Hadronic Validation: Status and Plans

Geant4 Collaboration Meeting 28 August 2018 Dennis Wright (SLAC) with contributions from Julia Yarba (FNAL)

Outline

- Overview of hadronic validation
- Highlighted results from 2017/2018
 - trends in models (FTF, QGS, Bertini)
- Under-validated areas
 - RDM, HP, thick target (not calorimeters)
- Infrastructure
 - problems, metrics, repository
- Plans

Overview of Hadronic Validation (1)

- Purpose:
 - monitor evolution of hadronic models
 - provide feedback to developers
 - inform user community
 - quality assurance (and credibility)
- Hadronic validation taking place mainly at FNAL and CERN
 - other efforts in special areas (hadron therapy, radioactive decay)
- Wide range of energies, target elements, reactions tested
 - some gaps still exist
 - shower shapes not usually included here \rightarrow calorimeter studies

Overview of Hadronic Validation (2)

- Longitudinal validation is done regularly
 - all public releases
 - most reference tags
- Several different infrastructures currently used for validation
 - automated comparisons with online displays
 - hundreds of Geant4 tests (also used for system testing)
 - developer tests run by individuals
- Large, important effort
 - perennially under-staffed

Validation Effort at FNAL

- Compare to data from 0 to 158 GeV
 - Beams: p, p-bar, π , K, μ , γ
 - Targets: H through U
 - Includes data from HARP, NA61, BNL, MIPP, CMS
 - Tests 19, 23, 47, 48, 75
- Processes and models tested
 - Capture/annihilation
 - γ–nuclear
 - Intranuclear cascades
 - QCD string models
 - Selected physics lists: FTFP_BERT, QGSP_BERT, NuBeam, Shielding,
- Validations performed at each release, most reference tags and when significant developments occur

Validation Effort at CERN

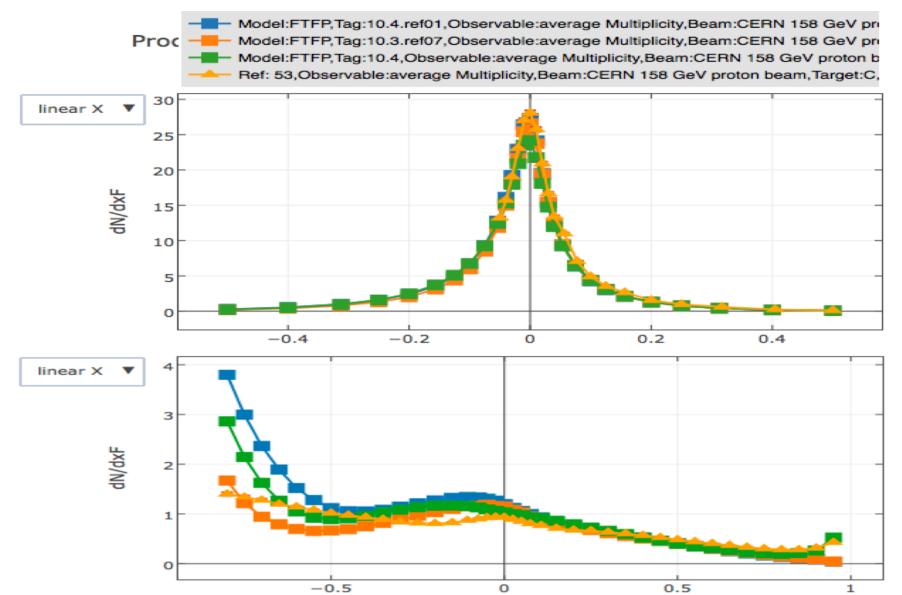
- Hadronic tests
 - NeutronXS2.0
 - Test30 (low to intermediate energy)
 - Test35 (intermediate energy)
- Shower shapes (not strictly hadronic, but strongly related)
 - Compared to ATLAS, CMS test beam data
 - Length, width, visible energy, resolution
 - Analysis performed regularly and monitored for change
- Validations performed at each release, most reference tags and when significant developments occur

Others

• Neutrons

- Livermore : GND
- CIEMAT: HP database
- Low energy models
 - INFN
 - Sevilla : cascades with n_TOF neutrons
- Validation for hadron therapy
 - INFN Catania
 - Wollongong
- Radioactive decay (Laurent Desorgher, Dennis Wright)

Highlighted Results from 2017/2018


Trends in FTF

- FTF has been in active development for several release cycles
 - largely focused on improving MC agreement with the thin target data at intermediate or high energies
 - however, for the past 2 releases most of the developments were withheld due to negative impact on hadronic showers
- Several additional updates from late 2017 were included in early reference tags of 10.4, with a controversial validation outcome
 - In a number of areas, degradation is observed wrt 10.3 and/or public 10.4, both at intermediate or high energies
 - Details:

https://indico.cern.ch/event/702280/contributions/2895765/attachment s/1600608/2539512/G4HAD-Feb14-2018-v2.pdf

• modeling of antiproton production in hadron-nucleus interactions at intermediate energies has "disappeared"

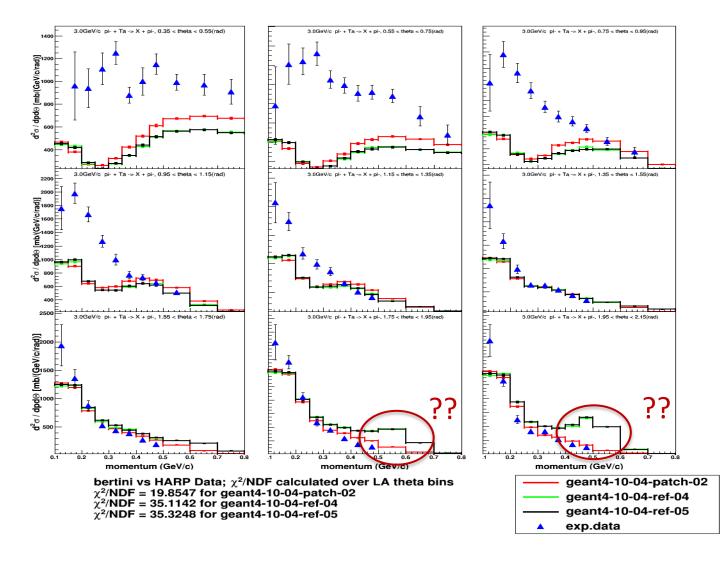
FTF: 158 GeV/c p C $\rightarrow \pi^+$ X (top), p X (bottom)

Trends in QGS

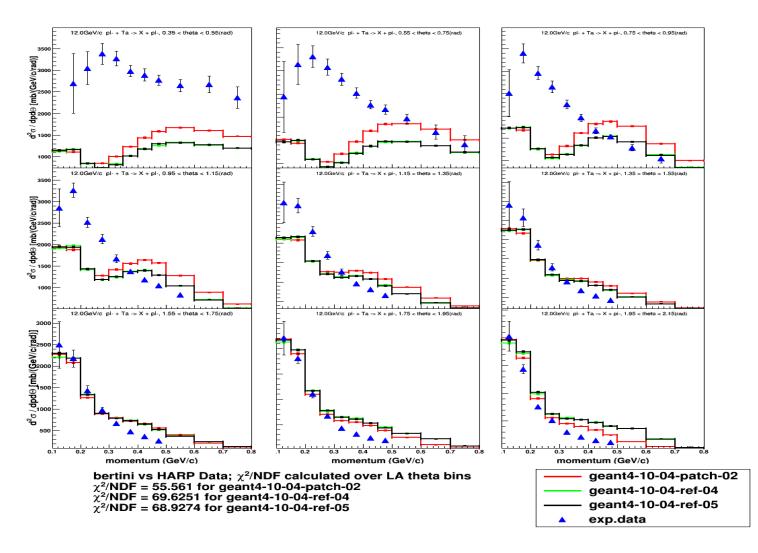
- QGS has been in re-factoring for several development cycles
 - To make the algorithms/implementation better comply with the model as originally published
 - changes in the algorithms require re-tuning
 - work on QGSP somewhat tends to be pushed back due to ongoing attempts to improve FTF
- Updates partially included in public releases but certain things remain in development releases only
 - as validation shows, development revision of QGS already gives somewhat better agreement with the data at the high energy end than the official version
 - Still working on it, so not all updates released

Details:

https://indico.cern.ch/event/702280/contributions/2895765/attachments/1600608/2539512/G4HAD-Feb14-2018-v2.pdf


Trends in Bertini

- Relatively stable for several releases
 - except for bug fix leading into 10.3, that refined production of low energy neutrons in hadron-nucleus interactions
- Recent developments
 - extended strange pair production
 - correct nucleon pair production in pion or muon nuclear absorption
 - collectively (and perhaps combined with other updates in G4/HAD), this resulted in
 - some discrepancies in modeling hadron+nucleus -> hadrons
 - improvement in modeling of pi- capture
 - Details:


https://indico.cern.ch/event/735608/contributions/3045899/attach ments/1671702/2682288/G4HAD-June20-2018.pdf

• Re-tuning of Bertini is a possibility

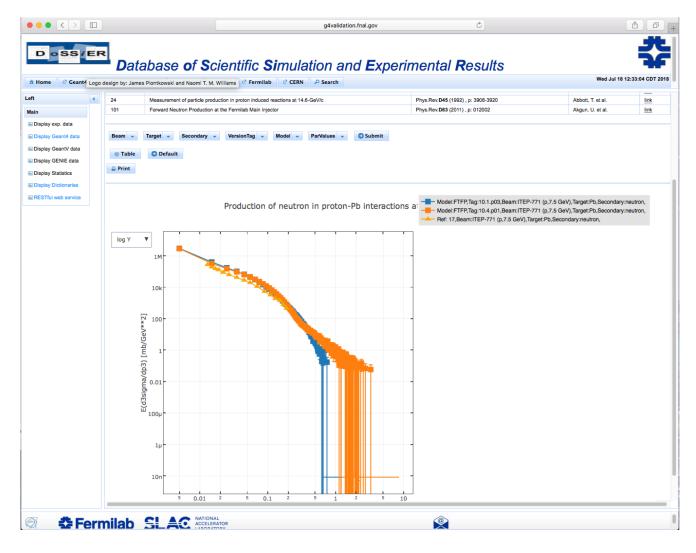
Example Bertini Validation Results (I) π^- production by 3GeV/c π^- on Ta

Example Bertini Validation Results (II) π^- production by 12GeV/c π^- on Ta

Under-validated Areas

- Thick target (multiple interaction lengths)
 - we have very few such tests (although some data exist)
 - data from many such experiments are problematic (systematics)
- Radioactive decay
 - database now well maintained, but few tests are done and none are online
- More ion-ion validations would be nice
- Neutrons
 - both HP and GND libraries maintained
 - many tests exist, very few online

Infrastructure


Problems/Challenges

- What metric to use to assess developments/improvements
 - improvements in one area may result in degradation in other areas
 - χ^2 /NDF not always a good measure; values often quite large in hadronics
 - still no solution to this problem
- How to compare consistently across many tests/data sets
 - different energy regimes, different targets
 - big challenge in the G4 HAD group: optimize agreement with thin target data vs thick target and bulk effects (e.g. shower shapes)
 - FTF story of the past several years: improved agreement with thin target data gets worse for simulated shower

Metrics

- MC and Data overlay (visual inspection)
 - very useful, but not quantitative
- χ^2 /NDF (for individual distributions or groups of distributions)
 - traditional test
 - in hadronics values are typically large and outside meaningful range
 - also, because of strongly peaked distributions, too much weight given to small angles, small energies
- MC/Data ratio
 - sometimes better than χ^2
- Perennial discussion in hadronics group about how to improve the metric
 - G test, γ test

Example DoSSiER Display (II) 7.5GeV/c p+C -> n + X at θ=119deg

Validation Repository

- DoSSiER is available
 - https://g4validation.fnal.gov:8080/DoSSiER
 - web application, using RESTful web service
 - contains comparisons, data references, plots
- Currently under development
 - will replace old interface (no longer maintained)
 - link to old interface is still on Geant4 web page and broken
 - many tests not yet moved over to DoSSiER
 - insufficient manpower?

Plans

Validation Plans for 2018/2019 (1)

- Continued operation and maintenance of existing tests and validations (FNAL, CERN, CIEMAT, INFN, Wollongong,)
- Transform test-beam simulations from LHC experiments into standalone validation applications (K. Nikolics, W. Pokorski)
- Validation with BNL, MIPPS, new high granularity CMS test beam data (FNAL)
- Low energy model validation (P. Cirrone, C. Mancini)
- Cascade model validation using n_TOF evaluated neutron flux (M. Cortes-Giraldo

Validation Plans for 2018/2019 (2)

- Physics highlights release page
- Evaluate new metrics for validation comparisons
- Restore online validation plots