
Session 3B
Near-term Kernel Developments

Makoto Asai (SLAC)

Gabriele Cosmo (CERN)



Session Topics

• Discuss and review the current 
status and work plan of the near-
term development items, that are 
planned to be released with 10.5 
or in the next couple of years. 



Sub-event parallelism

• Sub-event parallelism generalizes Geant4-MT 
event parallelism approach to serve the case of 
applications requesting large memory per event.

• One event is split into “sub-events”, e.g. each few 
primary tracks = a sub-event
– Split method is obviously user dependent.

• Each sub-event is sent to a worker thread, and 
merged back to the original full event later.

• Constraint – all the current API’s must be 
preserved.

• Time scale of the development : 
– Source code : to be finished by May 2019
– An example : to be finished by September 2019 



Unified tracking mechanism for exotic particles (ions, 
muonic atoms, radicals, hyper-nuclear, phonon, e/h)

• There are at least four different particle families that share the same mechanism 

of G4GenericIon and shared G4ProcessManager.

– Ions, muonic ions, Hyper-nucleous, radicals

• Uniform, transparent and extendable treatment is required.

• G4SteppingManager is already cleaned up. There is no longer #ifdef, there is no 

longer indirect access to G4PrcessManager via G4GenericIon (or 

G4GenericMuonicAtom, etc.).

– G4IonTable is updated to ensure this.

• Remaining work – Split G4IonTable class

– G4IonTable::GetMuonicAtom() will be moved to new G4MuonicAtomTable.

– Hyper-nucleon, radicals, will have their own “table” class.

– Clean way to enable extendibility for yet another particle family without 

overhead

– Plan to finish for ion and muonic atom by 10.5 release, while hyper-nucleon 

and radical tables will be in the coming year.



Revisit / retreat production thresholds and physics 
process framework

• Production thresholds (“cuts”) initially considered as an issue fundamental enough 

to be taken care at the kernel class level.



Proposal

• Kernel classes are offloaded from cuts control
– Including control at tracking time
– Classes involved: G4ParticleDefinition, G4SteppingManager

• Processes are given the full responsibility to manage their production 
thresholds
– Whatever if this is due to divergences or not
– With possibly, and preferably, common tools, shared among packages, to 

expose the configuration to the user

• The machinery for material-cut couple becomes extendable:
– It has the set {, and } by default
– But is extendable to any other type of particle

• Dedicated tests are added to check for conformance of secondary 
production

• A test using a simple user stepping action could do it

• Backward compatibility should be considered as well
– At least for some time



Refactoring transportation
• Currently, only one transportation object exists in the memory:

– Either G4Transportation, G4CoupledTransportation or 
G4ITTransportation

– It deals with all particle types:
• neutral and charged particles, optical photons, phonons, etc

• Idea is to provide at least two flavors of transportation that co-exist:
– One for charged particles, one for neutral particles
– Eventually one also for optical photons

• As velocity calculations differ from other particles

• Further extensions/specializations to be also considered:
– VecGeom navigation: optimized/vectorized, implementation with 

modern C++
– À la DagMC: direct and efficient navigation in CAD geometries
– DNA navigation: better serve the case of radicals

• Revision will be extended to “Coupled Transportation”:
• Study in progress. Plan to deliver first implementations in 2019 as 

an option in G4VModularPhysicsList::AddTransportation().



Use of HPC – short-term developments

• Existing supercomputers

– Cori (32-core/node Haswell @ 2.3 GHz + 68-
core/node KNL @ 1.4 GHz)

– Edison (24-core/node Ivy-Bridge @ 2.4 GHz)

• Upcoming supercomputer

– NERSC 9 supercomputer (2019)

– Accelerators 

• Not next-gen KNL => no AVX-512 instruction set







Extending Crystal Structure Capabilities
• Geant4 crystal structures implemented and working:

– Very flexible structure thanks to the G4ExtendedMaterial class, 
updates can be done without any change to existing G4 classes.

• Store the lattice parameters (unit cell) and elasticity tensors (used by 
phonon)

– Capability of compute structure factor and other properties (can be 
updated with more function depending on the future needs)

• Currently used by the G4Channeling process:

– The process get the crystal lattice orientation from the 
G4LogicalCrystalVolume and the evaluated data from the 
G4ChannelingData (subclass of G4MaterialExtension)

• Future updates are related to the needs of the processes

– Migration of Phonon processes

– Coherent X-ray scattering, Diffraction

• Support for powders/polycrystals?



TiMemory Performance Monitoring
• TiMemory is a lightweight “in-situ” package for consistent and automated 

performance reports.

– Supplements profilers – profilers have overhead and that overhead 
skews/misrepresents run-time

• Cross-language ⇒ C, C++ and Python implementations can be used 
independently or simultaneous

• Built-in features (via Python)

– Timing and memory plotting

– Support for attaching analysis as CTEST_NOTES and attaching images 
as <DartMeasurementFile> to CDash dashboard






