UPDATE ON BIASING

PLENARY 5

Marc Verderi
LLR/Ecole polytechnique
Lund Collaboration Meeting
August 2018

FEATURES UNDER DEVELOPMENT

Implicit Capture

- Aka "survival biasing" or "absorption by weight reduction"
- Biasing technique used for neutrons (and gammas) to prevent "loosing" neutrons by absorption after long travel in matter.
 - Keep neutrons alive wrt absorption to make it exploring more detector domains.

(B) - Or sample the interaction length without absorption ($\sigma_{abs.}=0$) and by setting it to some value.

Implicit Capture

- Technique implemented in MCNP and FLUKA under different flavors:
 - MCNP:
 - 1. After collision nucleus has been selected, ignore $\sigma_{abs.}$ and let neutron continues with $w' = w \cdot \left(1 \frac{\sigma_{abs.}}{\sigma_{tot}}\right)$ biasing case (A)
 - 2. Cancel $\sigma_{abs.}$ when sampling interaction distance case (B)
 - Technique to be applied far enough from the region of interest, as we're loosing secondaries from un-simulated absorption
 - FLUKA:
 - 3. Add the ability to set the cross-section to a desired value case (B)
- Tentative implementation last year, but got finally confused by the actual biasing procedure and related weight calculation (1.)
 - Reanalyzed, and understood this year.
 - Using the formalism for generic biasing in the general paper.
- Should be in 10.5.

DXTRAN

- An option also re-conducted from previous work plans.
- Option in MCNP to scatter particles toward a preferred solid angle
 - Has some similarities in its use-case with the Reverse MC as it targets small ROI
- DXTRAN = stands for deterministic transportation

DXTRAN

- Used only for elastic scattering in MCNP
- In Geant4, we'll apply to elastic (or quasi-elastic) only, too.
- Main difficulty:

- We must compute $w=\frac{p^a(\Omega)}{p^b(\Omega)}$ $p^a(\Omega)$: analog angular distribution
- That without introducing dependencies to physics packages
- Agreed last year:
 - Having an abstract class that some process may implement to provide concrete distributions
 - the biasing messaging only through the abstract interface
 - Progress in defining this differential cross-section class
 - Together with Laurent Desorgher, as interesting the Reverse MC as well
- DXTRAN scheme will be difficult to deliver this year.
 - Although it looks of interest to medical from discussions this week!

Other Items

- Geometry importance biasing for several particle types:
 - Daren reported a bug:
 - Problem 1941 Cannot use importance sampling for more than one particle type
 - Problem related to the geometry importance biasing scheme as primarily provided in Geant4
 - Alex investigates if this is a bug or a design limitation
 - Alternative solution can be provided with generic biasing:
 - Will be demonstrated in extented/biasing/GB03
- Extension of the generic biasing scheme for AtRest particles
 - Duplicate the functionalities developed for PostStep biasing
 - Namely: ability to make splitting/killing, to change the interaction length law (will be interaction time law), to change the final state generation
- Possibly, extend the ability to do —say- interaction forcing in a volume with daughter volumes
 - As done in interaction forcing in ReverseMC.

VALIDATION NEEDS IN BIASING

Validation in biasing : requirements

- Biasing validation rapidly needs large MC samples to verify the correctness of the weight calculations
 - Large samples of analog simulation
 - Compared to small / medium samples of biased simulation
 - In contrast with physics validations, this is a pure MC MC comparison.
- Issue common to all biasing techniques
- Tests should be able to run under configurations for:
 - 1. Development: with tests ran privately
 - 2. "Daily" testing: running with moderate biasing and moderate statistics
 - 3. Reference tags, or dedicated runs: running with strong biasing and high statistics
- Each configuration has an adapted output and a specific comparison stage

Example with Generic Biasing

- Development of a testing suite ongoing under test49
 - Some code committed at the trunk
 - Not ready yet!
- Observables:
 - Many variables are common to the various biasing options

- So, many options can use the same "testing framework"
 - Much desired : better robustness of test, and better use of limited manpower
- I do need technical help to setup this test49 in the testing environment!
 - Once made, could be duplicated for, say, ReverseMC, but also fast simulation

Conclusion

- Biasing continues providing more options:
 - Implicit capture
 - DXTRAN later on
 - Generic scheme to evolve to AtRest case
- Need for automated validation
 - To run pure MC MC validations
 - With several types of validation
 - Technical help needed!
- Still progressing, even if manpower in biasing has always been and continue to be an issue.