generator()
.url("https://cartodb-basemaps-{s}.global.ssl.fastly.net/light_all/{z}/{x}/{y}.png")
.finalize();

auto control = xleaflet::split_map_control_generator()

.left_layer(left_layer)
.right_layer(right_layer)
.finalize();

map.add_control (control)

17

OAMap

object € array mapping

developed by Jim Pivarski as part of the DIANA project

a generalization of the AOS & SOA concept

and of ROOT's object splitting in columnar storage

a programming model that lets users express their algorithms in a OO fashion
and then transforms them in low-level, efficient, vectorized code

the end result is a high-level analysis API

which compiles down to very efficient vectorized data access

data format

ROOT, Parquet,
or HDF5

user’s OO code

execution of

OAMap’ed code] numba compilation,
vectorized binary

el.px + el.py] [px_vec + py_vec]

18

https://github.com/diana-hep/oamap

Conclusions

very interesting to see what's out of our bubble in terms of scientific
software (who knew, some people actually use Julial)

learned a lot on C, C++ python bindings

world can benefit from our experience with unique technologies:

cling, pyROOT, SWAN, ...

some interesting things out there (e.g. xtensor, xeus-cling):

how can we benefit from them, as ROOT team and as EP-SFT in general?

Side-effects

e Dbetter template support in upstream cppyy

e QuantStack CEO is coming to the ROOT workshop

e project libsemigroups’ switched from cython to cppyy bindings
o better support for function aliases in upstream cppyy

e CoCalc now includes support for ROOT v6.12

19

