

Geant4 Performance for Medical Physics Applications

S. Guatelli

School of Physics and Centre For Medical Radiation Physics

Geant4 Collaboration Workshop 2018, Lund, 26th September 2018

Use of MC in medical physics application

Radiotherapy and radiation protection

- Verification of clinical treatment planning systems (TPS)
- Development of instrumentation for radiotherapy QA
- Radiation protection
- Study of novel radiotherapy treatments
- Radiobiology

Imaging

- Detector development for imaging systems
- Development and assessment of reconstruction algorithms
- Study of new radiopharmaceuticals

Requirements from medical physics

Accuracy of results

- Less than 5% max discrepancy with experimental/reference data
- In general it is ok to sacrifice speed for better physical accuracy

Regression tests

- Benchmark physics processes/cross sections/ final states
- Execution time

Summary

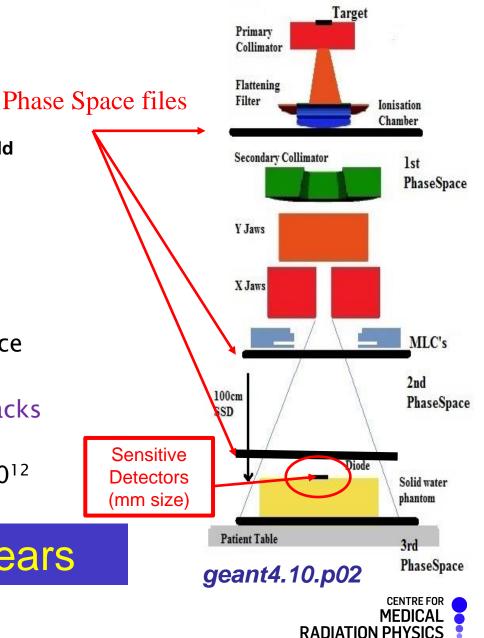
Nowadays MC is used

- as "gold standard" to verify clinical treatment plannings (TPS)
- To develop dose kernels for clinical commercial TPS
- To develop and optimise new detector technology
- To study new radiotherapy treatments
- Still MC is too slow for a clinical use
 - Hospitals usually have limited computing resources and scientific computing skills
 - Hospitals may have local clusters
 - MT option is very useful

Ideally O(min) !!!	1 CPU (~ 3GHz)	Local cluster (200 CPUs)	
Brachytherapy Geant4 TPS	~60 days	~ 7 hours	Keep in mind execution times depend strictly on the application
ProtonCT	~90 days	~ 11 hours	
Microbeam Radiation Therapy	~ 1.4 years	~2.5 days	
Study of novel nanoparticles to enhance radiotherapy clinical outcome (Geant4- DNA)	~1.6 years	~ 3 days	
Neutron dosimetry in external X-ray	~3 years	~ 5 days	

How to improve speed

- Use of variance reduction techniques
- Use of Phase Space Files
- Reverse Monte Carlo
- GPU
- Use of extended computing resources (e.g. supercomputers)


Neutron dosimetry for external X-ray radiotherapy

V. Gracanin, I. Cornelius, S. Guatelli, A. Rosenfeld

Centre of Medical and Radiation Physics, UOW, Australia

- Standard EM Physics
- Hadronic physics with Neutron HP
- Phase Space files are used to reduce computation times.
- Use of Geant4 Cuts Per Region, tracks killing.
- Statistically meaningful results ~10¹² primary electrons

Execution time ~ 3 years

18MV LINAC

Use of GPU

- J. Bert et al, Phys. Med. Biol. 58 (2013) 5593-5611
 - Speed-up factor ~ 80 for a simplistic simulation for PET.
 - In the case of more clinically realistic simulations for emission/transmission tomography, the acceleration factors is 400-800
- X. Jia et al, Phys. Med. Biol. 57 (2012) 7783-7797
 - Development of protontherapy TPS based on TOPAS/Geant4 MC code on GPU (still some approximation in physics are adopted)
 - Execution times: less than 30 s
- X. Jia et al, Phys. Med. Biol. 56 (2011) 7017-7031
 - For realistic IMRT and VMAT plans, MC dose calculation can be completed with less than 1% standard deviation in < 1min using MC on GPU.

Geant4–DNA on GPU

 S. Okada et al, GPU Acceleration of Monte Carlo Simulation at the Cellular and DNA Levels, Innovation in Medicine and Healthcare 2015

Use of supercomputers

- Excellent solution to speed up simulations
- Possible problem: security
 - Confidential patient data
 - Confidential industrial, vendor data
 - May require encrypted processing

