
G4Tasking
Geant4 Task-based Parallelism

Jonathan R. Madsen
� jrmadsen@lbl.gov
National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

August 30, 2018

mailto:jrmadsen@lbl.gov


Overview Tasking

• New “tasking” framework for Geant4

◦ Pool of threads without a predefined call-stack

◦ Tasks are essentially function calls that are placed in a queue

◦ Threads in pool are idle until tasks are placed in the queue

◦ When the queue is empty, threads go back to sleep

• Task-based programming benefits

◦ Faster startup and shutdown vs. threads

◦ Higher-level thinking

◦ Better load-balancing

• Threads don’t run through application-defined call-stack – disassociates
call-stack from threads

• Extended on top of v10.5 (beta). Migrated to our GitLab

◦ Only available to internal users

◦ https://gitlab.cern.ch/jmadsen/geant4-tasking

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 2 / 15

https://gitlab.cern.ch/jmadsen/geant4-tasking


Tasking Frameworks Existing Frameworks

• Intel’s Threading Building Blocks (TBB) is a very popular task-based
programming library

◦ Many constructs: parallel for, parallel reduce, parallel do, parallel invoke,
task group, pipelines, flow-graph, scalable memory allocators

◦ Excellent library but it has some drawbacks

. Relatively large overhead

. Fundamental dependency for multi-threading

• OpenMP has supported “tasks” since version 3.0

◦ Creating a task is easy but bundling into task-groups, doing other work, and
joining later is difficult

◦ OpenMP tasks tend to be inefficient

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 3 / 15



Tasking Frameworks Using native tools

• C++11 has a number of features that make generic tasking relatively easy

◦ std::packaged_task

◦ std::future

◦ std::promise

◦ std::forward

◦ std::function/std::bind/lambdas

◦ variadic templates

• std::future and std::promise are paired together for asynchronous execution

• A promise is fulfilled by invoking std::promise::set_value(...) ⇒ signal to
the paired future that the work has been completed

• Invoking std::future::wait() or std::future::get() will block on calling
thread (with std::condition_variable) until the promise is fulfilled

• A std::packaged_task binds the function arguments to enable generic
void packaged_task::operator()() invocation

• A std::packaged_task contains a std::promise and provides a std::future and
invokes std::promise::set_value(...) after operator()() invocation

• Invoke std::packaged_task() ⇒ sets promise ⇒ notifies future

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 4 / 15



Tasking Frameworks Benefits

• No threads in thread-pool? Execute on calling thread ⇒ elimination of
G4RunManager vs. G4MTRunManager

• MT Visualization does not need to create own threads ⇒ instantiate own
thread-pool object or use global instance in G4RunManager

• Sub-event parallelism

◦ Tasks are lightweight – essentially function pointers

◦ Every G4Track could be a “task”

• Concurrent CPU/GPU execution

◦ Allows more than one thread-pool per thread

◦ When GPU is available, we can create a separate pool of threads for
submitting tasks to GPU

◦ Set of threads with affinity enabled (“CPU thread-pool”) and another set of
threads without affinity (“GPU thread-pool”) is thus possible

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 5 / 15



Tasking Frameworks Design

• G4ThreadPool

• G4TaskManager

• G4TaskAllocator classes

• G4VUserTaskQueue

• G4VTask

• G4VTaskGroup

• G4{TBB}Task<Ret, Arg = Ret>

• G4{TBB}TaskGroup<Ret, Arg = Ret>

• G4TaskAllocator ⇒ G4Allocator that does not delete std::shared_ptr<G4Task>

• G4ThreadPool has a G4VUserTaskQueue instance for scheduling the tasks

• G4UserTaskQueue is provided as default ⇒ fast, scalable, thread-safe, and
lock-free

• G4TaskManager (maybe G4TaskHelper) is associated with a G4ThreadPool instance

◦ Constructs task object from function pointer and arguments being passed

◦ Ensures proper insertion of task into task-groups

◦ Acts as a proxy for communication with G4ThreadPool

◦ Provides async function for generic execution of functions

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 6 / 15



Tasking Frameworks TBB Backend Availability

• Generic tasking with native C++ with TBB backend, if desired

• Ideal setup for performance comparison

• G4TBBTaskGroup calls tbb::task_group::run(...) and tbb::task_group::wait() on
internal instance of tbb::task_group

• G4ThreadPool instance does not create any threads

• G4TaskGroup instance has internal tbb::task_group

• G4ThreadPool instance has internal tbb::task_group (for async usage)

• G4TBBTask is essentially G4Task with virtual bool is_native_task() override to
return false

• Essentially, there is an extension on top of TBB that enables tasks and
task-groups to return and combine data

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 7 / 15



Tasking Frameworks Task Groups

• G4TaskGroup is a template: <typename _Ret, typename _Arg>

◦ _Ret: the return type from join() function

◦ _Arg: return type of functions wrapped by tasks (defaults to _Ret)

◦ Improvement over TBB ⇒ all arguments and return types are void

◦ Pass function to G4TaskGroup constructor specifying how to combine/store
tasks

G4TaskGroup<void> void_task_group;

G4TaskGroup<int>

int_task_group(

[] (int& ref, int i) { return ref += i; });

G4TaskGroup<long, int>

long_task_group(

[] (long& ref, const int& i) { return ref += i; });

G4TaskGroup<list<int>, int>

list_task_group(

[] (list<int>& ref, int i) { ref.push_back(i); return ref; });

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 8 / 15



Tasking Frameworks Example

// function being called

int fibonacci(const G4int& n)

{ return (n < 2) ? 1 : fibonacci(n-2) + fibonacci(n-1); }

// function specifying how to combine parallel results

auto join_func = [] (G4int& ref, G4int i) { ref += i; return ref; };

// bundle tasks into groups

G4TaskGroup<G4int> task_group(join_func);

// task_manager handles wrapping function into task

for(G4int i = 0; i < 8; ++i)

task_manager->exec(task_group, fibonacci, 43);

// async interface

G4Future<G4int> fib = task_manager->async<G4int>(fibonacci, 43);

// ... continue working on CPU if desired, including generating more work ...

// block until all tasks in group have finished

int answer = task_group.join();

assert(answer == fib.get() * 8);

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 9 / 15



Tasking Frameworks Ret vs. Arg Example

typedef std::vector<double> Vector;

// sum double results

auto sum_join = [] (double& ref, double i) { ref += i; return ref; };

// store double results in a vector

auto vec_join = [] (Vector& vec, double i) { vec.push_back(i); return vec; };

G4TaskGroup<double> sum_task_grp(sum_join); // Construct the task-groups with

G4TaskGroup<Vector, double> vec_task_grp(vec_join); // their join function

// ... add tasks to task-groups ...

double joined_sum = sum_task_grp.join(); // Wait until finished and

Vector joined_vec = vec_task_grp.join(); // return combined result

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 10 / 15



Tasking Frameworks G4UserTaskQueue

• Composed of N + 1 sub-queues where N ≡ worker threads

• Sub-queues accessed in lock-free manner

inline bool G4TaskSubQueue::AcquireClaim()

{

bool is_avail = m_available.load(std::memory_order_relaxed);

if(!is_avail) { return false; }

return m_available.compare_exchange_strong(is_avail, false,

std::memory_order_release, std::memory_order_relaxed);

}

// loop for finding work in sub-queue

for(G4int i = 0; i < (m_workers + 1); ++i)

{

// get subqueue, note use "n" instead of "i"

G4TaskSubQueue* task_subq = m_subqueues[n];

if(task_subq->AcquireClaim())

{ // if i == GetThreadBin(), pop from top

// if i != GetThreadBin(), pop from bottom (work-stealing)

G4VTaskPtr task = task_subq->PopTask(i == GetThreadBin());

task_subq->ReleaseClaim();

if(task.get())

return task;

}

}

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 11 / 15



VTune Profiling KNL

• Geant4 Tasking

• TBB Tasking

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 12 / 15



VTune Profiling KNL

TBB Tasking

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 13 / 15



VTune Profiling KNL

Geant4 Tasking

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 14 / 15



VTune Profiling Known Limitations

• Limitation for recursive task-groups in fibonacci tests

◦ Serial compute time: ∼9.5 seconds

◦ Investigating but doubt we will ever encounter this situation in Geant4

Geant4 Lund Collaboration Meeting J.R. Madsen (NERSC-LBL) August 30, 2018 15 / 15


	Overview
	Tasking

	Tasking Frameworks
	Existing Frameworks
	Using native tools
	Benefits
	Design
	TBB Backend Availability
	Task Groups
	Example
	Ret vs. Arg Example
	G4UserTaskQueue

	VTune Profiling
	KNL
	Known Limitations


