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Lecture Topics

'« Recap of last time
— What 1s Machine Learning

— Linear Regression

— Logistic Regression

— Over fitting and Regularization
— Training procedures

— Gradient descent

e This Lecture

— Neural Networks
— Decision Trees and Ensemble Methods

— Unsupervised Learning
* Dimensionality reduction
* Clustering

— No Free Lunch and some Practical Advice




Neural Networks




Reminder of Logistic Regression /

* Input output pairs {x,, y;}, with

— Yi €10,1}
* Linear decision boundary h(x;w) = w!x
h(x) >0 o1
h(x) = 0 ~
X) <O 1
h(x) R .
([ ] ([ ] ¢ Py
® o9
o ° , X
" / h(x)
7wl
° ®
o 4 XL
O

[Bishop]



Reminder of Logistic Regression

* Input output pairs {x,, y;}, with

— ¥ € 10,1}

* Linear decision boundary

* Distance from decision boundary  p(y = 1|x)
1s converted to class probability
using logistic sigmoid function

Logistic Sigmoid
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Logistic Regression




Adding non-linearity /

* What if we want a non-linear decision boundary?



Adding non-linearity

* What if we want a non-linear decision boundary?

— Choose basis functions, e.g:  ¢(x) ~ {x?, sin(x), log(x), ...

1

py = 1|x) =

1+ e_WT¢(X)




Adding non-linearity /

* What if we want a non-linear decision boundary?
— Choose basis functions, e.g:  ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

e What it we don’t know what basis functions we want?



Adding non-linearity A

* What if we want a non-linear decision boundary?
— Choose basis functions, e.g:  ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
e What it we don’t know what basis functions we want?
* Learn the basis functions directly from data

d(x;u)  RT— R

— Where u is a set of parameters for the transtormation



Adding non-linearity

* What if we want a non-linear decision boundary?
— Choose basis functions, e.g:  ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

ply = 1x) =
* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data
d(x;u)  RT— R
— Where u is a set of parameters for the transtormation

— Combines basis selection and learning
— Several difterent approaches, focus here on neural networks
— Complicates the optimization



Neural Networks

* Define the basis functions j = {1...d}

(I)J-(X; u) = G(uJ-TX)



Neural Networks

* Define the basis functions j = {1...d}

(I)J-(X; u) = G(uJ-TX)

e Putall u; € RIXM yectors into matrix U

G(ulTx)_

d(x; U) = g(Ux) = |olwX e R4

G(u(;Tx)

— G 1s a point-wise sigmold acting on each vector element

.



Neural Networks

S

* Define the basis functions j = {1...d}

(I)J-(X; u) = G(uJ-TX)

e Putall u; € RIXM yectors into matrix U

G(ulTx)—

d(x; U) = g(Ux) = |olwX e R4

G(u(;Tx)

— G 1s a point-wise sigmold acting on each vector element

 Full model becomes
h(x; w, U) = wlo(x; U)



Feed Forward Neural Network A

— Hidden layer

Composed of neurons

¢(...) often called the
activation function




Multi-layer Neural Network

* Multilayer NN

— Each layer adapts basis functions based on previous

layer



Universal approximation theorem /

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R"

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others



Universal approximation theorem A

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R"

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others

* But no information on how many neurons needed, or
how much data!



Universal approximation theorem A

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R"

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others

* But no information on how many neurons needed, or
how much data!

* How to find the parameters, given a dataset, to
perform this approximation?



Neural Network Optimization Problem A

* Neural Network Model:  h(x) = w! o (Ux)

* Classification: Cross-entropy loss function

pi = p(yi = 1]x;) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)



Neural Network Optimization Problem /
* Neural Network Model:  h(x) = w! o (Ux)

* Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)

* Regression: Square error loss function

1

L(w,U) = > 3" (5 — h(x))’

1



Neural Network Optimization Problem A
* Neural Network Model:  h(x) = w! o (Ux)

* Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = 5 3 (i — h(x,))?

1

* Minimize loss with respect to weights w, U



Gradient Descent

.

* Minimize loss by repeated gradient steps

OL(w)
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— Compute gradient w.r.t. parameters:

— Update parameters: w’ <~ w — 7
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Gradient Descent

* Minimize loss by repeated gradient steps

— COmpute gradient w.r.t. parameters: aL_(W)
Oow
OL
— Update parameters: w’ <~ w — 7 (‘)(W)
W

* Now we need gradients w.r.t. w and U
* Gradients will depend on loss and network architecture
e J.oss function 1s non-convex

— Gradient descent may get stuck
In non-optimal stationary point 0

— Can be a major issue!

— Variants of stochastic gradient descent N p
can be helpful! \ ]

-1 1



Chain Rule

— Zyi In(o(h(x;))) + (1 —y;) In(1 — o(h(x;)))

* Derivative of sigmoid: do(z) _ o(z)(1 —o(z))

ox

* Chain rule to compute gradient w.r.t. w

ngv - gi gv}:r Zy@ (1 = o(h(x)))o(Ux) + (1 — y;)o(h(x))o(Ux;)

* Chain rule to compute gradient w.r.t. u.

J
OL  OLOh 8o
811]' B Oh Oo (911j B

= w1 — o (hx))wjo(wyax) (1 — o (wja))x;

+ (1 = gi)o(h(x))wjo (uxi) (1 — o(u;x;))x;




Backpropagation A

* Loss function composed ot layers of nonlinearity

LN (... (x)) )




Backpropagation /

* Loss function composed ot layers of nonlinearity

L(pVN(...9'(x)) )
* Forward step (f-prop)

— Compute and save intermediate computations

PN (.. 91 (0)



Backpropagation A

* Loss function composed ot layers of nonlinearity

L(pVN(...9'(x)) )
* Forward step (f-prop)

— Compute and save intermediate computations

PN (.. 91 (0)

* Backward step (b-prop) oL :Z j OL



Backpropagation A

* Loss function composed ot layers of nonlinearity

L(pVN(...9'(x)) )
* Forward step (f-prop)

— Compute and save intermediate computations

" (-9 (1))
* Backward step (b-prop) 0L _Zﬁcbf,-a“) OL
00— S 00 gl

_ oL
* Compute parameter gradients 3o = Z Hw Dol




. Training A

* Repeat gradient update of weights to reduce loss

— Each 1teration through dataset 1s called an epoch

* Use validation set to examine for overtraining, and
determine when to stop training

O Training O Validation
0.5
0.4 underfitting overfitting
0.3
0.2
0.1
0.0

number of epochs
[graphic from H. Larochelle]



Regularization /

* L2 regularization: add QQ(w) = | |[w]| |? to loss
— Also called “weight decay”

— Gausslan prior on weights, keep weights from getting too
large and saturating activation function

* Regularization inside network, example: Dropout
— Randomly remove nodes during training
— Avoid co-adaptation of nodes
— Essentially a large model averaging procedure

a) Standard Neural Net (b) After applying dropout. arXiv:1207.0580



Activation Functions A

T

............................................................................................................

.......................................................

1/(1+4€")
tanh(x)

1 I 1 1 1
-3 -2 -1 0 1 2 3

* Vanishing gradient problem * Rectified Linear Unit (ReLU)

— Derivative of sigmoid: — ReLU(x) = max{o, x}
90 (x — Derivative 1s constant!
W~ o)1-otx)
ox oReLU(x) | 1 whenx>0
— Nearly 0 when x 1s far from 0! 0x 0 otherwise

— Gradient descent difficult! — ReLU gradient doesn’t vanish



Neural Network Decision Boundaries g
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http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/

4-class classification
2-hidden layer NN
RelLU activations

L2 norm regularization
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2-class classification
1-hidden layer NN
L2 norm regularization

http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r



http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Deep Neural Networks

S

hidden laver 1

input laver

hidden laver 2

hidden laver 3

— - -—.ﬁ_—— _——
e N e N 2 ¥ output layer
Z=a @ e\ @ Tae
— ¥ --__-.U_-__— T
* As data complexity grows, need exponentially large number of neurons in
a single-hidden-layer network to capture all the structure in the data
* Deep neural networks have many hidden layers
— Factorize the learning of structure in the data across many layers
([ ]

Difficult to train, only recently possible with large datasets, tast computing

(GPU) and new training procedures / network structures (hke dropout)



Neural Network Architectures

e Structure of the networks, and

the node connectivity can be
adapted for problem at hand

Moving inductive bias from
feature engineering to machine

learning (neural network) model

design

— Inductive bias:
Knowledge about the problem

— Feature engineering:
Hand crafted variables

— Model design:

The data representation and the

structure of the machine
learning model / network

O Backfed Input Cell
Input Cell

/A Noisy Input Cell

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Perceptron (P)

Feed Forward (FF)

Radial Basis Network (RBF)

Deep Feed Forward (DFF)
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Liquid State Machine (LSM)  Extreme Learning Machine (ELM) Echo State Network (ESN)

g

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)
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http://www.asimovinstitute.org/neural-network-zoo/

Generative Adversarial Network (GAN)
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http://www.asimovinstitute.org/neural-network-zoo/

Convolutions A

e Convolutions: x € RMand kernel u € R¥

discrete convolution x * u 1s vector of size M-k+1
k—1

(x xu); = z Xi+pUp

b=0

Input

Output

M-k+1 [Fleuret]



Convolutions /

* Kernels are “scanned” across input, picking up local
pattern learned by the weights

— Shared weights of neurons, but each neuron only takes
subset ot inputs

— Insensitive to translations of the features the kernel is
activated by

— “Tled weights” reduced total number of parameters

[Bishop]
Input
Output

/ 4

Sub-sampling <

Input image Convolutional layer layer [Fleuret]



Convolutional Neural Networks

.

* Chain together with non-linearities and down-sampling (e.g. max-

pooling)

* After processing with convolutions, use fully connected layers for

classification

* Structure allows for capturing local structure in convolutions, and
long range structure in later stage convolutions and in fully

connected layers

VGGNet
5 56
28 x 28 x 512 TxTx512
f W%L‘ 1x1x4096 1 x |! l()()ll
@ convolution+ReLU

{1 max pooling
- fully connected+ReLU
| softmax

(Simonyan and Zisserman, 2014)

Low-Level [ Mid-Level
Feature Feature

High-Level
Feature

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Ferqus 2013]



Neural Networks in HEP

39

Jets at the LHC

ATLAS

EXPERIMENT

ent Number: 17

3D schematic of
NOVA particle detector

Neutrino
m
Fermilab

Neutrino identification
Example: NOVA

View from the top Particle 1

Interaction
Point
Particle 2
= = = =
.......... - -
Neutrino
from Particle 3
Fermilab
PVC cell filled with
liquid scintillator
View from the side Particle 2
=
=
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Fermilab

1 meter

Particle 3



What do neural networks learn? A

Can visualize weights: neutrino decay classification

arXiv:1604.01444
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https://arxiv.org/abs/1511.05190
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* Find inputs that T T
most activate a ﬂi g!-‘i |
neuron: )
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— Separating boosted

W-jets from Fa b
quark/gluon jets : " |



https://arxiv.org/abs/1511.05190

Decision Tree Models

S




Decision Trees

S

no

A
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>
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* Partition data based on a sequence of thresholds

* In a given partition, estimate the class probability from N  examples

in partition m and N, of the examples in partition from class £:
N,
N,

Pmk —



Single Decision Trees: Pros and Cons A

* Pros:
— Simple to understand, can visualize a tree

— Requires little data preparation, and can use continuous
and categorical inputs

* Cons:
— Can create complex models that overtit data
— Can be unstable to small variations in data

— Training a tree 1s an NP-complete problem
* Hard to find a global optimum of all data partitionings

* Have to use heuristics like greedy optimization where locally
optimal decisions are made

* We will discuss the ways to overcome these Cons,
including early stopping of training, and ensembles



Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting



Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N examples in a node, for a candidate
splitting 0= (x ) for feature x; and threshold t,,

it



Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N examples in a node, for a candidate

splitting (B (%, t,,) for feature x; and threshold t,,

* If data partitioned into subsets Q,,, and Q
compute:

G(Q.0) = S H(Quen(0)) + 22 H Qg (6)

right »

— Where H() 1s an impurity function



Greedy Training of a Decision Tree /

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N examples in a node, for a candidate

splitting (B (x;, t,,) tor teature x; and threshold t,,

* If data partitioned into subsets Q,,, and Q
compute:

G(Q.0) = S H(Quen(0)) + 22 H Qg (6)

right »

— Where H() 1s an impurity function

* Choose splitting 0 using: 0* = arg m@in G(Q,0)



Impurity Functions A

e (lassification

: : N
— Proportion of class kin node m:  ppi, = N—k

— Gini: H(Xm) — mek<1 - pmk)
k
— Cross entropy: H(Xpm) ==Y _ pmk 108(pmr)
k
— Miss-classification: H(X,)=1- m}?X(pmk)
* Regression .
— Continuous target y, In region estimate:  Cm = N Yi
i€Nm
— Square error: H(X,,) = L Z (yi — cm)?



When to stop splitting? A

* In principle, can keep splitting until every event 1s

properly classified...



When to stop splitting? A

* In principle, can keep splitting until every event 1s

properly classified...

Variable 2

5 - [Rogozhnikov]
Variable 1
* Single decision trees can quickly overfit

* Especially when increasing the depth of the tree



When to stop splitting? A

* In principle, can keep splitting until every event 1s

properly classified...

* Can stop splitting early. Many criteria:
— Fixed tree depth
— Information gain 1s not enough
— F1x minimum samples needed in node

— F1x minimum number ot samples needed to split node

— Combinations of these rules work as well



Mitigating Overfitting

05 10 -1 I ) 05 10

no pre-stopping max_depth

00 05 10 15 -10 -05 00 05 10 15

min # of samples in leaf maximal number of leaves

[Rogozhnikov]



Ensemble Methods A

e Can we reduce the variance of a model without
Increasing the bias?



Ensemble Methods A

e Can we reduce the variance of a model without
Increasing the bias?

* Yes! By training several slightly different models
and taking majority vote or average prediction

— Bias does not largely increase because the average
ensemble performance 1s equal to the average of 1ts
members

— Variance decreases because a spurious pattern picked

up by one model may not be picked up by other



Ensemble Methods A

Individual Models Average Model

Green = true function

6 1 0 1 [Bishop]

* Combining several weak learners (only small correlation
with target value) with high variance can be extremely
powerful

e (Can be used with decision trees to overcome their
problems of overtfitting!



Bagging and Boosting A
* Bootstrap Aggregating (Bagging):

— Sample dataset D with replacement N-times, and train a
separate model on each derived training set

— Classify example with majority vote, or compute average
output from each tree as model output

* Boosting:
— Train N models 1n sequence, giving more weight to
examples not correctly classified by previous models

— Take weighted vote to classity examples N,
h _ Zizl ol (X)
(X) o Nt'rees
— Boosting algorithms include: 21"

AdaBoost, Gradient boost, XGBoost



Random Forest %

* One of the most commonly used algorithms in
industry 1s the Random Forest

— Use bagging to select random example subset

— Train a tree, but only use random subset of features
(\/m features) at each split. This increases the variance



Ensembles of Trees

B Tree Ensembles
tend to work well

— Relatively simple e o

e Bares
.g:'. “

— Relatively easy to
train

— Tend not to overfit  4a¢a
(especially random
forests)

— Work with difterent
feature types:
continuous,
categorical, etc.

50 trees 2000 trees

Random Forest [Rogozhnikov]



CMS h—yy (8 TeV)

— Boosted decision tree
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Decision Tree Ensembles in HEP

60

* Decision tree ensembles,
especlally with boosting, are
used very widely in HEP!
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https://arxiv.org/abs/1512.05955

Unsupervised Learning

S

* Learning without targets/labels,
find structure 1n data



Dimensionality Reduction

* Find a low dimensional (less complex)

representation of the data with a mapping
Z=h(X)



Principle Components Analysis A

* Given data {x.}._, ycan we find a directions in
features space that explain most variation of data?



Principle Components Analysis A

* Given data {x.}._, ycan we find a directions in
features space that explain most variation of data?

. i~
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Principle Components Analysis

A

* Given data {x.}._, ycan we find a directions in
features space that explain most variation ot data?

: 1 _ _
* Data covariance: S = Nz(xi —xX)(x; —x)T
i=1

Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A
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Principle Components Analysis A

* Given data {x.}._, ycan we find a directions in
features space that explain most variation ot data?

: 1 _ _
* Data covariance: S = Nz(xi —xX)(x; —x)T
i=1

* Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A

A

| | \

u} = argmax ul Su; + )\(1 —uluy)
uj

— Sll1 — )\111

. Princz])le components are the eigenvectors of the data
covariance matrix!

— Elgenvalues are the variance explained by that component



PCA Example

[Ng]



PCA Example

A

First principle component, projects on to this axis have large variance

[Ng]



PCA Example
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Second principle component, projects have small variance

[Ng]



Clustering




Clustering /

* Partition the data into groups D={D, U D, ... U D}

* What 1s a good clustering?

* One where examples within a cluster are more “similar” than to
examples in other clusters

* What does similar mean? Use distance metric, e.g.

d(x,x") = \/Z(x — )2




KR-means /

* Data x; € R™ which you want placed in R clusters

* Assoclate each example to a cluster by minimizing
within-class variance
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KR-means A

* Data x; € R™ which you want placed in R clusters

* Assoclate each example to a cluster by minimizing
within-class variance

— G1ve each cluster S, a prototype p, € R™ where k=1...K

— Assign each example to a cluster S,



KR-means %

* Data x; € R™ which you want placed in R clusters

* Assoclate each example to a cluster by minimizing
within-class variance

— G1ve each cluster S, a prototype p, € R™ where k=1...K
— Assign each example to a cluster S,

— Find prototypes and assignments to minimize

L(S, ) =) > V(xi— )

k=11€S5

* This 1s an NP-hard problem, with many local minimum!



K-means algorithm A

* Initialize the p, at random (typically using K-means++ 1nitialization)

* Repeat until convergence:

— Assi h le to closest protot min X; — Uk)?
SSlgn eacC exampe O CloSeS pro pre kE{lK} \/( 1 lu‘k)

1
— Update prototypes [ = — E X
ng .
1E€SL

[Bishop]



Practical Advice




What To Use? So Many Choices

* Once you know what you want to do...

WHAT algorithm should you use?
— Linear model

— Nearest Neighbors

— (Deep?) Neural network

— Decision tree ensemble

— Support vector machine

— Gaussian processes

— ... and so many more ...



No Free Lunch - Wolpert (1996) A

* In the absence of prior knowledge, there 1s no a priori
distinction between algorithms, no algorithm that will
work best for every supervised learning problem

— You can not say algorithm X will be better without knowing
about the system

— A model may work really well on one problem, and really
poorly on another

— This 1s why data scientists have to try lots of algorithmsl!

* But there are some empirical heuristics that have been
observed...



Practical Advice — Empirical Analysis A

* Test 179 classifiers (no deep neural networks) on 121 datasets
http://jmlr.csail.mit.edu/papers/volumel5/delgado14a/delgado14a.pdf

— The classifiers most likely to be the bests are the random forest (RF) versions,
the best of which (...) achieves 94.1% of the maximum accuracy
overcoming 90% in the 84.83% of the data sets

From Kaggle

* For Structured data: “High level” features that have meaning

— Winning algorithms have been lots of feature engineering + random
forests, or more recently XGBoost (also a decision tree based
algorithm)

* Unstructured data: “Low level” features, no individual meaning

— Winning algorithms have been deep learning based, Convolutional
NN for image classification, and Recurrent NN for text and speech



http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf

Conclusions A

* Machine learning uses mathematical and statistical models
learned from data to characterize patterns and relations between
inputs, and use this for inference / prediction

* Machine learning provides a powerful toolkit to analyze data
— Linear methods can help greatly in understanding data

— Complex models like NN and decision trees can model intricate
patterns

* Care needed to train them and ensure they don’t overtit

— Unsupervised learning can provide powerful tools to understand data,
even when no labels are available

— Choosing a model for a given problem is difficult, but there may be
some guldance 1n the literature

* Keep in mind the bias-variance tradeoff when building an ML model

* Deep learning is an exciting frontier and powertul paradigm in
ML research



Useful Python ML software

A

Anaconda / Conda — easy to setup python ML / scientific computing
environments

— https://www.continuum.io/downloads
— http://conda.pydata.org/docs/get-started.html

Integrating ROOT / PyROOT into conda

— https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html
— https://conda.anaconda.org/NLeSC

Converting ROOT trees to python numpy arrays / panda dataframes

AAAAA

— https://github.com/ibab/root pandas

Scikit-learn — general ML library
— http://scikit-learn.org/stable/

Deep learning frameworks / auto-difterentiation packages
— https://www.tensorflow.org/
— http://deeplearning.net/software/theano/

High level deep learning package build on top of Theano / Tensorflow
— https://keras.io/



https://www.continuum.io/downloads
http://conda.pydata.org/docs/get-started.html
https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html
https://conda.anaconda.org/NLeSC
https://pypi.python.org/pypi/root_numpy/
https://github.com/ibab/root_pandas
http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://keras.io/
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Example
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* Classitying hand written digits
— 10-class classification

— Right plot shows projection of 10-class output onto

dimensions
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Error Analysis

A

* Anti-spam classifier using logistic regression.

* How much did each component of the system help?

* Remove each component one at a time to see how 1t

breaks

Component Accuracy
Overall system 99.9%
Spelling correction 99.0
Sender host features 98.9%
Email header features 98.9%
Email text parser features 95%
Javascript parser 94.5%
Features from images 94.0%

Removing text parser
— caused largest drop
in performance

[baseline]



Ensemble Methods A

* Combine many decision trees, use the ensemble for prediction

Ntree
* Averaging: D(x)= 1 E d.(x)
tree i=1

— Random Forest, averaging combined with:

* Bagging: Only use a subset of events for each tree training
* Feature subsets: Only use a subset of features for each tree

N,

free

* Boosting (weighted voting): D(x)= E a.d.(x)
i=1
— Weight computed such that events in
current tree have higher weight misclassified in previous trees

— Several boosting algorithms
e AdaBoost

* Gradient Boosting
e XGBoost



Non-Linear Activations A

e The activation function in the NN must be a non-linear function
— It all the activations were linear, the network would be linear:

fX)=W (W, (... W, X))=UX,  where U =IL W,

* Linear functions can only correctly classity linearly separable data!

* For complex datasets, need nonlinearities to properly learn data
structure

Linear Classifier Non-linear Classifier



Neural Networks and Local Minima A

* Large NN’s difficult to train...trapping in local minimum?

* Not in large neural networks haups//arxivorg/abs/1412.0233

— Most local minima equivalent, and resonable
— Global minima may represent overtraining

— Most bad (high error) critical points are saddle points (different
than small NN’s)


https://arxiv.org/abs/1412.0233

Weight Initializations and Training Procedures A

» Used to set weights to some small
initial value

— Creates an almost linear classifier

* Now initialize such that node outputs
are normally distributed

X, —>
* Pre-training with auto-encoder % >
— Network reproduces the inputs 2 )—>

— Hidden layer 1s a non-linear A I hy(x)

dimensionality reduction
— Learn important features ot the input

X —>

Xs —>

— Not as common anymore, except n
certaln circumstances...

Layer L, Layer L3

* Adversarial training, invented 2014
— Will potential HEP applications later



ReLLU Networks A

Output

Hidden layer 2

Hidden layer 1

Input

http://www.jmlr.org/proceedings/papers/v15/glorotlla/glorotlla.pdf

* Sparse propagation of activations and gradients in a network of rectifier
units. The input selects a subset of active neurons and computation is
linear in this subset.

* Model is “linear-by-parts”, and can thus be seen as an exponential
number of linear models that share parameters

* Non-linearity in model comes from path selection


http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf

Convolutions 1n 2D A

Stride = 1

D=4 Shared weights!!!
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* Scan the filters over the 2D 1mage, producing the
convolved 1mages



average over a region of Inputs

— Keep only the most useful information

Max Pooling A

| —

. —

]

T .

EEEE 1T
T |

1111111 Max Pooling
Layer N Layer N+1
* Down-sample the input by taking MAX or



Daya Bay




Daya Bay Neutrino Experiment . A
| arXiv:1601.07621 |

* Aim to reconstruct inverse 3-decay interactions from
scintillation light recorded in 8x24 PM'T"s

* Study discrimination power using CNN'’s

— Supervised learning — observed excellent performance (97%
accuracy)

— Unsupervised learning: ML learns itselt what 1s interesting!

2D distant preserving representation of
10D encoding of events

«—— Reconstructed inputs
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Jet-Images




Restricted phase space
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Deep correlation jet images
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Recurrent Neural Networks

A




Recurrent Neural Networks 10

* What it our data doesn’t have a fixed size? How
do we process a variable length set of nputs

* More specifically, what 1t our data 1s sequence

like? -
Xp = A0 X] X = X

— Natural language text
— time-series data, like financial data

— Ordered sets of particles, e.g. tracks in a jet



Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks

[0.98] = Positive Sentiment
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[Fleuret]



Recurrent Neural Networks
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Recurrent Neural Networks

le film était genial
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Translation



Recurrent Neural Networks

* In practice, a simple

8t =

Ot =

non-linearity 1s very =
hard to deal with o
— Hard to train he =

— Hard to retain
Information across
long sequences

* Utilize Gating

— Long Short Term
Memory (LSTM)

— Gated Recurrent
Unit (GRU

fr =

sigm (W(x nxt + Wi gyhe—1 + b(f)) (forget gate)

sigm (W Xt + Win iyhe—1 + b)) (input gate)

tanh (W(X Xt + W ¢phe—1 + b(c)) (full cell state update)

fOcG_1+irOgt (cell state)

sigm (W(x o)Xt + Wi oyht—1 + b(o)) (output gate)

o ® tanh(c;) (output state)
Lt Lt

Figure 2: Long Short-term Memory Cell



Bottom Quark Decays 1o

1 centimeter

0.4 inches

1 centimeter

0.4 inches

1

142195, Event Number: 284154
Date: 2009-12-12 12:24:43 PST

typical jet from typical jet from

up quark bottomquark

V4 “secondary” Secondary

[ vertex where b Vertex

b hadron

’ decayed )
collision point collision point
M. Strassler 2012
* Goal: Discriminate b-jets from non-b-jets Primary

Vertex

* Track based taggers: p(jet flavor | tracks in jet)
— Dimensionality too high for easy density estimation
— Often make naive Bayes assumption that tracks independent!




RNN b-tagging
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Fisher Discriminant

* Suppose our {X;, y;};—, 18 separated in two classes,
we want a projection to maximize the separation
between the two classes.



Fisher Discriminant

* Suppose our {X;, y;};—, 18 separated in two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large between-class variation

SB — (m2 — ml)T(mQ — ml)



Fisher Discriminant 1

* Suppose our {X;, y;};—, 18 separated in two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large between-class variation
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— Want each class tightly clustered, as little overlap as
possible — small within-class variation

SW: Z(Xz'—ml) X; — 114 —I—Z —m2 Xi—mg)

ey 1€(Co



Fisher Discriminant 1

* Suppose our {X;, y;};—, 18 separated in two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large between-class variation

SB — (m2 — ml)T(mQ — ml)

— Want each class tightly clustered, as little overlap as
possible — small within-class variation

SW: Z(Xz'—ml) X; — 114 —I—Z —m2 Xi—mg)

ey 1€(Co

e Maximize Fisher criteria

T
S
J(W) _ W BW

W X Sy (ms — my)

~

wiSyw




Fisher Discriminant

[Bishop]



Comparing Techniques
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Fisher Discriminant 1

http://arxiv.org/abs/1407.5675

Average Boosted W jet
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http://arxiv.org/abs/1407.5675

Hierarchical Agglomerative Clustering




Hierarchical Agglomerative Clustering

* Algorithm
— Start with each example x; as its own cluster
— Take pairwise distance between examples
— Merge closest pair into a new cluster
— Repeat until one cluster

* Doesn’t require choice of number of clusters
* Clusters can have arbitrary shape

* Clusters have intrinsic hierarchy

* No random initialization

What distance metric to use?

— Here use Euclidean distance between cluster centroid
(average of examples 1n cluster)



Hierarchical Agglomerative Clustering
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Jet Algorithms

Sequential pairwise jet clustering algorithms
are hierarchical clustering, and are
a form of unsupervised learning ¢

Compute distance between pseudojetsiandj .
D
Distance between pseudojet and beam | g, = k27

dz’j — min (k%ZZ, k’%@) Azzj = (y@ — yj)2 + (¢z — ¢j)2

Find smallest distance between pseudojets d;; or dp

— Combine (sum 4-momentum) of two e ik, Rt
pseudojets if d;; smallest |

— If d,; 1s smallest, remove pseudojet i,
call it a jet

— Repeat until all pseudojets are jets




Debugging Learning Algorithms




More general advice b

* You will likely need to try many algorithms...
— Start with something simplel
— Use more complex algorithms as needed
— Use cross validation to check for overcomplexity / overtraining

Check the literature

— If you can cast your (HEP) problem as something in the ML / data
sclence domain, there may be guidance on how to proceed

* Hyperparameters can be hard to tune

— Use cross validation to compare models with different
hyperparameter values!

* Use a training / validation / testing split of your data
— Don’t use training or validation set to determine final performance
— And use cross validation as well!



Debugging Learning Algorithms

* Is my model working properly?
— Where do I stand with respect to bias and variance?
— Has my training converged?
— Did I choose the right model / objective?

— Where 1s the error in my algorithm coming from?

Section derived from [Ng]



Typical learning curve for high variance i

error

Cross validation
Validation error and RMS

Desired performance

/, Training error

m (training set size)

Performance 1s not reaching desired level

[Ng]

Error still decreasing with training set size
— suggests to use more data in training
Large gap between training and validtaion error
— Some gap 1s expected (Inherint bias towards training set)
Better: Large Cross-validation RMS, large performance variation in trainings



Typical learning curve for high bias i

Cross validation
Validation error and RMS

/ Training error

/ Desired performance

error

[Ng]

m (training set size)
* Training error 1s unacceptably high

* Small gap between training and validation error

* Cross validation RMS 1s small



Potential Fixes 13

* Fixes to try:

— Get more training data Fixes high variance
— Try smaller feature set size Fixes high variance
— Try larger feature set size Fixes high bias
— Try different features Fixes high bias

* Did the training converge?

— Run gradient descent a few more iterations Fixes optimization algorithm

* or adjust learning rate

— Try different optimization algorithm Fixes optimization algorithm

* Is it the correct model / objective for the problem?
— Try different regularization parameter value Fixes optimization objective
— Try different model Fixes optimization objective

* You will often need to come up with your own diagnostics to

understand what 1s happening to your algorithm Nl
g



