
REVISIT / RETREAT PRODUCTION
THRESHOLDS AND PHYSICS PROCESS
FRAMEWORK

Parallel 3B

Marc Verderi
LLR/Ecole polytechnique
Lund Collaboration Meeting
August 2018

Layout

• Introduction

• Cuts & Kernel classes

• Stating on Present Scheme

• Considering an Other Scheme

Introduction

Production Thresholds: initial scheme
• Production thresholds (“cuts”) initially considered by Geant4 as an issue

fundamental enough to be addressed at the kernel classes level.

• Initial scheme:
• The definition of cuts was mandatory

• and had to be made in the physics list’s pure virtual method:
void G4VUserPhysicsList::SetCuts()

• that, up to 2011
• and then a default implementation came for SetCuts().

• An explicit declaration of particles subject to cuts was made in the base class
G4ParticleDefinition

• With the predefined and fixed set {𝑒−, 𝑒+, 𝛾 and 𝑝}

• A control at tracking time of the conformance of the produced secondary
particles wrt to their respective thresholds
• Done by the G4SteppingManager after each process DoIt invocation

• But allowing exceptions to this conformance, with the “GoodForTracking” flag

Particles with Production Thresholds

• In addition there is a cut for ions, defined internally in G4HadronElasticProcess as:
• (100*keV)*proton_cut_in_mm

• (Note: threshold advertised as such, but no explicit use of units in the code, so is this robust ?)

• As for protons, this is not a threshold on actual production, but on recoil.

• We see that “cuts” have different functions:
• Practical view: thresholds on heavy/diverging productions (𝑒−, 𝛾), and visibility thresholds (𝑒+, 𝑝, ions)
• Physics-based view: production thresholds (𝑒+, 𝛾), and recoil thresholds (𝑒−, 𝑝, ions)
 Note that the practical view is the one which is the most relevant to us.

Particle

produced

Production

process
Motivation

𝑒− Ionization
Heavy production (limited by energy binding to atoms). These are

actually “recoil electrons”. Threshold needed to limit the production.

𝑒+ Conversion
No divergence nor heavy production. Use case : production cut in

mountain rock for, e.g., dark matter experiments.

𝛾 Bremsstrahlung
Cross-section divergence (actually limited by dielectric effects at

very low energies). Threshold needed to limit the production.

𝑝
(ions)

Hadron elastic
Threshold on recoil proton, e.g. 𝑛 scattering on proton, ejecting it.

Mechanism adapted for ions. Threshold defines the “visibility” cut.

Questions motivating this presentation
1. Where are we compared to the initial scheme ?

2. Isn’t this scheme “overkilling” ?
• Because only a few processes need thresholds

• But issue is “broadcasted” down to fundamental toolkit classes

• And because of the control at tracking time
• And what about the usefulness of the GoodForTracking flag ?

3. Why having a “production cut” for 𝑒+ –issued from a non-divergent process- and
not for all other particles and processes ?

• The argument for the mountain rock case can be made to any particle

4. Could we consider a simpler scheme ?
• Delegating to the few processes concerned by divergence or heavy productions the full

responsibility of handling “their” threshold issue
• Which does not prevent to have centralized tools to configure the cuts

• But without intervention of other entities at tracking time

• And foresee some dedicated tests to check the proper working of these processes
• By using a simple stepping action rather than letting manager caring of this.

• Leaving open to all non-divergent processes the opportunity to define production cuts (as for 𝑒+)
if they wish or can ?

Cuts & Kernel classes

Cuts in particles category
• G4ParticleDefinition allows particles to remember if they are subjects to cuts:

• Public methods:
void SetApplyCutsFlag(G4bool);
G4bool GetApplyCutsFlag() const;

• Implementation:
void G4ParticleDefinition::SetApplyCutsFlag(G4bool flg)
{
if(theParticleName=="gamma"
|| theParticleName=="e-"
|| theParticleName=="e+"
|| theParticleName=="proton")
{ fApplyCutsFlag = flg; }
else
{
G4cout
<< "G4ParticleDefinition::SetApplyCutsFlag() for " << theParticleName
<< G4endl;
G4cout
<< "becomes obsolete. Production threshold is applied only for "
<< "gamma, e- ,e+ and proton." << G4endl;

}
}

• Note also the typedef G4ParticleWithCuts:
• typedef G4ParticleDefinition G4ParticleWithCuts;
• Used in some places.

• But it looks that SetApplyCutsFlag(G4bool flg) is never called !
• at least for FTFP_BERT, FTFP_BERT_LIV/PEN & QBBC
• Making G4bool GetApplyCutsFlag() always false

Cuts in run category
• Cut flags for G4ParticleDefinition objects are set in the physics list base class:

void G4VUserPhysicsList::SetApplyCuts(G4bool value, const G4String& name)
{
(…)

if(name=="all") {
theParticleTable->FindParticle("gamma")->SetApplyCutsFlag(value);
theParticleTable->FindParticle("e-")->SetApplyCutsFlag(value);
theParticleTable->FindParticle("e+")->SetApplyCutsFlag(value);
theParticleTable->FindParticle("proton")->SetApplyCutsFlag(value);

} else {
theParticleTable->FindParticle(name)->SetApplyCutsFlag(value);

}
}

• This is this method which does not look to be called
• hence leaving all G4ParticleDefinition objects with GetApplyCutsFlag() being false.

• Be reassured, this does not mean we don’t have cuts in Geant4 ! ;)
• Processes use the G4ProductionCuts and G4MaterialCutCouple objects to get the cut values

• But this makes void the control of conformance of secondary particles to cuts at tracking
time…

Cuts in tracking category
• The stepping manager DoIt methods:

• void G4SteppingManager::InvokeAtRestDoItProcs()
• void G4SteppingManager::InvokeAlongStepDoItProcs()
• void G4SteppingManager::InvokePostStepDoItProcs()

• void G4SteppingManager::InvokePSDIP(size_t np)

• call for each secondary created by the current process
• the method ApplyProductionCut(secondary)

• If cuts apply to this secondary particle type

• Stepping manager snippet code involved:
if(tempSecondaryTrack->GetDefinition()->GetApplyCutsFlag())
{ ApplyProductionCut(tempSecondaryTrack); }

• ApplyProductionCut method:
• Checks if the (secondary) track conforms to production cuts
• Two cases:

• If the track is set “GoodForTracking” by the process, it is accepted anyway
• Use case: production near boundary
• Mainly (and likely only) for EM processes

• Otherwise if its energy is below the cut, it is set to zero kinetic energy, transferring the energy to local deposit
• And will be later killed if not AtRest processes are attached to it.

• But, because of the previous issue, ApplyProductionCut(…) is not called
• And the control at tracking time is not effective

Stating on Present Scheme

Stating on present scheme : machinery

1. Where are we are compared to the initial scheme ?
• Apparently far…

• G4ParticleDefinition is not used anymore to define the particle with
cuts.
• Making ineffective the stepping manager conformance check implemented in the
ApplyProductionCut(secondary) method !

• In add• In addition, the GoodForTracking flag
is not used:
• Was meant to allow production of secondary

tracks below threshold (in a “high” density
material) that could escape into a low density
volume next to it

• Was not giving much improvement, as
reported by Vladimir.

 So, in practice, the stepping manager is
void wrt threshold conformance checks.

High

density

Low density

primary

secondary

Production at a

distance < range

Stating on present scheme : relevance
2. Isn’t this scheme “overkilling” ?

• Because only a few processes need thresholds
• But issue is “broadcasted” down to fundamental toolkit classes

 We see there is no fundamental need to push the issue to fundamental toolkit classes
• For example, the G4HadronElasticProcess lives without that.

• And because of the control at tracking time
• And what about the usefulness of the GoodForTracking flag ?

• The issue of simulating properly the interface == the issue of simulating properly the
lower energy demand
• Physics processes have the knowledge of their capability to serve the low energy demand

• The tracking can’t judge by itself

 The GoodForTracking flag looks irrelevant.

High

density

Smaller, by similar

density

Same range cut  similar energy

thresholds

 GoodForTracking has small effect

High

density

Much smaller

density

Same range cut  very different energy

thresholds

 Small density side energy cut O(10 eV)

Stating on present scheme : non-divergence

3. Why having a “production cut” for 𝑒+ –issued from a non-
divergent process- and not for all other particles and processes ?

• The argument for the mountain rock case can be made to any particle

• Note : the non-produced for 𝑒+ are accounted for local energy deposit

• Why for 𝒆+ only at kernel level ?
• My answer : I can’t see why…

• We should either:
• Get the kernel rid of 𝑒+ threshold

• Or have the kernel able to provide threshold for all particles

Considering an Other Scheme

Proposal
• Kernel classes are offloaded from cuts control

• Including control at tracking time
• Classes involved: G4ParticleDefinition, G4SteppingManager

• Processes are given the full responsibility to manage their production
thresholds
• Whatever if this is due to divergences or not
• With possibly, and preferably, common tools, shared among packages, to expose

the configuration to the user

• The machinery for material-cut couple becomes extendable:
• It has the set {𝑒−, 𝛾 and 𝑝} by default
• But is extendable to any other type of particle

• Dedicated tests are added to check for conformance of secondary
production

• A test using a simple user stepping action could do it

• Backward compatibility should be considered as well
• At least for some time

