
 30 August 2018

Geant4 Repository Openness
Discussion
Geant4 Collaboration Meeting, Lund

Why Now?
✤ The migration of the Geant4 repository to GIT and the

adoption of GIT tools and standard processes offers an
unique opportunity to re-think the way contributions to
the software project are encouraged and then integrated

!2

Encouraging Contributions
✤ Recognition

✤ Author names are part of the GIT history associated to the changed
or added lines

✤ Lower technical barriers
✤ Use the ‘current best practices’ to participate to the open source

project
✤ Make the life of maintainers easier

✤ Use the same tools/process for external and internal contributions
✤ Many different kind of contributions

✤ Easy bug fixes provided by users
✤ Prompt validation of bug-fixes
✤ Medium to large functionality changes and additions

!3

World Read Access to ‘master’
✤ I am assuming that ‘master’ branch in always working and reflects

the latest working state of the G4 repository
✤ Merge requests (MR) at tested against the ‘master’ branch to

validate them in the current [going to be implemented] process
✤ Once a set of MRs validated on the nightlies, all of changes are

going to be merge into the ‘master’
✤ Developers work against the ‘master’

✤ Bug fixes are provided to version branches and then ‘cherry-
picked’ to the master

✤ New developments are done against the ‘master’ and the
developer need to ‘re-base’ time to time to avoid major divergences

✤ If we want that contributors to work the same way we must be able to
make ‘master’ world read

!4

Contributors Use the Same Tools
✤ Contributors should provide GIT merge requests (MR) that are then

reviewed by the G4 collaboration
✤ Same procedure as for the G4 developers

✤ We should require that the contributed MR works well and is
mergeable with the ‘master’ branch
✤ The work of re-basing and solving possible conflicts carried by

contributor
✤ The ‘maintainers’ may apply perhaps a stronger criteria before

accepting an external contribution
✤ e.g. evolution proposal approval for sizable changes, coding

conventions, all tests passed for all platforms, etc.

!5

Addressing the Possible Concerns
✤ Risk for contradictory/diverging merge requests

✤ Large contributions need to be accompanied by a ‘evolution proposal’
in line with the main project objectives

✤ Higher costs for evaluating requests and resolve potential conflicts
✤ Code conflicts are resolved by contributor
✤ Benefits should overcompensate the cost of evaluating requests
✤ We can always refuse a contribution

✤ Ongoing developments should not to be used for productions
✤ Untagged ‘master’ should have a disclaimer and warning that has not

been validated by the Collaboration
✤ Developments are subject to publications by developers themselves

✤ Development branches can be made private (by forking or access
control)

!6

