
Applying vectorisation to 
Geant4

(and few other R&D items)
Andrei Gheata

23rd Geant4 Collaboration Meeting
Lund, 27-31 August 2018



Motivation

• Some of the R&D subjects followed by GeantV can be applied/bring benefits in 
Geant4
• Single particle mode: better algorithms, vectorization on internal loops (transparent to users)
• Multi-particle mode: some important hotspots can profit from basketizing w/o having 

GeantV-like scheduling (small impact for users)
• Some R&D subjects can bring benefits to both scalar/vector approaches: 

optimizations
• Study usage of single precision in some algorithms: major benefits for SIMD algorithms, half 

memory bandwidth for all cases
• Topology-aware navigation (geometry), usage of multiple physics lists, caching expensive 

computation results (e.g. logE), other low-level optimizations
• Extending the multi-particle transport approach to other parts of Geant4 would 

allow for more important gains
• But would require deeper structural changes at scheduling level introducing also important 

perturbations for the users



Geometry optimizations

• Geometry navigation handled on multiple levels
• (Global)Navigator -> volume optimizers -> solid algorithms

• Different tasks involved
• Distance in current material, isotropic safe distance, relocation after crossing
• Some of these tasks can be optimized both in context of single and multi-particle 

transport
• Using VecGeom native navigation in Geant4 (see Sandro’s presentation)

• Improved volume optimizers: bounding volume hierarchy vectorized helpers
• Using specialized volume navigators

• Pre-computed awareness of neighbor topology and caching of transformation 
matrices. Specialized code can be generated and in some cases generic.

• Improve geometry time overall, reduce scalar bottleneck in multi-particle approach



Neighbor topology discovery

• In most cases the number of neighbors is small
• Sometimes the neighbors are the same (replicated 

structure)
• Compact structure: never exiting to mother, but to 

one of the neighbors
• Sparse structure: always exiting to mother (1 level 

up)

• Detection can be done in a “training” phase
• Using sampling or collision detection algorithms

• Navigators per volume rather than global
• Already the design in VecGeom
• Generating a specialized navigator per 

volume/topology

Compact structures 
(exit to neighbor)

Sparse structures (exit to mother/never 
directly entering daughter)

Repeated structures 
(caching matrices)



Specializing navigators

• A first attempt already done by Sandro 
• Experimental for now but available in VecGeom master

• Procedure in 2 steps
• Sample points/directions in geometry, propagate/relocate after crossing, establish list of 

neighbors/matrices, generate code including cached matrices, create new library
• Load navigators from generated library, attach to volumes in a normal session

• Things that can be improved
• Sparse topologies: no need for code generation
• Using collision detection to exclude from start certain relocation paths when exiting a certain 

volume
• Expected performance improvement: order of tens of percent for geometry total 

time.
• Prerequisite: VecGeom native navigation in Geant4



Multi-particle treatment in Geant4

• Gathering particle states for concurrent execution of an optimized CPU-
intensive algorithm
• “Basketizing” – central idea of GeantV
• Efficiency demonstrated already for some parts of the processing so far

• Propagation in field, MSC, work ongoing for geometry and final states sampling of physics 
models

• Can it be done (at least partially) in the context of Geant4?
• Yes, with sizeable benefits, even if not profiting from the improved locality given by 

GeantV-like scheduling
• Cannot be extended to the full flow without particle-level parallelism scheduled a la 

GeantV
• First obvious candidate: magnetic field propagation

• Giving ~10% overall speed-up in GeantV CMS application



Possible approach
• Intercept charged tracks during 

transportation process
• Basketize before 

FieldManager::ComputeStep

• After basketizer, copy track info relevant 
for field propagation to SOA
• charge, position, momentum

• Dispatch to vectorized field propagator, 
then gather outputs to original tracks

• Stack tracks for further sequential 
processing

• Extension to MSC possible, but more 
complex, handling multiple basketizers
needs GeantV-like scheduling

• User implications on track sequencing to 
be discussed

Main stack

G4SteppingManager

G4 processes

G4Transportation

Continue stepping

Field propagator 

stack

Vectorized field 

implementation 

(GeantV)

Basketizer

FieldManager

::ComputeStep



Using single precision + vectorization

• Using float very relevant for vectorized code, less for scalar
• Double number of concurrent operations (vector)
• Less memory traffic, better cache performance (vector & scalar)

• Input data to algorithms is often known with low precision
• Geometry parameters, cross sections
• Simulation would “survive” the precision loss if doing most computation in single precision

• Many algorithms have however some very sensitive parameters
• Vector normalization -> boundary crossing issues
• particle kinematics -> energy-momentum non-conservation
• These parameters have to be handled with care

• A study case by case of usage of float can reveal usage patterns where only some 
parts of the algorithms have to be executed in double
• Speedup for vectorized algorithms can be very important
• Examples: field map interpolation, algorithms for many geometry solids, …



Discussion…


