

New 5D gamma conversion model

D. Bernard & I. Semeniouk LLR, Ecole Polytechnique and CNRS/IN2P3, France

23rd Geant4 Collaboration Meeting August 2018, Lund, Sweden

http://llr.in2p3.fr/~dbernard/polar/harpo-t-p.html

γ conversions to e^+e^- pairs

•	Target, final state	threshold
	• nucleus (nuclear conversion) $\gamma Z ightarrow e^+ e^- Z$	$2mc^2$
	• electron (triplet conversion) $\gamma e^- \rightarrow e^+ e^- e^-$	$4mc^2$

A three-particle final state, even when the trajectory of the recoiling target cannot be detected.

• A 5D phase space

- 3 particle final state, 4 1 = 3 free parameters for each one,
- energy-momentum conservation fixes 4 of them.

- +, -, r = positron, electron, recoil. ϕ azimuthal, θ polar angles.
- $\Omega \equiv (\phi_+, \phi_-, \theta_+, \theta_-, x_+ \equiv E_+/E_\gamma)$

The Bethe-Heitler differential cross section

• Analytical 5D differential cross section

• First-order Born approximation: (a) and (b) diagrams. Excellent approximation:

- for nuclear conversion $(M_{
 m nucleus} \gg m)$, m electron mass.
- for high-energy triplet conversion $(E \gg mc^2)$ Mork, Phys. Rev. 160 (1967) 1065.
- Non-polarised (Bethe and Heitler, Proc. R. Soc. Lond. A 146 (1934) 83),

Polarised (Berlin and Madansky, Phys. Rev. 78 (1950) 623; May, Phys. Rev. 84 (1951) 265.)

- Linear photon polarisation (not circular), no polarisation transferred to the final leptons
- Point-like target (extended-nucleus very-high- q^2 suppression neglected)
- Very-high-energy LPM (Landau-Pomeranchuk-Migdal) suppression neglected
- Coulomb (final state electrostatic interactions between leptons) corrections neglected
- At face value, assumes that the recoil energy is negligible \Rightarrow $E_{-} = E E_{+}$

Bethe-Heitler differential cross section: divergences

• Here the non-polarised expression

Bethe and Heitler, Proc. R. Soc. Lond. A 146 (1934) 83

$$= \frac{-\alpha Z^2 r_0^2 m^2}{(2\pi)^2 \omega^3} dE_+ d\Omega_+ d\Omega_- \frac{|p_-||p_+|}{|\vec{q}|^4} \\ \left[\left(\frac{p_+ \sin \theta_+}{E_+ - p_+ \cos \theta_+} \right)^2 (4E_-^2 - q^2) + \left(\frac{p_- \sin \theta_-}{E_- - p_- \cos \theta_-} \right)^2 (4E_+^2 - q^2) + \frac{2p_+ p_- \sin \theta_+ \sin \theta_- \cos \phi}{(E_- - p_- \cos \theta_-)(E_+ - p_+ \cos \theta_+)} (4E_+ E_- + q^2 - 2\omega^2) - 2\omega^2 \frac{(p_+ \sin \theta_+)^2 + (p_- \sin \theta_-)^2}{(E_+ - p_+ \cos \theta_+)(E_- - p_- \cos \theta_-)} \right]$$

with:
$$|\vec{q}|^2 = |\vec{p_+} + \vec{p_-} - \vec{k}|^2$$
.

• Divergences:

 $d\sigma$

• For e^+ and $e^ \frac{1}{(E - p \cos \theta)}$ forward divergence at high energies, the easy ones • $\frac{1}{q^4}$ small recoil divergence, involves several kinematic variables in a correlated way

Correlated divergences: Consequences for pre-existing physics models

- No attempt to sample the 5D differential cross-section
- No attempt to generate a target recoil momentum
 - The electron and the positron are generated in a plane that contains the photon
 - Azimuthal angles back to back, $\phi_- = \phi_+ \pm \pi$
- Single-particle polar angle θ distribution, decent.
- "Energy share", x_+ distribution, exact.
- Electron and positron polar angles θ_{-} and θ_{+} generated independently
 - energy-momentum not conserved in the reaction !
 - some artificial transverse recoil apparently generated, but distribution wrong and direction in the "conversion plane"
- Polarised model wrong.

[polarisation **phase** bug corrected, though, in the 10.4beta release V. Ivantchenko & Ph. Gros, Sept. 2017.]

 $x_+ \equiv E_+/E_{\gamma}$

(E < 1 GeV) high-performance $\gamma \rightarrow e^+e^-$ telescopes: ongoing projects

Three active targets (i.e. combined converter + tracker) techniques being developed:

- Homogeneous low-density active targets (gas detectors): HARPO, Adept
- Tungsten-less, silicon-wafer stacks (e-ASTROGAM, AMEGO) and (so) many past other ones
- Homogeneous ultra-high-spatial-precision, high-density, active targets: emulsions (GRAINE)

Angular resolution due to unmeasured nucleus recoil:

(normalized to $E^{-1.25}$)

Need an exact simulation of the conversion ! ("HELAS" is one of G4BetheHeitler5DModel's ancestors) FF: atom electrons screening form-factor

P. Gros et al., Astropart. Phys. 88 (2017) 60

G4BetheHeitler5DModel development: Context: HARPO

- Works on paper
 - Telescope performance
 - Polarimeter performance
- Experimental development
 - Gas (argon-isobutane) Time projection chamber (TPC) SPIE 9144 (2014) 91441M
 - Validated in (polarised) gamma-ray beam, NewSUBARU, U. of Hyôgo, Japan

Ph. Gros et al., SPIE (2016) 99052R

- D. Bernard, Nucl. Instrum. Meth. A 701 (2013) 225
- D. Bernard, Nucl. Instrum. Meth. A 729 (2013) 765

Azimuthal angle distribution $11.8~{
m MeV}~\gamma$ in $2.1~{
m bar}$ Ar-iC4H10 95-5%

Ph. Gros et al., Astropart. Phys. 97 (2018) 10

http://llr.in2p3.fr/~dbernard/polar/harpo-t-p.html
http://llr.in2p3.fr/~dbernard/polar/harpo_en/
arXiv:1805.10003 [astro-ph.IM]

G4BetheHeitler5DModel: Sampling Method: 1

- Mitigation of main, correlated, divergence: perform each step in appropriate Lorentz frame
 - Center-of-mass system (CMS) boost determined from photon energy E and target mass M.
 - Five variables are taken at random,

variable Lorentz frame name target and pair polar angle CMS θ e^+e^- invariant mass μ θ_{ℓ} electron and positron polar angle pair frame ϕ_{ℓ} electron and positron azimuthal angle pair frame ϕ target and pair azimuthal angle CMS

- In the CMS, target (mass M) and pair (mass μ) are back-to-back with opposite momenta.
- "Decay" of the pair to an electron and a positron performed in the pair Lorentz frame.
- The lepton 4-vectors are boosted "back" to the CMS.
- The three final particle 4-vectors are boosted "back" to the laboratory Lorentz frame.
- The Bethe-Heitler variables are obtained from the 4-vectors.
- The probability density function (pdf) is computed.
- Final-state phase space normalization for this set of cascade decays:

Review of Particle Physics (Particle Data Group) See eqs. (1)-(3) in Nucl. Instrum. Meth. A 899 (2018) 85

• Note that in contrast to Bethe-Heitler taken at face value, we **do conserve energy momentum** $E = E_{-} + E_{+} + E_{r}$

 $(\ell: \text{lepton})$

G4BetheHeitler5DModel: Sampling Method: 2

Mitigation of residual, mostly uncorrelated, divergences:

• [2012 - 2017]: SPRING/BASES implementation of VEGAS method.

(S. Kawabata, Comput. Phys. Commun. 88 (1995) 309.)

Several seconds CPU overhead for each (photon-energy, target Z)

Sytematic verification against known results (1D distributions, total cross sections ...)

Nucl. Instrum. Meth. A 729 (2013) 765 Astropart. Phys. 88 (2017) 60

[2018]: change of variable
 Nucl. Instrum. Meth. A 899 (2018) 85
 I. Semeniouk & D. Bernard, 14th Pisa Meeting on advanced detectors, 27 May - 02 June 2018, Isola d'Elba

• Check also previous Geant4 presentations:

Jan. 2018	CERN	Geant4 EM meeting	"stand-alone C++ version verified"
Sept. 2017	Wollongong	Geant4 User Workshop	"VEGAS-free, but still fortran"
April 2017	Guildford	Geant4 Space Users' Workshop	"de-VEGAS-ification in progress"

Implementation

- G4EmLowEPPhysics physics list ($E < 80 \,\mathrm{GeV}$)
- Gamma Conversion model G4BetheHeitler5DModel
- Inherit total cross section from G4BetheHeitlerModel
- Provide final state: SampleSecondaries
- Models flags provided via G4EmParameters flags and UI commands
 - Recoil particle (ion or electron) : Nuclear / triplet / (Z / 1) natural mixture
 - Isolated targets (QED checks), charged targets in atoms (detector simulation)
- Linearly polarised / non polarised photons (from norm of photon polarisation vector)
- SampleSecondaries CPU time (μ s/event), argon, 1 GeV

G4BetheHeitler5DModel G4BetheHeitlerModel 74. 0.9

See also Sec. 5.4 and Fig. 8 of Nucl. Instrum. Meth., A 899 (2018) 85.

• No flag for primary interaction implemented yet.

TestEm15

G4BetheHeitler5DModel: Verifications again

Recoil momentum distribution compared to the analytical high-energy expression from Jost, Phys. Rev. 80, 189 (1950). The ratio plot is relative to Jost.

Polarisation asymmetry as a function of available energy, compared to published asymptotic expressions

I. Semeniouk & D. Bernard, 14th Pisa Meeting on advanced detectors, 27 May - 02 June 2018, Isola d'Elba P. Gros et al., Astropart. Phys. 88 (2017) 60

Changes made since 10.5-BETA announcement

- TestEm15
 - Protection for case without gamma conversion
 - Use CLHEP::Hep3Vector::orthogonal() for coordinate axis definition
 - Use G4NistManager to allow use of predefined Geant4 materials
- G4BetheHeitler5DModel
 - Code clean up
 - Bug fix: Polarisation vector was used not normalized in coordinate transformation
 - Use inverted CDF for X generation (15 20% speed up)
 - Use CLHEP::Hep3Vector::orthogonal() for coordinate axis definition
 - Replace if with std::copysign in ϕ calculation

Committed to Geant4 trunk branch.

Documentation

Edition of Physics Reference Manual, Release 10.4 (April 2018)

- 6.5.4 Five-dimensional (5D) Bethe-Heitler gamma Conversion to e+e-
- 13.10 Pair production by Linearly Polarised Gamma Rays Five-dimensional (5D) Bethe-Heitler Model

Exact reference numbers to be checked when 10.5 Physics Reference Manual is out.

A cknowledgements

And warm thanks to :

- Vladimir Ivantchenko
- Mihaly Novak
- Philippe Gros [The HARPO Collaboration]

Back-up slides

Screening of target electric field by atomic electrons

small- q^2 screening suppression: ${\cal F}(q^2)$ form factor

- coherent (nuclear conversion)
- incoherent (triplet conversion)

LPM

Landau-Pomeranchuk-Migdal Review of Particle Physics (Particle Data Group)