Session 3B
Near-term Kernel Developments

Makoto Asai (SLAC)
Gabriele Cosmo (CERN)

Session Topics

Discuss and review the current
status and work plan of the near-
term development items, that are
planned to be released with 10.5
or in the next couple of years.

Sub-event parallelism Makoto Asai
14:00 - 14:12
Unified tracking mechanism for Makoto Asai et al.

exotic particles (ions, muonic atom...

Revisit / retreat production thresholds and Marc Verderi
physics process framework

Refactoring transportation Makoto Asai et al.
14:36 - 14:48

Use of HPC Jonathan Madsen
14:48 - 15:00

Extending crystal structure capabilities Enrico Bagli
15:00 - 15:12

TiMemory performance monitoring Jonathan Madsen

15:12 - 15:24

Open discussion

15:24 - 15:30

Sub-event parallelism

Sub-event parallelism generalizes Geant4-MT
event parallelism approach to serve the case of
applications requesting large memory per event.

One event is split into “sub-events”, e.g. each few
primary tracks = a sub-event

— Split method is obviously user dependent.

Each sub-event is sent to a worker thread, and
merged back to the original full event later.

Constraint — all the current API’'s must be
preserved.

Time scale of the development :
— Source code : to be finished by May 2019
— An example : to be finished by September 2019

Unified tracking mechanism for exotic particles (ions,
muonic atoms, radicals, hyper-nuclear, phonon, e/h)

There are at least four different particle families that share the same mechanism
of G4Genericlon and shared G4ProcessManager.

— lons, muonic ions, Hyper-nucleous, radicals
Uniform, transparent and extendable treatment is required.

G4SteppingManager is already cleaned up. There is no longer #ifdef, there is no
longer indirect access to G4PrcessManager via G4Genericlon (or
G4GenericMuonicAtom, etc.).

— G4lonTable is updated to ensure this.

Remaining work — Split G4lonTable class
— GA4lonTable::GetMuonicAtom() will be moved to new G4MuonicAtomTable.
— Hyper-nucleon, radicals, will have their own “table” class.

— Clean way to enable extendibility for yet another particle family without
overhead

— Plan to finish for ion and muonic atom by 10.5 release, while hyper-nucleon
and radical tables will be in the coming year.

Revisit / retreat production thresholds and physics
process framework

* Production thresholds (“cuts”) initially considered as an issue fundamental enough

to be taken care at the kernel class level.

Particle Production
produced process

Heavy production (limited by energy binding to atoms). These are
el— lonization actually “recoil electrons”. Threshold needed to limit the
production.

No divergence nor heavy production. Use case : production cut in

el+ Conversion 1 suntain rock for, e.g., dark matter experiments.

Cross-section divergence (actually limited by dielectric effects at

Bremsstrahlung o\ low energies). Threshold needed to limit the production.

Hadron elastic Threshold on recoil proton, e.g. 72 scattering on proton, ejecting it.
(ions) Mechanism adapted for ions. Threshold defines the “visibility” cut.

Proposal

Kernel classes are offloaded from cuts control
— Including control at tracking time
— Classes involved: G4ParticleDefinition, G4SteppingManager

Processes are given the full responsibility to manage their production
thresholds
— Whatever if this is due to divergences or not

— With possibly, and preferably, common tools, shared among packages, to
expose the configuration to the user

The machinery for material-cut couple becomes extendable:
— It has the set{, and } by default
— But is extendable to any other type of particle

Dedicated tests are added to check for conformance of secondary
production
* Atest using a simple user stepping action could do it

Backward compatibility should be considered as well
— At least for some time

Refactoring transportation

Currently, only one transportation object exists in the memory:

— Either G4Transportation, G4CoupledTransportation or
G4ITTransportation

— It deals with all particle types:
* neutral and charged particles, optical photons, phonons, etc

Idea is to provide at least two flavors of transportation that co-exist:
— One for charged particles, one for neutral particles

— Eventually one also for optical photons
* As velocity calculations differ from other particles

Further extensions/specializations to be also considered:

— VecGeom navigation: optimized/vectorized, implementation with
modern C++

— A la DagMC: direct and efficient navigation in CAD geometries
— DNA navigation: better serve the case of radicals
Revision will be extended to “Coupled Transportation”:

Study in progress. Plan to deliver first implementations in 2019 as
an option in G4VModularPhysicsList::AddTransportation().

Use of HPC — short-term developments

* Existing supercomputers

— Cori (32-core/node Haswell @ 2.3 GHz + 68-
core/node KNL @ 1.4 GHz)

— Edison (24-core/node Ivy-Bridge @ 2.4 GHz)
* Upcoming supercomputer
— NERSC 9 supercomputer (2019)

— Accelerators
* Not next-gen KNL => no AVX-512 instruction set

HPC at NERSC Overview

® Create “official” Geant4 docker repository

O e.g., https://hub.docker.com/r/geant4

O Tags for compilers, versions, etc.

O Use this as standard for per-machine performance comparison
> No virtualization layer
> Portable to any HPC/cluster capable of running Docker containers
> Exact same compiler, configuration, etc. = hardware-vs-hardware

O Reproducibility

> (A) associate Dockerfile with Git revision or (B) docker save ...

® Performance characterization with respect to:

O HPC system O Compiler o OS (i.e., kernel)
> Cori KNL > GNU > openSUSE
> Cori Haswell > Intel > RHEL
> Edison > Clang > Any others?
> Any others? > Any others?

U.S. DEPARTMENT OF Office of
@ENERGY Science Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 28, 2018

HPC at NERSC Performance Reporting

® Created a public CDash dashboard at NERSC: cdash.nersc.gov

O Built with Docker and deployed in Spin — a containers-as-service (Caa$S)
platform at NERSC

® Use Geant4 + TiMemory + CDash for performance characterization
O Nightly and continuous performance testing
O Separate from our build testing — avoid adding more clutter
O Longer-term additions:
> Valgrind reports

> Code coverage

> VTune reports (e.g., attach VTune summary as CTest note)

uuuuuuuuuu Office of

@ENERGY Silence Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 28, 2018

Extending Crystal Structure Capabilities

Geant4 crystal structures implemented and working:

— Very flexible structure thanks to the G4ExtendedMaterial class,
updates can be done without any change to existing G4 classes.

Store the lattice parameters (unit cell) and elasticity tensors (used by
phonon)

— Capability of compute structure factor and other properties (can be
updated with more function depending on the future needs)

Currently used by the G4Channeling process:

— The process get the crystal lattice orientation from the
G4LlogicalCrystalVolume and the evaluated data from the
G4ChannelingData (subclass of G4MaterialExtension)

Future updates are related to the needs of the processes
— Migration of Phonon processes
— Coherent X-ray scattering, Diffraction

Support for powders/polycrystals?

TiMemory Performance Monitoring

TiMemory is a lightweight “in-situ” package for consistent and automated
performance reports.

— Supplements profilers — profilers have overhead and that overhead
skews/misrepresents run-time

Cross-language = C, C++ and Python implementations can be used
independently or simultaneous

Built-in features (via Python)
— Timing and memory plotting

— Support for attaching analysis as CTEST_NOTES and attaching images
as <DartMeasurementFile> to CDash dashboard

U.S. DEPARTMENT OF Office of

Tast: Python_UnitTest (Passed)

TiMemory + CDash

Build: [master][Linux x86_64][Clang 5.0.2][Release][Python 3.6][C++11][MPI] (travis) on 2018-04-13 02:10:38

Test Details: Completed

Test Timing: Passad

timing_report_timing.jpeg

RGY Science

Plotting

Timing report for “test_output/timing_report json”
@ MPI procs = 1, Threads/proc = 1

Memory report for “test_output/timing
@

08 10 12

Time [seconds]
-l sys mE ser

Pl procs =

eport json”™
Threads/proc = 1

pye_time. fibonacci®(23) & build- TiMemarytimemory,_test py" x | 2 counts |

ye_time_flbonacci(28) " buike- TiMemenyitimemory.test py” x | 2 counts |

Bye_time_fibonacci@(27) @ build- TiMemorytimemory_test py” [counts. |

pye_time_fibonacci@(28) @ build- Tiemoryitimamory_test py” x [2 counts |

Bye_time_fibonacci@(21)@'build- Tiemonyitmamary._test py

Eye_time_fibonacei@i22) build Tiemoryktimemary_test py"

pye_time_fibonacci@(23) @ build TiMamoryitimaemany_tost py

pye_bime_fibonacci@(24) @ build TiMemoryitimemary_tost py

Eye_time_fibonacei@(28) bule- TiMemanytmamory._test py

Eye_time_fibonacei@(30) 3 bulk TiMmonytmamary_test py

Bye_time_fibonacci@(31)@ buile TiMemoryitmamary,_test py

Pye_time_fibonacei@(32) @ buil- Tismanytimsmary_tast py

1

x11 counts |

eounts]

counts]

counts]

counts |

1counts]

countz]

countz]

Bye_time_fibonacci(25)@ buil TiMemonyitimemany_test py" x [2 counts |

Bye_time_fibonacci@(26) @ build TiMemonyitimemany_test py’ x [2 counts. |

Figure 1: Plot of timing/memory in CDash

Geant4 Lund Collaboration Meeting

J.R. Madsen (NERSC-LBL)

Friday, April 13 2018 15:41

& 41.23s

TiMemory 4+ CDash | ASCH

Login All Dashboards Friday, April 13 201

Site: travis
Build Name: [master][Linux x86_64][Clang 5.0.2][Release][Python 3.6][C-++11][MPI]
Stamp: 20180413-0910-Continuous

2018-04-13 09:15:00 - /tmp/TiMemory/cdash/Continuous/build-TiMemory/test_output/timing_array._test.out
2018-04-13 09:15:00 -- /imp/TiMemory/cdash/Continuous/build-TiMemory/test_output/nested_report.out
2018-04-13 09:15:00 -- /tmp/TiMemory/cdash/Continuous/build-TiMemory/test_output/./timing_report.out
2018-04-13 09:15:00 -- /tmp/TiMemory/cdash/Continuous/build-TiMemory/test_outputitiming_report.out
2018-04-13 09:15:00 -- /tmp/TiMemory/cdash/Continuous/build-TiMemory/test_output/timing_decorator.out
2018-04-13 09:15:00 -- /tmp/TiMemory/cdash/Continuous/build-TiMemory/test_output/timing_depth.out
2018-04-13 09:15:00 -- /tmp/TiMemory/cdash/Continuous/build-TiMemory/test_output/timing_toggle.out
2018-04-13 09:15:00 -- /tmp/TiMemory/cdash/Continuous/build-TiMemory/test_output/timing_context_manager.out

2018-04-13 09:15:00 -- /tmp/TiN il t_« array_test.out

> [pyc] main@'array_test.py':205 i 4,142 wall, 1.170 user + 2.970 system = 4.140 CPU [sec] (100.0%) : RSS {tot,self}_{curr,peak} : (©.1]572.1) | { 0.1]572.0) [MB] (total # of laps: 3)
> [pyc] |_run@'array_test.py':174 1 3.924 wall, 1.160 user + 2.760 system = 3.920 CPU [sec] (99.9%) : RSS {tot,self}_{curr,peak} : (381.6]572.1) | (190.7|381.3) [MB] (total # of laps: 15)
> [pyel |_create@'array_test.py':177 : 1,569 wall, 0.320 user + 1.230 system = 1.550 CPU [sec] (98.8%) : RSS {tot,self}_{curr,peak} : (381.6|572.1) | (190.7]190.7) [MB] (total # of laps: 15)
> [pyc] | _array_finalize__[auto_disk_arrayl@'array_test.py':156 : 0.001 wall, 0.000 user + 0.000 system = ©.000 CPU [sec] (©.8%) : RSS {tot,self}_{curr,peak} : (381.6|572.1) | (0.2]| @.0) [MB] (total # of laps: 15)
> [pye] | _init__[auto_array_weakref]@'array_test.py':125 1 0.084 wall, 0.000 user + 0.000 system = 0.000 CPU [sec] (0.0%) : RSS {tot,self}_{curr,peak} : (381.6|572.1) | (0.8] 0.0) [MB] (total # of laps: 15)
> [pycl |_enable_auto_rollback [auto_array_weakrefl@'array_test.py':182 : 0.003 wall, 0.000 user + 0.800 system = ©.000 CPU [sec] (@.0%) : RSS {tot,self}_{curr,peak} (381.6]572.1) | (0.0] 0.0) [MB] (total # of laps: 15)
> [pyc] |_bind_finalizer[auto_array_weakref]@'array_test.py':68 : 0.001 wall, 0.000 user + 0.000 system = ©.000 CPU [sec] (©.0%) : RSS {tot,self}_{curr,peak} : (381.6|572.1) | (0.@| ©.2) [MB] (total # of laps: 15)
> [pyc] |_call__lauto_disk_arrayl@'array_test.py':167 : 0.001 wall, 0.000 user + 0.000 system = ©.000 CPU [sec] (©.0%) : RSS {tot,self}_{curr,peak} : (381.6]|572.1) | (0.0| 0.2) [MB] (total # of laps: 15)
> [pyc] |___finalize__[auto_array_weakrefl]@'array_test.py':120 i 0.903 wall, 0.000 user + @.000 system = ©.000 CPU [sec] (@.0%) : RSS {tot,self}_{curr,peak} : (381.6|572.1) | (0.0| 0.0) [MB] (total # of laps: 15)
> [pyc] | _do_rollback[auto_array_weakrefl@'array_test.py':134 : 0.901 wall, 0.000 user + 0.000 system = ©.000 CPU [sec] (©.0%) : RSS {tot,self}_{curr,peak} (381.6(572.1) | (90.0] 0.8) [MB] (total # of laps: 15)
> [pyc] |__del__lauto_disk_arrayl@'array_test.py':163 i 0.001 wall, 0.000 user + 0.010 system = ©.010 CPU [sec] (1261.8%) : RSS {tot,self}_{curr,peak} : (381.6|572.1) | (@.0| @.@) [MB] (total # of laps: 15)
> [pyc] dummy@'array_test.py':217 : 1,002 wall, 0,000 user + 0.000 system = ©.000 CPU [sec] (©.0%) : RSS {tot,self}_{curr,peak} : (@.1|572.1) | (o.e| e.e) [mB]
> [pyc] |_do_sleep@'array_test.py':220 : 1,001 wall, 0,000 user + 0.000 system = ©.000 CPU [sec] (©.0%) : RSS {tot,self}_{curr,peak} : (@.1|572.1) | (o.e| e.e) [mB]

2018-04 fmp! S 4

> [pyc] main'AUTO_TIMER_FOR_NESTED_TEST':104[int]@'nested_test.py':104 : 8.640 wall, 2.410 user + 0.220 system = 2.630 CPU [sec] (30.4%) : RSS {tot,self}_{curr,peak} : (5.2]10.7) | (5.2|10.7) [MB]
> [pyc] |_nested_func_1[int](15)@'nested_test.py':69 : 0.453 wall, 0.400 user + 0.040 system = 0.440 CPU [sec] (97.2%) : RSS {tot,self}_{curr,peak} : (©.4| 0.4) | (0.4| 0.4) [MB] (total # of laps: 2)
> [pyc] |_fibonacci(15)@'nested_test.py':64 ¢ 0.441 wall, 0.390 user + 0.040 system = 0.430 CPU [sec] (97.4%) : RSS {tot,self}_{curr,peak} : (©.4| 0.4) | (0.4| @.4) [MB] (total # of laps: 2)
> [pycl |_fibonacci(14)@'nested_test.py':64 i 0.283 wall, 0.250 user + 0.040 system = 0.290 CPU [sec] (102.3%) : RSS {tot,self}_{curr,peak} : (@.4| 0.4) | (0.2| 0.2) [MB] (total # of laps: 2)
> [pyc] | _fibonacci(13)@'nested_test.py':64 i 0.174 wall, 0.160 user + 0.010 system = ©.17@ CPU [sec] (97.7%) : RSS {tot,self}_{curr,peak} : (@.4] 0.4) | (0.1| @.1) [MB] (total # of laps: 2)
> [pyc] | _fibonacci(12)@'nested_test.py':64 i 0.106 wall, 0.100 user + ©.000 system = ©.100 CPU [sec] (94.7%) : RSS {tot,self}_{curr,peak} : (0.4] 0.4) | (@.1| €.1) [MB] (total # of laps: 2)
> [pycl |_fibonacci(11)@' nested_test.py':64 1 0.065 wall, 0.060 user + 0.000 system = 0.060 CPU [sec] (92.7%) : RSS {tot,self}_{curr,peak} : (0.4] 0.4) | (0.8| 0.0) [MB] (total # of laps: 2)
> [pyc] |_fibonacci(10)@'nested_test.py":64 1 0.030 wall, 0.040 user + 0.000 system = 0.040 CPU [sec] (101.9%) : RSS {tot,self}_{curr,peak} : (@.4] 0.4) | (0.0| 0.0) [MB] (total # of laps: 2)
> [pyel |_fibonacci(9)@'nested_test.py':64 1 0.023 wall, 0.020 user + 0.000 system = ©.020 CPU [sec] (86.9%) : RSS {tot,self}_{curr,peak} : (@.4| 0.4) | (0.0| @.2) [MB] (total # of laps: 2)
> [pyc] | _fibonacci(8)@' nested_test.py':64 1 0.014 wall, 0.020 user + ©.000 system = 0.020 CPU [sec] (147.3%) : RSS {tot,self}_{curr,peak} : (@.4] 0.4) | (0.0| 0.2) [MB] (total # of laps: 2)
> [pyc] |_fibonacci(7)@'nested_test.py':64 : 0.008 wall, 0.010 user + 0.000 system = ©.010 CPU [sec] (130.1%) : RSS {tot,self}_{curr,peak} : (@.4| 0.4) | (0.0| ©.2) [MB] (total # of laps: 2)
> [pyc] | _fibonacci(6)@'nested_test.py':64 i 0.004 wall, 0.010 user + ©.000 system = ©.010 CPU [sec] (249.2%) : RSS {tot,self} _{curr,peak} : (@.4] 0.4) | (@.0| ©.9) [MB] (total # of laps: 2)
> [pycl | _fibonacci(6)@'nested_test.py':64 : 0.003 wall, 0.010 user + 0.000 system = ©.010 CPU [sec] (297.7%) : RSS {tot,self}_{curr,peak} : (©.4] 0.4) | (0.0| ©.9) [MB] (total # of laps: 2)
> [pycl |_fibonacci(8)@'nested_test.py':64 : 0.014 wall, 0.020 user + ©.000 system = ©.020 CPU [sec] (145.3%) : RSS {tot,self}_{curr,peak} : (©.4| 0.4) | (0.0| ©.2) [MB] (total # of laps: 2)
> [pyc] | _fibonacci(7)@'nested_test.py':64 : 0.007 wall, 0.010 user + 0.000 system = ©.01@ CPU [sec] (139.5%) : RSS {tot,self}_{curr,peak} : (©.4] 0.4) | (0.0| €.0) [MB] (total # of laps: 2)
> [pyc] | _fibonacci(6)@'nested_test.py':64 i 0,003 wall, 0.019 user + ©.000 system = ©.01@ CPU [sec] (291.7%) : RSS {tot,self}_{curr,peak} : (@.4] 0.4) | (@.0| ©.9) [MB] (total # of laps: 2)
> [pyc] | _fibonacci(6)@'nested_test.py':64 : 0.004 wall, 0.010 user + 0.000 system = 0.010 CPU [sec] (243.1%) : RSS {tot,self}_{curr,peak} : (@.4] 0.4) | (0.0| 0.0) [MB] (total # of laps: 2)
> [pycl | _fibonacci(5)@'nested_test.py":64 : 0.001 wall, 0.010 user + 0.000 system = 0.010 CPU [sec] (691.1%) : RSS {tot,self}_{curr,peak} : (0.4] 0.4) | (0.8| 0.8) [MB] (total # of laps: 2)
> [pyc] |_fibonacci(9)@'nested_test.py':64 : 0.023 wall, 0.020 user + 0.000 system = 0.020 CPU [sec] (87.9%) : RSS {tot,self}_{curr,peak} : (@.4| 0.4) | (0.0 0.0) [MB] (total # of laps: 2)
> [pyc] |_fibonacci(8)@'nested_test.py':64 : 0.014 wall, 0.010 user + 0.000 system = ©.010 CPU [sec] (72.8%) : RSS {tot,self}_{curr,peak} : (@.4| 0.4) | (0.0| 0.0) [MB] (total # of laps: 2)
> [pycl |_fibonacci(6)@'nested_test.py':64 : 0.004 wall, 0.010 user + 0.000 system = 0.010 CPU [sec] (257.1%) : RSS {tot,self}_{curr,peak} : (©.4| 0.4) | (0.0| 0.2) [MB] (total # of laps: 2)
> [pycl |_fibonacci(7)@"nested_test.py':64 i 0.007 wall, 0.010 user + 0.000 system = 0.010 CPU [sec] (150.2%) : RSS {tot,self}_{curr,peak} : (@.4| 0.4) | (0.0 0.0) [MB] (total # of laps: 2)
> Iovel | fibonacei(6)@'nested test.nv':64 : 0.003 wall. 0.210 user + @.900 svstem = 0.018 CPU [secl (299.1%) : RSS {taotr.self} {curr.neak} : (@.41 A.4) | (A.8] @.A) [MB] (tatal # of lans: 2)

Figure 2: ASCII output of timing + memory in CDash

cecreer|

U.S. DEPARTMENT OF Office of
©ENERGY 32 Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 28, 2018

BERKELEY LAB

