UPDATE ON GENERIC BIASING

PARALLEL 5B

Marc Verderi
LLR/Ecole polytechnique
Lund Collaboration Meeting
August 2018

Statistical test suite

- Development ongoing under test49
 - Some code committed at the trunk
 - But not ready to go at this point!
- Aim at verifying statistical correctness of weight application
 - Verifications done with private tests up to now
 - But need high statistics from time to time for analog vs biased simulation comparison
- Observables:
 - Many variables are common to the various biasing options

- So many options can use the same "testing framework"
 - Also desirable to share as much as possible: better robustness of test, and limited manpower

Statistical test suite : requirements

- It is a Monte Carlo only test
- Run "rave events" simulation problems, and compare distributions from
 - · High statistics analog samples
 - With moderate or small biased ones
 - Note we can also make the reverse:
 - Making rare some topologies with biasing
 - Not useful for physics, but is a valid way to verify differently the correctness of weight calculations
- Test should be able to run under configurations for:
 - 1. Development, with tests ran privately
 - 2. Daily testing:
 - Running with moderate biasing
 - Addressable with moderate statistics

- 3. Heavy testing, for reference tags or releases, or dedicated runs
 - Running with strong biasing
 - Requiring high statistics
- Outputs depend on these configurations:
 - 1. Development: rich ntuples
 - 2. Daily testing: reduced nutples, histograms
 - 3. Heavy testing: histograms
- Comparison:
 - After the MC stage, the analog-biased comparison must occur
 - What outputs possible ?
- I do need technical help to setup this test49 in the testing environment!
- NB: similar scheme needed for fast simulation.

Implicit Capture

- Aka "survival biasing," and "absorption by weight reduction"
- Biasing technique used for neutrons (and gammas) to avoid "loosing" neutrons by absorption.
 - Keep neutrons alive wrt absorption to make it exploring more detector domains.

(A) - Suppress capture but update track weight to reflect this suppression

(B) - Or sample the interaction length without absorption ($\sigma_{abs.} = 0$) and by setting it to some value.

Implicit Capture

- Technique implemented in MCNP and FLUKA under different flavors:
 - MCNP:
 - 1. After collision nucleus has been selected, ignore $\sigma_{abs.}$ and let neutron continues with $w' = w \cdot \left(1 \frac{\sigma_{abs.}}{\sigma_{tot.}}\right)$
 - Rephrasing: conserve total XS, and scale the scattering XS to become the total XS case (A) before
 - Saying this way allows us to find back the MCNP weight using the formalism presented in the general paper
 - 2. Cancel σ_{abs} , when sampling interaction distance case (B)
 - Hence changing the total XS (a case of "exponential transform")
 - Useful in highly absorbing media, to avoid making many steps limited by the (ignored) absorption
 - A case already treated in GB01 example
 - These two schemes actually "bias" the simulation (ie: make it "wrong" as loosing some process)
 - As secondaries from absorption are not produced
 - Technique to be applied far enough from the region of interest, so that ignored secondaries have to effect on this area
 - FLUKA:
 - 3. Add the ability to set the cross-section to a desired value case (B)
 - Something possible in G4 too (GB01).
- Main task is then to refactor these options in easy to use biasing class(es)
- Tentative implementation last year, but I got finally confused by the weight calculation (1.)
 - Reanalyzed this year, and came to above (understandable to me) rephrasing.
- In the work plan since few years, but should come this year!

DXTRAN

- An other option also re-conducted in work plan several times...
- Option in MCNP to scatter particles toward a preferred solid angle
 - Has some similarities in its use-case with the Reverse MC as it targets small ROI
- DXTRAN = stands for deterministic transportation

DXTRAN

- Used only for elastic scattering in MCNP
 - If I'm correct...
- In Geant4, we intend it only for elastic (or quasi-elastic) scattering too.
 - In particular neutrons
- Main difficulty:
 - We must compute $w = \frac{p^a(\Omega)}{p^b(\Omega)}$
 - For $p^b(\Omega)$, the <u>b</u>iased angular distribution, we can chose whatever convenient
 - For $p^a(\Omega)$, the <u>a</u>nalog angular distribution, we need the physics process calculation.
 - That without introducing dependencies
 - Agreed last year:
 - Having an abstract class that some process may implement to provide concrete distributions
 - That will be used by the biasing, messaging only the abstract interface
 - In slow progress (see next presentation)
- DXTRAN scheme will be difficult to deliver this year, a priori
 - But appear of interest to medical during discussion this week
 - So, adding some motivation...

Geometry Importance for various particle types

- Daren reported a bug:
 - Problem 1941 Cannot use importance sampling for more than one particle type
- Problem addressed to the geometry importance biasing scheme as primarily provided in Geant4
 - Alex investigates if this is a bug or a design limitation
- Alternative solution can a priori be provided with generic biasing:
 - Will be demonstrated in extented/biasing/GB03 how to use more than one particle type
 - Only neutron for now.
 - GB03:
 - · implements a technique inspired by geometry-based biasing
 - Adding some other options
 - like probability to apply splitting, to make non-integer effective splitting factors
 - No show-stoppers a priori.
 - As several generic biasing examples already handle several particle types.

Other items on wish list:

- Extension of biasing scheme for AtRest
 - At present, generic biasing acts at PostStep level methods
 - Either for deciding and applying splitting/killing
 - Or by modifying the interaction probability of a physics process and/or its final state generation.
 - This is handled by the (pure virtual) methods of the base class for biasing operators, that returns the biasing operation to be applied:

- Idea if to add the AtRest version of these methods: ie, AtRestProposeXXXX
 - Together with the machinery to handle these in the biasing operations,
 - And in the G4BiasingProcessInterface class.
- Cross-volume biasing:
 - For now, biasing if applied to one volume, without daughters
 - By there are use-cases to –say- force the interaction inside a mother volume
 - In what case, the internal volume structure must be taken into account