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Lecture Topics
• Recap of  last time
– What is Machine Learning
– Linear Regression
– Logistic Regression
– Over fitting and Regularization
– Training procedures
– Gradient descent

• This Lecture
– Neural Networks
– Decision Trees and Ensemble Methods
– Unsupervised Learning

• Dimensionality reduction
• Clustering

– No Free Lunch and some Practical Advice
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Neural Networks 3



Reminder of  Logistic Regression
• Input output pairs {xi, yi}, with

– xi Î Rm

– yi Î {0,1}
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• Linear decision boundary h(x;w) = w

T
x

h(x)

h(x) < 0

h(x) = 0

h(x) > 0

[Bishop]



Reminder of  Logistic Regression
• Input output pairs {xi, yi}, with

– xi Î Rm

– yi Î {0,1}
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• Linear decision boundary 

• Distance from decision boundary 
is converted to class probability 
using logistic sigmoid function

h(x;w) = w

T
x

p(y = 1|x) = �(h(x,w))

=
1

1 + e�w

T
x

Logistic Sigmoid

�(z) =
1

1 + e�z



Logistic Regression 6

p(y = 1|x) = �(h(x,w))

=
1

1 + e�w

T
x



Adding non-linearity

• What if  we want a non-linear decision boundary?
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Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}
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p(y = 1|x) = 1

1 + e�w

T�(x)



Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}

• What if  we don’t know what basis functions we want?
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Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}

• What if  we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u)      Rm→ Rd

– Where u is a set of  parameters for the transformation
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Adding non-linearity

• What if  we want a non-linear decision boundary?
– Choose basis functions, e.g:     f(x) ~ {x2, sin(x), log(x), …}

• What if  we don’t know what basis functions we want?

• Learn the basis functions directly from data

f(x; u)      Rm→ Rd

– Where u is a set of  parameters for the transformation

– Combines basis selection and learning
– Several different approaches, focus here on neural networks
– Complicates the optimization
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p(y = 1|x) = 1

1 + e�w

T�(x)



Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(ujTx)
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Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(ujTx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) =                   Î Rd

– s is a point-wise sigmoid acting on each vector element 
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s(u1Tx)
s(u2Tx)

…
s(udTx)



Neural Networks

• Define the basis functions j = {1…d}

fj(x; u) = s(ujTx)

• Put all uj Î R1xm vectors into matrix U

f(x; U) = s(Ux) =                   Î Rd

– s is a point-wise sigmoid acting on each vector element 

• Full model becomes
h(x; w, U) = wTf(x; U)
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s(u1Tx)
s(u2Tx)

…
s(udTx)



Feed Forward Neural Network 15

�(x) = �(Ux)

h(x) = w

T�(x)

U

Hidden layer
Composed of neurons

f(…) often called the 
activation function



Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous 

layer

16

U V



Universal approximation theorem

• Feed-forward neural network with a single hidden 
layer containing a finite number of  neurons can 
approximate continuous functions arbitrarily well on 
a compact space of  ℝ!

– Only mild assumptions on non-linear activation function 
needed.  Sigmoid functions work, as do others
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Universal approximation theorem

• Feed-forward neural network with a single hidden 
layer containing a finite number of  neurons can 
approximate continuous functions arbitrarily well on 
a compact space of  ℝ!

– Only mild assumptions on non-linear activation function 
needed.  Sigmoid functions work, as do others

• But no information on how many neurons needed, or 
how much data!
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Universal approximation theorem

• Feed-forward neural network with a single hidden 
layer containing a finite number of  neurons can 
approximate continuous functions arbitrarily well on 
a compact space of  ℝ!

– Only mild assumptions on non-linear activation function 
needed.  Sigmoid functions work, as do others

• But no information on how many neurons needed, or 
how much data!

• How to find the parameters, given a dataset, to 
perform this approximation?
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Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function
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h(x) = w

T�(Ux)

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function
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h(x) = w

T�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U
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h(x) = w

T�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Gradient Descent

• Minimize loss by repeated gradient steps

– Compute gradient w.r.t. parameters:

– Update parameters:
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w0  w� ⌘
@L(w)

@w
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Gradient Descent

• Minimize loss by repeated gradient steps

– Compute gradient w.r.t. parameters:

– Update parameters:

• Now we need gradients w.r.t. w and U

• Gradients will depend on loss and network architecture

• Loss function is non-convex 
– Gradient descent may get stuck 

in non-optimal stationary point
– Can be a major issue!
– Variants of  stochastic gradient descent

can be helpful!
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Chain Rule

• Derivative of  sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj
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L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))
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Backpropagation

• Loss function composed of  layers of  nonlinearity
26
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Backpropagation

• Loss function composed of  layers of  nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations
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Backpropagation

• Loss function composed of  layers of  nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)
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Backpropagation

• Loss function composed of  layers of  nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients
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Training

• Repeat gradient update of  weights to reduce loss 
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and 
determine when to stop training 

30

[graphic from H. Larochelle]



Regularization 31

• L2 regularization: add W(w) = ||w||2 to loss
– Also called “weight decay”
– Gaussian prior on weights, keep weights from getting too 

large and saturating activation function

• Regularization inside network, example: Dropout
– Randomly remove nodes during training
– Avoid co-adaptation of  nodes
– Essentially a large model averaging procedure 

arXiv:1207.0580



Activation Functions

• Vanishing gradient problem
– Derivative of  sigmoid:

– Nearly 0 when x is far from 0!
– Gradient descent difficult!
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∂σ (x)
∂x

=σ (x)(1−σ (x))

• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$



Neural Network Decision Boundaries 33

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/ http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r


Deep Neural Networks

• As data complexity grows, need exponentially large number of  neurons in 
a single-hidden-layer network to capture all the structure in the data

• Deep neural networks have many hidden layers
– Factorize the learning of  structure in the data across many layers

• Difficult to train, only recently possible with large datasets, fast computing 
(GPU) and new training procedures / network structures (like dropout)  
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Neural Network Architectures

• Structure of  the networks, and 
the node connectivity can be 
adapted for problem at hand

• Moving inductive bias from 
feature engineering to machine 
learning (neural network) model 
design 

– Inductive bias:
Knowledge about the problem 

– Feature engineering:
Hand crafted variables 

– Model design:
The data representation and the 
structure of  the machine 
learning model / network 
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http://www.asimovinstitute.org/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/


Convolutions

• Convolutions: ! ∈ ℝ!and kernel $ ∈ ℝ"
discrete convolution ! ∗ $ is vector of  size M-k+1

36

! ∗ u ! = %
"#$

%&'
!!("&"

[Fleuret]

M

k

M – k +1



Convolutions

• Kernels are “scanned” across input, picking up local 
pattern learned by the weights
– Shared weights of  neurons, but each neuron only takes 

subset of  inputs
– Insensitive to translations of  the features the kernel is 

activated by
– “Tied weights” reduced total number of  parameters

37

[Bishop]

[Fleuret]



Convolutional Neural Networks
• Chain together with non-linearities and down-sampling (e.g. max-

pooling)

• After processing with convolutions, use fully connected layers for 
classification

• Structure allows for capturing local structure in convolutions, and 
long range structure in later stage convolutions and in fully 
connected layers

38

VGGNet



Neural Networks in HEP 39

Jets at the LHC Neutrino identification
Example: NOnA



What do neural networks learn?
• Can visualize weights: neutrino decay classification
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Image Y-view Weights of First layer Output of convolution

• Find inputs that 
most activate a 
neuron:
– Separating boosted 

W-jets from 
quark/gluon jets

arXiv:1604.01444

https://arxiv.org/abs/1511.05190

https://arxiv.org/abs/1511.05190


Decision Tree Models 41



Decision Trees

• Partition data based on a sequence of  thresholds

• In a given partition, estimate the class probability from Nm examples 
in partition m and Nk of  the examples in partition from class k:

42

pmk =
Nk

Nm



Single Decision Trees: Pros and Cons

• Pros:
– Simple to understand, can visualize a tree
– Requires little data preparation, and can use continuous 

and categorical inputs

• Cons:
– Can create complex models that overfit data
– Can be unstable to small variations in data
– Training a tree is an NP-complete problem 

• Hard to find a global optimum of  all data partitionings
• Have to use heuristics like greedy optimization where locally 

optimal decisions are made

• We will discuss the ways to overcome these Cons, 
including early stopping of  training, and ensembles
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Greedy Training of  a Decision Tree

• Greedy Training: instead of  optimizing all 
splittings at the same time, optimize them one-by-
one, then move onto next splitting
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Greedy Training of  a Decision Tree

• Greedy Training: instead of  optimizing all 
splittings at the same time, optimize them one-by-
one, then move onto next splitting

• Given Nm examples in a node, for a candidate 
splitting q=(xj , tm) for feature xj and threshold tm
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Greedy Training of  a Decision Tree

• Greedy Training: instead of  optimizing all 
splittings at the same time, optimize them one-by-
one, then move onto next splitting

• Given Nm examples in a node, for a candidate 
splitting q=(xj , tm) for feature xj and threshold tm

• If  data partitioned into subsets Qleft and Qright , 
compute:

– Where H() is an impurity function

46

G(Q, ✓) =
nleft

Nm
H(Qleft(✓)) +

nright

Nm
H(Qright(✓))



Greedy Training of  a Decision Tree

• Greedy Training: instead of  optimizing all 
splittings at the same time, optimize them one-by-
one, then move onto next splitting

• Given Nm examples in a node, for a candidate 
splitting q=(xj , tm) for feature xj and threshold tm

• If  data partitioned into subsets Qleft and Qright , 
compute:

– Where H() is an impurity function

• Choose splitting q using:

47

G(Q, ✓) =
nleft

Nm
H(Qleft(✓)) +

nright

Nm
H(Qright(✓))

✓⇤ = argmin
✓

G(Q, ✓)



Impurity Functions

• Classification
– Proportion of  class k in node m: 

– Gini:

– Cross entropy: 

– Miss-classification:

• Regression
– Continuous target y, in region estimate:

– Square error:

48

pmk =
Nk

Nm

H(Xm) =
X

k
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X
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When to stop splitting? 49

• In principle, can keep splitting until every event is 
properly classified…



When to stop splitting?

• In principle, can keep splitting until every event is 
properly classified…

50

Va
ria

bl
e 

2

Variable 1

• Single decision trees can quickly overfit
• Especially when increasing the depth of  the tree

[Rogozhnikov] 



When to stop splitting?

• In principle, can keep splitting until every event is 
properly classified…

• Can stop splitting early.  Many criteria:
– Fixed tree depth
– Information gain is not enough
– Fix minimum samples needed in node
– Fix minimum number of  samples needed to split node

– Combinations of  these rules work as well
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Mitigating Overfitting 52

[Rogozhnikov] 



Ensemble Methods

• Can we reduce the variance of  a model without 
increasing the bias?
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Ensemble Methods

• Can we reduce the variance of  a model without 
increasing the bias?

• Yes! By training several slightly different models 
and taking majority vote or average prediction

– Bias does not largely increase because the average 
ensemble performance is equal to the average of  its 
members

– Variance decreases because a spurious pattern picked 
up by one model may not be picked up by other
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Ensemble Methods

• Combining several weak learners (only small correlation 
with target value) with high variance can be extremely 
powerful

• Can be used with decision trees to overcome their 
problems of  overfitting!

55

Individual Models Average Model

Green = true function 

[Bishop] 



Bagging and Boosting

• Bootstrap Aggregating (Bagging): 
– Sample dataset D with replacement N-times, and train a 

separate model on each derived training set
– Classify example with majority vote, or compute average 

output from each tree as model output

• Boosting:
– Train N models in sequence, giving more weight to 

examples not correctly classified by previous models
– Take weighted vote to classify examples

– Boosting algorithms include: 
AdaBoost, Gradient boost, XGBoost
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h(x) =
1

Ntrees

NtreesX

i=1

hi(x)

h(x) =

PNtrees

i=1 ↵ihi(x)PNtrees

i=1 ↵i



Random Forest

• One of  the most commonly used algorithms in 
industry is the Random Forest

– Use bagging to select random example subset

– Train a tree, but only use random subset of  features 
(√m features) at each split. This increases the variance 
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Ensembles of  Trees
• Tree Ensembles 

tend to work well 

– Relatively simple

– Relatively easy to 
train

– Tend not to overfit
(especially random 
forests)

– Work with different 
feature types: 
continuous, 
categorical, etc.

58

[Rogozhnikov] Random Forest



CMS h→gg (8 TeV) – Boosted decision tree 59

Eur. Phys. J. C 74 (2014) 3076



Decision Tree Ensembles in HEP 60

• Decision tree ensembles, 
especially with boosting, are 
used very widely in HEP!

https://arxiv.org/abs/1512.05955

JHEP 01 (2016) 064 

JINST 10 P08010 2015

https://arxiv.org/abs/1512.05955


Unsupervised Learning

• Learning without targets/labels, 
find structure in data
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Dimensionality Reduction

• Find a low dimensional (less complex) 
representation of  the data with a mapping 
Z=h(X)
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Principle Components Analysis

• Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of  data?
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Principle Components Analysis

• Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of  data?

• Data covariance:
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Principle Components Analysis

• Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of  data?

• Data covariance:

• Let u1 be the projected direction, we can solve: 

65

u⇤
1 = argmax

u1

uT
1 Su1 + �(1� uT

1 u1)

! Su1 = �u1

Variance of projected data Unit length vector constraint
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Principle Components Analysis

• Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of  data?

• Data covariance:

• Let u1 be the projected direction, we can solve: 

• Principle components are the eigenvectors of  the data 
covariance matrix!
– Eigenvalues are the variance explained by that component

66

u⇤
1 = argmax

u1

uT
1 Su1 + �(1� uT

1 u1)

! Su1 = �u1

Variance of projected data Unit length vector constraint
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PCA Example 67

[Ng]



PCA Example 68

First principle component, projects on to this axis have large variance
[Ng]



PCA Example 69

Second principle component, projects have small variance
[Ng]



Clustering 70



Clustering

• Partition the data into groups  D={D1 È D2 … È Dk}

• What is a good clustering?
• One where examples within a cluster are more “similar” than to 

examples in other clusters

• What does similar mean?  Use distance metric, e.g.

71

d(x,x0) =

sX

i

(xi � x

0
i)

2



K-means

• Data xi Î Rm which you want placed in K clusters

• Associate each example to a cluster by minimizing 
within-class variance
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K-means

• Data xi Î Rm which you want placed in K clusters

• Associate each example to a cluster by minimizing 
within-class variance
– Give each cluster Sk a prototype µkÎ Rm where k=1…K
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K-means

• Data xi Î Rm which you want placed in K clusters

• Associate each example to a cluster by minimizing 
within-class variance
– Give each cluster Sk a prototype µkÎ Rm where k=1…K

– Assign each example to a cluster Sk
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K-means

• Data xi Î Rm which you want placed in K clusters

• Associate each example to a cluster by minimizing 
within-class variance
– Give each cluster Sk a prototype µkÎ Rm where k=1…K

– Assign each example to a cluster Sk

– Find prototypes and assignments to minimize

• This is an NP-hard problem, with many local minimum!

75

L(S, µ) =
KX

k=1

X

i2Sk

p
(xi � µk)2



K-means algorithm

• Initialize the µk at random (typically using K-means++ initialization)

• Repeat until convergence:
– Assign each example to closest prototype

– Update prototypes

76

min
k2{1...K}

p
(xi � µk)2

µk =
1

nk

X

i2Sk

xi

[Bishop] 



Practical Advice 77



What To Use? So Many Choices

• Once you know what you want to do…

WHAT algorithm should you use?
– Linear model
– Nearest Neighbors
– (Deep?) Neural network
– Decision tree ensemble
– Support vector machine
– Gaussian processes
–… and so many more …
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No Free Lunch - Wolpert (1996)

• In the absence of  prior knowledge, there is no a priori 
distinction between algorithms, no algorithm that will 
work best for every supervised learning problem
– You can not say algorithm X will be better without knowing 

about the system

– A model may work really well on one problem, and really 
poorly on another

– This is why data scientists have to try lots of  algorithms!

• But there are some empirical heuristics that have been 
observed…
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Practical Advice – Empirical Analysis

• Test 179 classifiers (no deep neural networks) on 121 datasets 
http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf

– The classifiers most likely to be the bests are the random forest (RF) versions, 
the best of  which (…) achieves 94.1% of  the maximum accuracy 
overcoming 90% in the 84.3% of  the data sets

From Kaggle
• For Structured data: “High level” features that have meaning

– Winning algorithms have been lots of  feature engineering + random 
forests, or more recently XGBoost (also a decision tree based 
algorithm)

• Unstructured data: “Low level” features, no individual meaning
– Winning algorithms have been deep learning based, Convolutional 

NN for image classification, and Recurrent NN for text and speech
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http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf


Conclusions
• Machine learning uses mathematical and statistical models 

learned from data to characterize patterns and relations between 
inputs, and use this for inference / prediction

• Machine learning provides a powerful toolkit to analyze data
– Linear methods can help greatly in understanding data

– Complex models like NN and decision trees can model intricate 
patterns
• Care needed to train them and ensure they don’t overfit

– Unsupervised learning can provide powerful tools to understand data, 
even when no labels are available

– Choosing a model for a given problem is difficult, but there may be 
some guidance in the literature
• Keep in mind the bias-variance tradeoff  when building an ML model

• Deep learning is an exciting frontier and powerful paradigm in 
ML research
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Useful Python ML software
• Anaconda / Conda → easy to setup python ML / scientific computing 

environments
– https://www.continuum.io/downloads
– http://conda.pydata.org/docs/get-started.html

• Integrating ROOT / PyROOT into conda
– https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html
– https://conda.anaconda.org/NLeSC

• Converting ROOT trees to python numpy arrays / panda dataframes
– https://pypi.python.org/pypi/root_numpy/
– https://github.com/ibab/root_pandas

• Scikit-learn → general ML library
– http://scikit-learn.org/stable/

• Deep learning frameworks / auto-differentiation packages
– https://www.tensorflow.org/
– http://deeplearning.net/software/theano/

• High level deep learning package build on top of  Theano / Tensorflow
– https://keras.io/
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Example

• Classifying hand written digits
– 10-class classification
– Right plot shows projection of  10-class output onto 2 

dimensions 
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Error Analysis

• Anti-spam classifier using logistic regression.  
• How much did each component of  the system help?
• Remove each component one at a time to see how it 

breaks
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Removing text parser
caused largest drop
in performance



Ensemble Methods

• Combine many decision trees, use the ensemble for prediction

• Averaging:

– Random Forest, averaging combined with:
• Bagging: Only use a subset of  events for each tree training
• Feature subsets: Only use a subset of  features for each tree

• Boosting (weighted voting):

– Weight computed such that events in 
current tree have higher weight misclassified in previous trees 

– Several boosting algorithms
• AdaBoost
• Gradient Boosting
• XGBoost
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Non-Linear Activations

• The activation function in the NN must be a non-linear function
– If  all the activations were linear, the network would be linear: 

f(X) = Wn( Wn-1 (… W1 X)) = UX,        where U = Pi Wi

• Linear functions can only correctly classify linearly separable data!

• For complex datasets, need nonlinearities to properly learn data 
structure
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Neural Networks and Local Minima

• Large NN’s difficult to train…trapping in local minimum?

• Not in large neural networks https://arxiv.org/abs/1412.0233
– Most local minima equivalent, and resonable
– Global minima may represent overtraining
– Most bad (high error) critical points are saddle points (different 

than small NN’s)
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Weight Initializations and Training Procedures
• Used to set weights to some small 

initial value
– Creates an almost linear classifier

• Now initialize such that node outputs 
are normally distributed

• Pre-training with auto-encoder
– Network reproduces the inputs
– Hidden layer is a non-linear 

dimensionality reduction
– Learn important features of  the input
– Not as common anymore, except in 

certain circumstances…

• Adversarial training, invented 2014
– Will potential HEP applications later
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ReLU Networks

• Sparse propagation of  activations and gradients in a network of  rectifier 
units. The input selects a subset of  active neurons and computation is 
linear in this subset.

• Model is “linear-by-parts”, and can thus be seen as an exponential 
number of  linear models that share parameters

• Non-linearity in model comes from path selection
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Convolutions in 2D

• Scan the filters over the 2D image, producing the 
convolved images
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Input image Convolved image



Max Pooling

• Down-sample the input by taking MAX or 
average over a region of  inputs
– Keep only the most useful information
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Daya Bay Neutrino Experiment

• Aim to reconstruct inverse b-decay interactions from 
scintillation light recorded in 8x24 PMT’s

• Study discrimination power using CNN’s
– Supervised learning  → observed excellent performance (97% 

accuracy)
– Unsupervised learning: ML learns itself  what is interesting!
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Inputs (8x24)

Reconstructed inputs
2D distant preserving representation of
10D encoding of events

Nonlinear decoing layers
(using deconvolutions)

Nonlinear encoding layers
(using convolutions)

10D encoding

arXiv:1601.07621
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Restricted phase space 97
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Spatial information indicative of radiation pattern for W and QCD: where in 
the image the network is looking for discriminating features
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Recurrent Neural Networks

• What if  our data doesn’t have a fixed size? How 
do we process a variable length set of  inputs

• More specifically, what if  our data is sequence 
like?

– Natural language text
– time-series data, like financial data
– Ordered sets of  particles, e.g. tracks in a jet

10
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Recurrent Neural Networks 10
1

[Fleuret]



Recurrent Neural Networks 10
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[Fleuret]
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Recurrent Neural Networks 10
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[Fleuret]

The movie was great

[0.98] à Positive Sentiment

Sentiment
Analysis
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Recurrent Neural Networks 10
6

[Fleuret]

le film était génial

The movie was great

Translation



Recurrent Neural Networks 10
7

• In practice, a simple 
non-linearity is very 
hard to deal with
– Hard to train
– Hard to retain 

information across 
long sequences

• Utilize Gating
– Long Short Term 

Memory (LSTM)
– Gated Recurrent 

Unit (GRU



Bottom Quark Decays 10
8

• Goal: Discriminate b-jets from non-b-jets

• Track based taggers: ! "#$ %&'()* $*'+,- ./ "#$)
– Dimensionality too high for easy density estimation
– Often make naïve Bayes assumption that tracks independent! 
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Fisher Discriminant
• Suppose our {xi, yi}i=1…N is separated in two classes, 

we want a projection to maximize the separation 
between the two classes.
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Fisher Discriminant
• Suppose our {xi, yi}i=1…N is separated in two classes, 

we want a projection to maximize the separation 
between the two classes.

– Want means (mi) of  two classes (Ci) to be as far apart as 
possible → large between-class variation
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Fisher Discriminant
• Suppose our {xi, yi}i=1…N is separated in two classes, 

we want a projection to maximize the separation 
between the two classes.

– Want means (mi) of  two classes (Ci) to be as far apart as 
possible → large between-class variation

– Want each class tightly clustered, as little overlap as 
possible → small within-class variation
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Fisher Discriminant
• Suppose our {xi, yi}i=1…N is separated in two classes, 

we want a projection to maximize the separation 
between the two classes.

– Want means (mi) of  two classes (Ci) to be as far apart as 
possible → large between-class variation

– Want each class tightly clustered, as little overlap as 
possible → small within-class variation

• Maximize Fisher criteria

11
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SW =
X

i2C1

(xi �m1)
T (xi �m1) +

X

i2C2

(xi �m2)
T (xi �m2)

SB = (m2 �m1)
T (m2 �m1)

J(w) =
wTSBw

wTSWw
! w / SW (m2 �m1)



Fisher Discriminant 11
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[Bishop] 



Comparing Techniques 11
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Projected plane is perpendicular
To decision line
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Hierarchical Agglomerative Clustering 

• Algorithm
– Start with each example xi as its own cluster
– Take pairwise distance between examples 
– Merge closest pair into a new cluster
– Repeat until one cluster

• Doesn’t require choice of  number of  clusters
• Clusters can have arbitrary shape
• Clusters have intrinsic hierarchy
• No random initialization

• What distance metric to use? 
– Here use Euclidean distance between cluster centroid 

(average of  examples in cluster)

11
9



Hierarchical Agglomerative Clustering 12
0

[Parkes] 



Hierarchical Agglomerative Clustering 12
1

CD

[Parkes] 



Hierarchical Agglomerative Clustering 12
2

CDAE

[Parkes] 



Hierarchical Agglomerative Clustering 12
3

CDAE

[Parkes] 



Hierarchical Agglomerative Clustering 12
4

CDAE

BAE

[Parkes] 



Hierarchical Agglomerative Clustering 12
5

CDAE

BAE

BAECD

[Parkes] 



Jet Algorithms

• Sequential pairwise jet clustering algorithms 
are hierarchical clustering, and are 
a form of  unsupervised learning

• Compute distance between pseudojets i and j 

• Distance between pseudojet and beam

• Find smallest distance between pseudojets dij or diB
– Combine (sum 4-momentum) of  two 

pseudojets if  dij smallest
– If  diB is smallest, remove pseudojet i, 

call it a jet
– Repeat until all pseudojets are jets

12
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Debugging Learning Algorithms 12
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More general advice

• You will likely need to try many algorithms…
– Start with something simple!
– Use more complex algorithms as needed
– Use cross validation to check for overcomplexity / overtraining

• Check the literature
– If  you can cast your (HEP) problem as something in the ML / data 

science domain, there may be guidance on how to proceed

• Hyperparameters can be hard to tune
– Use cross validation to compare models with different 

hyperparameter values!

• Use a training / validation / testing split of  your data
– Don’t use training or validation set to determine final performance
– And use cross validation as well!

12
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Debugging Learning Algorithms

• Is my model working properly?
–Where do I stand with respect to bias and variance?
– Has my training converged?
– Did I choose the right model / objective?
–Where is the error in my algorithm coming from?

12
9

Section derived from [Ng]



Typical learning curve for high variance

• Performance is not reaching desired level
• Error still decreasing with training set size

– suggests to use more data in training
• Large gap between training and validtaion error

– Some gap is expected (inherint bias towards training set)
• Better: Large Cross-validation RMS, large performance variation in trainings

13
0

Cross validation
Validation error and RMS

[Ng]



Typical learning curve for high bias

• Training error is unacceptably high
• Small gap between training and validation error
• Cross validation RMS is small

13
1

Cross validation
Validation error and RMS

[Ng]



Potential Fixes

• Fixes to try:
– Get more training data Fixes high variance
– Try smaller feature set size Fixes high variance
– Try larger feature set size Fixes high bias
– Try different features Fixes high bias

• Did the training converge?
– Run gradient descent a few more iterations Fixes optimization algorithm

• or adjust learning rate
– Try different optimization algorithm Fixes optimization algorithm

• Is it the correct model / objective for the problem?
– Try different regularization parameter value Fixes optimization objective
– Try different model Fixes optimization objective

• You will often need to come up with your own diagnostics to 
understand what is happening to your algorithm

13
2

[Ng]


