
CMS G4 Simulation Application: Computing Performance
V. Daniel Elvira, Vladimir Ivantchenko, Kevin Pedro
Geant4 Collaboration Meeting
Lund, Sweden, August 27th, 2018

(basically K. Pedro’s
CHEP talk)

• CMS full simulation uses Geant4

• Run 1, 2: MC production (gen, sim, reco, analysis)
took 85% of total CMS CPU resources, with the G4
module taking 40% of the total

• Largest contributors to CPU usage in Geant4:
geometry, magnetic field, EM physics

• CMS has implemented numerous technical
options and approximations to improve CPU usage
in full simulation application (fast simulation
techniques – using ATLAS language)

• Continue to explore new options and improvements
– Including the GeantV transport engine, effective use of HPC, ML for fast simulation

Overview

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden2

~ 60%
~15%

~10% Geometry
& Magnetic
FieldEM Physics

Had.
Physics

CMS user actions other

Geant4 10.0p02
(similar in other versions)

The CMS Detector

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden3

Phase 0 Detector
(Run 1, 2)

The CMS Detector

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden4

Phase 1 upgrade
(Run 3) 127M

The CMS Detector

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden5

Phase 2 upgrade (HL-LHC era, starting in Run 4)
Phase 1 upgrade

(Run 3) 127M

1947M

The CMS Detector

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden6

Phase 1 upgrade (Run 3)
15k

The CMS Detector

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden7

High Granularity
Calorimeter (HGCal)
Silicon, scintillator
~6M channels

Phase 2 upgrade
(HL-LHC)

15k
Phase 1 upgrade (Run 3)

Challenges of HL-LHC Era

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden8

• CMS Phase 0 and Phase 1 simulation
geometries have 2.1 million elements

• Phase 2 geometry has 21.9 million elements:

– Increase in CPU time for simulation

But need more simulated events, better physics accuracy, in a more complex geometry

Reconstruction will take longer (and a larger fraction
of CPU resources) due to pileup, granular detectors

• Simulate more events to keep up with
HL-LHC data volumes: 10×(Phase1)

• May also need to switch to more “expensive”
physics lists to simulate HGCal

Existing Improvements as of end of 2017

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden9

• Static library: avoid calls to procedure linkage table (PLT) for dynamic loading of
libraries

• Production cuts: 0.01mm (pixel), 0.1mm (strip tracker), 1 mm (ECAL/HCAL), 0.002
mm (muon systems), 1 cm (support structure)

• Tracking cut: 2 MeV (within beampipe) → avoid looping electrons
• Time cut: 500 ns
• Shower library: use pre-generated showers in forward region (HF, ZDC, Castor)
• Russian roulette: discard N-1 neutrons < 10 MeV or gammas < 5 MeV (in

calorimeters), retain Nth particle and assign it a weight of N
• FTFP_BERT_EMM: modified physics list, simplified multiple scattering model for most

regions (default used for HCAL, HGCal)
– When all optimizations applied together, CMS achieves ~3–5× speedup!

• From HEP Software Foundation
Community White Paper
o CMS Phase 0 detector, Geant4 10.2

• HF shower library, Russian Roulette have
largest impacts

• Cumulative effects: with all
improvements, simulation is 4.7× (3.4×)
faster for MinBias (ttbar)

• CMS simulation takes 4.3 sec†/event
(24.6 sec†/event) for MinBias (ttbar)

†1 sec = 11 HS06 for test machine

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden10

Time performance impact of existing improvements
Relative CPU usage

Configuration MinBias ttbar

No optimizations 1.00 1.00

Static library 0.95 0.93

Production cuts 0.93 0.97

Tracking cut 0.69 0.88

Time cut 0.95 0.97

Shower library 0.60 0.74

Russian roulette 0.75 0.71

FTFP_BERT_EMM 0.87 0.83

All optimizations 0.21 0.29

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden11

Multithreading

• Geant4 includes event-level multithreading
• Nearly perfect scaling with physical cores,

further 30% gain from hyperthreading
• Memory reduced by factor of 10

(vs. multiprocessing approach)

• Similar gains in throughput observed,
memory usage remains under 2GB

Ø More efficient use of grid resources
(included in CMS production releases)

Sp
ee

du
p

Num Workers

57 physical cores

CMSSW multithread capable
as of:
• Run 2 (Spring 2016) for reco
• Run 2 (Spring 2017) for

generator and Geant4
modules

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden12

2018 improvements: geometry

VecGeom: new library for detector geometry
• Supports vectorization and new architectures
• Code rewritten to be more modern and efficient (vs. Geant4, ROOT, USolids)
• Can be used in scalar mode with Geant4
• CMS observes 7–13% speedup with similar memory usage
→ Just from code improvements, no vectorization!

Ø Included in latest CMS production releases to be used in 2018 physics program
o First mainstream use of vectorized library by experiment

Relative CPU usage

Geometry library MinBias ttbar

Native 1.00 1.00

VecGeom 0.87 0.93

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden13

2018 improvements: magnetic field

• Faster stepper (G4DormandPrince745) for tracking in magnetic field
o Also a more robust algorithm

• Smart tracking: energy-dependent propagation through EM fields
• CMS observes 8–10% speedup with these optimizations (preliminary)
o Enabled by migration to latest Geant4 version 10.4

Relative CPU usage

Stepper MinBias ttbar

G4ClassicalRK4 1.00 1.00

G4DormandPrince745 0.93 0.98

G4DormandPrince745
+ smart tracking

0.92 0.90

(tested w/ gcc 7.0
and 16 threads)

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden14

Potential improvements: the GeantV transport engine

• CMS has already achieved significant speedups in Geant4 and enabled
event-level multithreading for more efficient use of resources

• However, even this will not suffice for the demands of the HL-LHC era
• Enter GeantV: Vectorized Transport Engine
o Track-level parallelism: process multiple

events simultaneously
o Exploit single instruction, multiple data

(SIMD) vectorization
o Group similar tracks into basket (based

on particle type, geometry/material)
o Send entire basket to algorithm:

process particles in parallel

A. Gheata

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden15

Early Testing of GeantV in CMSSW
• Started with integration into toy-mt-framework → included in alpha release
o Used for CMS multithreading R&D (Intel Thread Building Blocks)

Ø Now have a working example compatible w/ CMSSW development release
• Run GeantV in “external loop” mode using CMSSW ExternalWork feature:
o Asynchronous task-based processing

Ø Co-development approach: test consistency of threading models, interfaces
o Provide feedback to prevent divergence between CMS and GeantV

ü This is the main reason why early testing and co-development is ESSENTIAL

External
processing

CMSSW
module acquire()

GeantV

produce()

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden16

Elements of GeantV integration

ü Generate events in CMSSW framework, convert HepMC to GeantV format
ü Build CMSSW geometry natively and pass to GeantV engine
• Using constant magnetic field, limited EM-only physics list
• Sensitive detectors and scoring not yet adapted to new interfaces
• Production cuts also not yet included
Ø First integration of GeantV into experimental software framework

o Run with elements specified above
o Integration with downstream steps (e.g. digitization):

longer timescale, requires more development for thread-safe scoring
• CMS will test GeantV beta release, targeting demonstration of speedup

o Community decision to support GeantV engine as part of Geant4 on timescale of HL-LHC

The GeantV interfaces will change if/when integrated to Geant4. As of now:

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden17

Summary
• CMS has substantially reduced CPU usage of Geant4 full simulation
o ~3–5× speedup using various technical improvements and physics-preserving

approximations
o Continue to find improvements on the order of 10%, e.g. from VecGeom and

magnetic field stepper/tracking optimizations
• HL-LHC and Phase 2 upgrades bring significant challenges:

Ø Need more simulated events, more physics accuracy, in more complicated
geometry… although G4 simulation will take a smaller fraction of total CPU usage

• GeantV transport is one promising approach to speed up full simulation even further
o Alpha release is available, beta release planned for 2019
Ø Successful early integration in CMS software framework!

o Aim for 2–5× speedup with final version

• Efficient use of HPC systems may be a new requirement from funding agencies
• ML techniques will be explored for fast simulation - will probably not replace full sim

2018/08/27 V. Daniel Elvira - G4 Collaboration Meeting, Lund, Sweden18

CMS simulation: next 4+ years

Commissioning	202X-2025/2026:	
computing	performance,	robustness,	
physics	validation:	full	support	from	
Geant4	Collaboration	

Run	2 Run	3

Full	simulation	only	schedule	– CMS	also	has	program	to	use	Fast	Sim	techniques	in	its	Geant4	full	simulation	application	
(machine	learning,	parametrizations),	and	to	execute	full	simulation	in	a	hybrid	cloud	environment	which	includes	HPC	
systems.	(The	GeantV	transport	engine	design	utilizes	SIMD	vectorization	for	fine-grained	parallelism.)

Production	
timeline:

R&D	
timeline:
(targets	
HL-LHC)

Upgraded	shower	libraries,	G4	
DormandPrince stepper,	smart	tracks,	
RN	handling	for	full	reproducibility

DD4HEP	migration,	improved	pileup	infrastructure,	potential	G4	upgrades	(new	releases,	improved	
navigator,	predictions	with	systematic	uncertainties	– VMP,	other	modular	packages	from	R&D)

GeantV	alpha	tag	within	
Toy/actual	CMSSW:	tests	
of	multithread	models,	
track-level	basketization,	
user	interfaces	

Development	of	
Computing	Performance	
(CP)	infrastructure	for	
Geant4	versus	GeantV	CP	
tests	within	CMSSW

GeantV	beta	tag	
within	CMSSW:	CP	
tests	to	evaluate	
speedup,	iteration	
with	developers ? ?

Community	decision.	If	YES,	
iteration	with	developers:	
features,	speed,	integration	
to	Geant4	toolkit

?
Done!

