
REVISIT / RETREAT PRODUCTION
THRESHOLDS AND PHYSICS PROCESS
FRAMEWORK

Parallel 3B

Marc Verderi
LLR/Ecole polytechnique
Lund Collaboration Meeting
August 2018

Layout

• Introduction

• Cuts & Kernel classes

• Stating on Present Scheme

• Considering an Other Scheme

Introduction

Production Thresholds: initial scheme
• Production thresholds (“cuts”) initially considered by Geant4 as an issue

fundamental enough to be addressed at the kernel classes level.

• Initial scheme:
• The definition of cuts was mandatory

• and had to be made in the physics list’s pure virtual method:
void G4VUserPhysicsList::SetCuts()

• that, up to 2011
• and then a default implementation came for SetCuts().

• An explicit declaration of particles subject to cuts was made in the base class
G4ParticleDefinition

• With the predefined and fixed set {𝑒−, 𝑒+, 𝛾 and 𝑝}

• A control at tracking time of the conformance of the produced secondary
particles wrt to their respective thresholds
• Done by the G4SteppingManager after each process DoIt invocation

• But allowing exceptions to this conformance, with the “GoodForTracking” flag

Particles with Production Thresholds

• In addition there is a cut for ions, defined internally in G4HadronElasticProcess as:
• (100*keV)*proton_cut_in_mm

• (Note: threshold advertised as such, but no explicit use of units in the code, so is this robust ?)

• As for protons, this is not a threshold on actual production, but on recoil.

• We see that “cuts” have different functions:
• Practical view: thresholds on heavy/diverging productions (𝑒−, 𝛾), and visibility thresholds (𝑒+, 𝑝, ions)
• Physics-based view: production thresholds (𝑒+, 𝛾), and recoil thresholds (𝑒−, 𝑝, ions)
 Note that the practical view is the one which is the most relevant to us.

Particle

produced

Production

process
Motivation

𝑒− Ionization
Heavy production (limited by energy binding to atoms). These are

actually “recoil electrons”. Threshold needed to limit the production.

𝑒+ Conversion
No divergence nor heavy production. Use case : production cut in

mountain rock for, e.g., dark matter experiments.

𝛾 Bremsstrahlung
Cross-section divergence (actually limited by dielectric effects at

very low energies). Threshold needed to limit the production.

𝑝
(ions)

Hadron elastic
Threshold on recoil proton, e.g. 𝑛 scattering on proton, ejecting it.

Mechanism adapted for ions. Threshold defines the “visibility” cut.

Questions motivating this presentation
1. Where are we compared to the initial scheme ?

2. Isn’t this scheme “overkilling” ?
• Because only a few processes need thresholds

• But issue is “broadcasted” down to fundamental toolkit classes

• And because of the control at tracking time
• And what about the usefulness of the GoodForTracking flag ?

3. Why having a “production cut” for 𝑒+ –issued from a non-divergent process- and
not for all other particles and processes ?

• The argument for the mountain rock case can be made to any particle

4. Could we consider a simpler scheme ?
• Delegating to the few processes concerned by divergence or heavy productions the full

responsibility of handling “their” threshold issue
• Which does not prevent to have centralized tools to configure the cuts

• But without intervention of other entities at tracking time

• And foresee some dedicated tests to check the proper working of these processes
• By using a simple stepping action rather than letting manager caring of this.

• Leaving open to all non-divergent processes the opportunity to define production cuts (as for 𝑒+)
if they wish or can ?

Cuts & Kernel classes

Cuts in particles category
• G4ParticleDefinition allows particles to remember if they are subjects to cuts:

• Public methods:
void SetApplyCutsFlag(G4bool);
G4bool GetApplyCutsFlag() const;

• Implementation:
void G4ParticleDefinition::SetApplyCutsFlag(G4bool flg)
{
if(theParticleName=="gamma"
|| theParticleName=="e-"
|| theParticleName=="e+"
|| theParticleName=="proton")
{ fApplyCutsFlag = flg; }
else
{
G4cout
<< "G4ParticleDefinition::SetApplyCutsFlag() for " << theParticleName
<< G4endl;
G4cout
<< "becomes obsolete. Production threshold is applied only for "
<< "gamma, e- ,e+ and proton." << G4endl;

}
}

• Note also the typedef G4ParticleWithCuts:
• typedef G4ParticleDefinition G4ParticleWithCuts;
• Used in some places.

• But it looks that SetApplyCutsFlag(G4bool flg) is never called !
• at least for FTFP_BERT, FTFP_BERT_LIV/PEN & QBBC
• Making G4bool GetApplyCutsFlag() always false

Cuts in run category
• Cut flags for G4ParticleDefinition objects are set in the physics list base class:

void G4VUserPhysicsList::SetApplyCuts(G4bool value, const G4String& name)
{
(…)

if(name=="all") {
theParticleTable->FindParticle("gamma")->SetApplyCutsFlag(value);
theParticleTable->FindParticle("e-")->SetApplyCutsFlag(value);
theParticleTable->FindParticle("e+")->SetApplyCutsFlag(value);
theParticleTable->FindParticle("proton")->SetApplyCutsFlag(value);

} else {
theParticleTable->FindParticle(name)->SetApplyCutsFlag(value);

}
}

• This is this method which does not look to be called
• hence leaving all G4ParticleDefinition objects with GetApplyCutsFlag() being false.

• Be reassured, this does not mean we don’t have cuts in Geant4 ! ;)
• Processes use the G4ProductionCuts and G4MaterialCutCouple objects to get the cut values

• But this makes void the control of conformance of secondary particles to cuts at tracking
time…

Cuts in tracking category
• The stepping manager DoIt methods:

• void G4SteppingManager::InvokeAtRestDoItProcs()
• void G4SteppingManager::InvokeAlongStepDoItProcs()
• void G4SteppingManager::InvokePostStepDoItProcs()

• void G4SteppingManager::InvokePSDIP(size_t np)

• call for each secondary created by the current process
• the method ApplyProductionCut(secondary)

• If cuts apply to this secondary particle type

• Stepping manager snippet code involved:
if(tempSecondaryTrack->GetDefinition()->GetApplyCutsFlag())
{ ApplyProductionCut(tempSecondaryTrack); }

• ApplyProductionCut method:
• Checks if the (secondary) track conforms to production cuts
• Two cases:

• If the track is set “GoodForTracking” by the process, it is accepted anyway
• Use case: production near boundary
• Mainly (and likely only) for EM processes

• Otherwise if its energy is below the cut, it is set to zero kinetic energy, transferring the energy to local deposit
• And will be later killed if not AtRest processes are attached to it.

• But, because of the previous issue, ApplyProductionCut(…) is not called
• And the control at tracking time is not effective

Stating on Present Scheme

Stating on present scheme : machinery

1. Where are we are compared to the initial scheme ?
• Apparently far…

• G4ParticleDefinition is not used anymore to define the particle with
cuts.
• Making ineffective the stepping manager conformance check implemented in the
ApplyProductionCut(secondary) method !

• In add• In addition, the GoodForTracking flag
is not used:
• Was meant to allow production of secondary

tracks below threshold (in a “high” density
material) that could escape into a low density
volume next to it

• Was not giving much improvement, as
reported by Vladimir.

 So, in practice, the stepping manager is
void wrt threshold conformance checks.

High

density

Low density

primary

secondary

Production at a

distance < range

Stating on present scheme : relevance
2. Isn’t this scheme “overkilling” ?

• Because only a few processes need thresholds
• But issue is “broadcasted” down to fundamental toolkit classes

 We see there is no fundamental need to push the issue to fundamental toolkit classes
• For example, the G4HadronElasticProcess lives without that.

• And because of the control at tracking time
• And what about the usefulness of the GoodForTracking flag ?

• The issue of simulating properly the interface == the issue of simulating properly the
lower energy demand
• Physics processes have the knowledge of their capability to serve the low energy demand

• The tracking can’t judge by itself

 The GoodForTracking flag looks irrelevant.

High

density

Smaller, by similar

density

Same range cut similar energy

thresholds

 GoodForTracking has small effect

High

density

Much smaller

density

Same range cut very different energy

thresholds

 Small density side energy cut O(10 eV)

Stating on present scheme : non-divergence

3. Why having a “production cut” for 𝑒+ –issued from a non-
divergent process- and not for all other particles and processes ?

• The argument for the mountain rock case can be made to any particle

• Note : the non-produced for 𝑒+ are accounted for local energy deposit

• Why for 𝒆+ only at kernel level ?
• My answer : I can’t see why…

• We should either:
• Get the kernel rid of 𝑒+ threshold

• Or have the kernel able to provide threshold for all particles

Considering an Other Scheme

Proposal
• Kernel classes are offloaded from cuts control

• Including control at tracking time
• Classes involved: G4ParticleDefinition, G4SteppingManager

• Processes are given the full responsibility to manage their production
thresholds
• Whatever if this is due to divergences or not
• With possibly, and preferably, common tools, shared among packages, to expose

the configuration to the user

• The machinery for material-cut couple becomes extendable:
• It has the set {𝑒−, 𝛾 and 𝑝} by default
• But is extendable to any other type of particle

• Dedicated tests are added to check for conformance of secondary
production

• A test using a simple user stepping action could do it

• Backward compatibility should be considered as well
• At least for some time

