

Geant 4

1

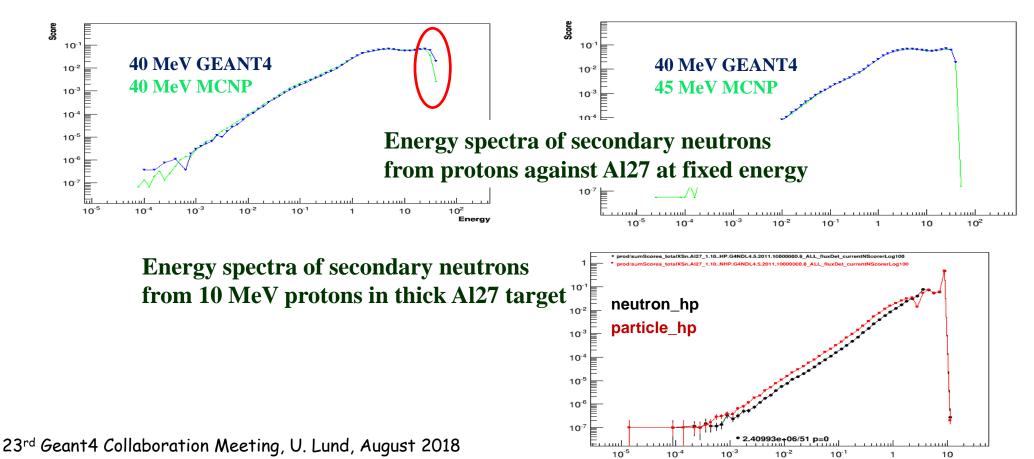
status and plans

23rd Geant4 Collaboration Meeting, 27th-31st August 018

Pedro Arce Medical Applications Unit, CIEMAT, Madrid, Spain Emilio Mendoza Nuclear Innovation Unit, CIEMAT, Madrid, Spain

23rd Geant4 Collaboration Meeting, U. Lund, August 2018

P.Arce/E.Mendoza



In Geant4 release since 10.2 (Decembre '16)

particle_hp = neutron_hp extended for charged particles (p,d,t,He3,α)

+ Number of particles of a type produced in an interaction was not sampled in neutron_hp (except for gammas): Integer value was taken: $2.43 \rightarrow 2$

+ Correct interpolation of tables for secondary energy spectra: If incident particle energy is 40->44.999... MeV: uses table of 45 MeV

Adjusting final state

User must follow "Guide for Application Developers":

- Set environmental variable G4PARTICLEHP_DO_NOT_ADJUST_FINAL_STATE to 1
 - Do not conserve baryon number nor energy if database does not provide channel by channel data (as TENDL), but only particle yields (also happens for some isotopes in neutron_hp)

For each secondary particle DB has only average yield: number of each secondary particle is sampled independently of others

Else you would produce a wrong number of particles:

- > Check that sum of atomic masses and numbers is equal than target nucleus
 - If it is bigger, resample particle yields
 - If it is smaller, create artificially new particles

What nuclear DBs are there?

ENDF-VII:

GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA

- Uses only experimental data
- > Only a few isotopes (p:48, d:5, t:3, He3:2
- > Only $p \rightarrow X$ reactions (MT=5)
 - double differential spectra of resulting particles (n,p,d,...), without channel information (n,nn,np,nna,...)
- > Up to 150 MeV for p (d: 50 MeV, t: 20 MeV, He3: 20 MeV)
- ENDF format

Centro de Investigaciones Energéticas, Medioambientales

TENDL:

- Uses some experimental data + TALYS calculations
- > All isotopes (2400)
- > All channels (also available a DB with only $p \rightarrow X$ reactions)
- > Up to 200 MeV
- > ENDF format

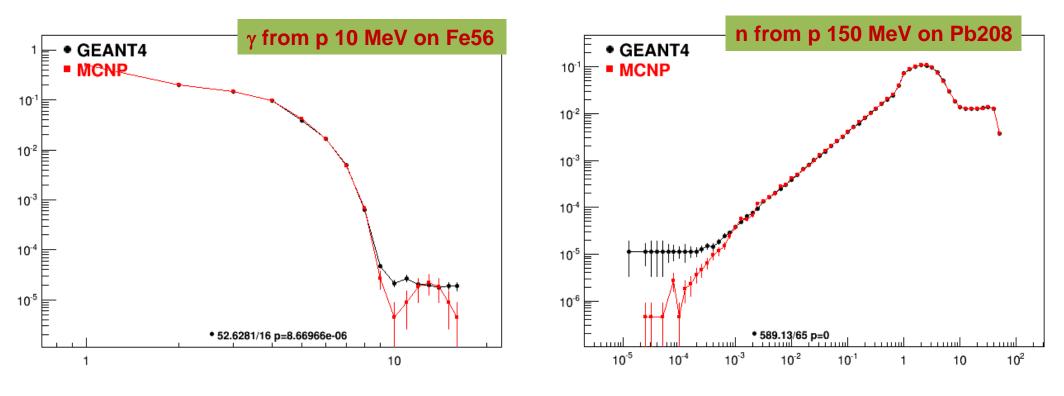
IAEA medical database:

- Only experimental data
- > Only a few reaction channels of a few isotopes
- > Only channel cross sections
- Simple text format

23rd Geant4 Collaboration Meeting, U. Lund, August 2018

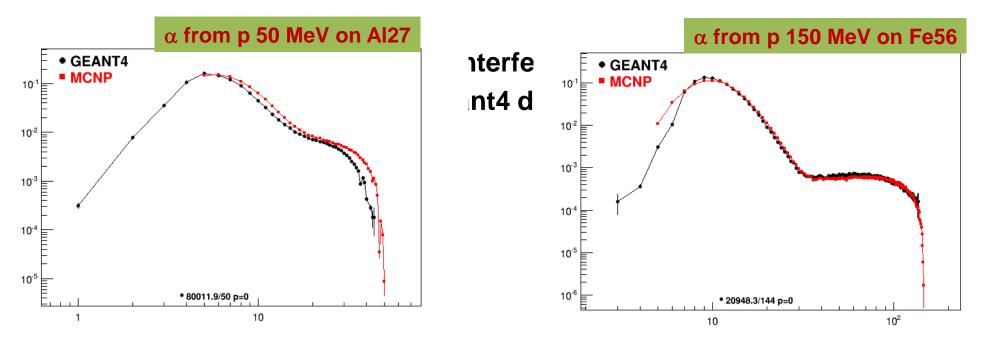
IBANDL database:

- > Only experimental data
- Not all isotopes
- Many experimental measurements channel by channel
- Low energy (up to a few MeV)
- > Own format


P.Arce/E.Mendoza

Validation

- ✓ Check that cross used by Geant4 = cross sections as read in database
- ✓ Compare secondary spectra with MCNP:
 - * Cross sections
 - * Double differential spectra of resulting particles


23rd Geant4 Collaboration Meeting, U. Lund, August 2018

Geant 4

Validation

Bad match for charged particles

□ For each isotope, for each secondary particle type, for each incident energy data for secondaries:

- ➢ GEANT4 uses 3 parameters
 - Energy
 - Probability
 - Angle parameter

MCNP uses 5 parameters

- Energy
- Probability
 - Cumulative probability $\sum_{k=0}^{n} (P_{k-1} P_k)/2$
- Angle parameter
- Interference correction?

Good idea, GEANT4 calculates the cumula-tive probability on the fly, for each interaction!

Emilio Mendoza:

Takes care of update the G4TENDL database with the new versions of TENDL (one per year)

Pedro Arce:

- Takes care of code maintenance / user support
- No manpower for implementing the missing interference for charged secondary particles

Our requests:

Make G4PARTICLE_DO_NOT_ADJUST_FINALSTATE = 1 default

- = 0 : wrong number of secondary particles
- = 1 : no energy conservation