
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Vectorization of
Bertini cascade

J.G.Lima (FNAL), S.Y. Jun (FNAL)
and T. Koi* (SLAC)

23rd Geant4 Collaboration Meeting
August 30, 2018 * T.Koi is not active

in this project anymore

2 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Outline

● Introduction
– motivations, goals and scope

● Progress
– process fow and vectorization
– features request
– preliminary results

● Current status and prospects

3 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

SLAC-FNAL pilot project on Geant R&D
Explore new computing avenues for hadronic physics simulation in HEP

Goals

• Provide standalone, vectorized Bertini algorithms (a specifc hadronic cascade model)

• Modularized components, compatible with both Geant4 and GeantV transport (like VecGeom)

• Effcient utilization of modern hardware technologies and parallel architectures

Project scope

• Modularize Geant4 Bertini cascade model and optimization – T.Koi (SLAC)

• SIMD vectorization of some computing-intensive algorithms – G. Lima (FNAL)

• Integration and computing performance evaluation – S.Y. Jun (FNAL)

• Identify requirements for future extensions and development

Hadronic simulation is an important missing component of the GeantV transport engine.
It is the next logical step beyond EMphys vectorization (regular number and types of

secondaries), with variable numbers of secondaries and simulation steps in each interaction.

Bertini cascade was chosen for this project, since it is the preferred model for low energy hadron-
nucleus interactions and it handles a large number of particle types.

4 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Implementation details and choices
● Use detailed profling to identify some

CPU-heavy algorithms to demonstrate
performance gains from vectorization

● Redesign data structures to promote
vectorization with minimal overhead
(SoA structures)

● Use templated types to write generic
kernels to be instantiated using scalar
or vector types as needed

● VecCore package to isolate complexities
of vectorization implementation from
algorithm kernels

● Benchmark every vectorized class, for
close performance monitoring

● Validate physics simulation results with
respect to Geant4

5 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Progress on Bertini vectorization
● Combining a top-down approach...

– Vectorizing function interfaces (passing SIMD-vectors down into algorithms)
– Vectorized utilities (e.g. rotations, Lorentz boosts, ...) and data structures (InuclParticle and

InuclElementaryParticle classes)
– Processing foww lots of sanity checks and triage based on particle types

→ assume homogeneous SIMD-vector inputs – e.g. [p][C] becomes [pp...p] onto [CC...C]

→ hadron-hadron, hadron-nucleus, nucleus-nucleus collisions (algorithm functions → vectorized kernels)

● … and a bottom-up approach
– Follow processing fow all the way to the innermost (leaf) algorithms
– Generic kernels for generating multiplicity, particle types, kinematics (momenta, angles)

● hadron-hadron collisionsw class G4ElementaryParticleCollider (lots of non-trivial functions)

– Math functions – Log, Exp, Pow, Factorial, LogFactorial – have fast implementations for integer arguments
– Currently vectorizing the functions to generate multiplicities and fnal states (PIDs and kinematics),

and their validation tests and benchmarks

● Next pages, pseudo-code is used to illustrate vectorization progress, and rationale behind
suggestions for algorithmical changes

6 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Class G4ElementaryParticleCollider
Functions: generateSCMfinalState(), generateMultiplicity(), generateOutgoingPartTypes()

Are these possible
to be vectorized?
Maybe, if and only if
multiplicity is
homogeneous

Experiment with
intra-algorithm

re-basketizationSee backup slides for more details on this processing flow!

7 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

G4CascadeFinalStateAlgorithm class

Several different objects
returned depending on
is (initial state),
fs (final state)
and multiplicity

8 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Redesigning for vectorization
● Keep SIMD lanes synchronized for best vectorization performance

– GeantV basketizerw homogeneous baskets of particles in given detector volumes (geometry + materials)
– Avoid/minimize divergence between SIMD lanesw branches into distinct blocks of code (even algorithms/models)

● Hadronic processes tend to diverge quickly
– GeantV basketsw homogeneous input arrays for simulation

● e.g. [pp...p] on [Scint, Scint, … Scint]
● Bertini casew protons will collide with either C-atoms or H-atoms

→ rebasketizing here will promote higher levels of lane synchronization
– from previous slidew multiplicity-based basketization is particularly important for Bertini algorithms

● both fnal state and kinematics sampling algorithms are based on multiplicity

→ rebasketizing by multiplicity promotes the development of more efcient Bertini kernels (→ max synchronization)

→ planning to use track re-basketization based on multiplicity, and maybe fnal state too

● Another challengew dealing with Vector<int> and Vector<double> in the same algorithms
– VcVector<long int> is not supported by Vc library
– Work-around (a bit too technical!)w using Int_v = VcSimdArray<VectorSize<Real_v>> to create SIMDVectors of ints

corresponding to doubles

→ best long-term solutionw native suport from VecCore (under discussion with VecCore developers)

9 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Two illustrative preliminary results
● Unit test for InuclElementaryParticle

● Benchmark for GXLorentzConvertor (~4x faster)

New SoA data structures can handle
particles of different types

10 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Vectorizing math functions
● Bertini algorithms use some “fast math functions” available in Geant4

– “fast”w pre-calculations cached for integer arguments
– cached exp(x) for integer or half-integer x, truncated O(x3) Taylor series for |x|<84 (fully vectorized),

otherwise use VDT implementation (internal vectorization, also used by Geant4)
– cached log(x) for integers up to 512, otherwise use VDT implementation
– specialized Pow(x,y) for integer x or y, etc…

● Fully vectorized versions are hard to implement
– e.g. Pow([x1, x2, x3, x4], [n1, n2, n3, n4])
– vectorize interface only, [Pow(x1,n1), Pow(x2,n2), Pow(x3,n3), Pow(x4,n4)]

● scalar functions are called once per lane, to build the SIMD vector
● this is actually how it is done in VecCore, for commonly used math functions like Sin(), Cos(), Abs(), …
● slower than original implementation due to SIMD storing overhead

– the vectorized interface is useful to simplify vectorization of mathematical expressions involving such
functions (maybe worthy the overhead)

– some vectorization is possible on some of the “fast” versions

● See next pages for some performance comparisons

11 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Benchmarking math functions

● Preliminary conclusionw overhead of vectorized interface
is signifcant, but it is probably worth the convenience

● There probably is room for performance improvements

● In some cases, the fast Geant4 implementation is not
better than the standard version, so we can use it for
those cases.

● Preliminary measurements of relative performance (AVX)

– Originalw Geant4 “fast” implementations for integer arguments (global/management)

– Scalar, Vectorw my “vectorized interface” versions, templated on scalar or vectorized types, calling Geant4 “fast”

implementations

– ScalarStd, VectorStdw same as above, but calling stdwwfunctions instead of the Geant4 “fast” implementations

~2x

~4x

~2x

Fully vectorized fast algo Integer base, cached

Int argument, cached

12 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Current status
● What has been accomplished so far

– Git repository availablew httpsw//github.com/gxbert/gxbert.git
– Basic infrastructure for development, unit testing and performance evaluation (v01

done)
– New SoA data structure for tracks and kinematics (v01 done, extensions needed for

nuclei)
– Vectorized ThreeVectors (~CLHEP interface) and LorentzVectors (done)

● to become part of the VecMath library

– Basic algorithms for Lorentz boosts (Lab frame ↔ projectile ↔ center of mass frame)
as needed (done)

● measured speedups of up to ~4x in avx mode (theoretical max = 4) w.r.t. scalar mode
● additional 25% gain (scalar vs. G4), due to less branching and better memory locality

– Integration of Soon’s vectorized pRNG (pseudo-Random Number Generator) (done,
not yet from VecMath)

13 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Prospects
● What can be done in the short- to medium-term (h-h interactions only)?

– Currently vectorizing algorithms that handle hadron-hadron interactions (under way)
– Finalizing vectorized interfaces for all parts of processing fow (under way)
– Vectorization of all algorithms which can deal with homogeneous input (under way)
– Unit tests and benchmarks for vectorized functions (partly done = keeping up)
– I am more optimistic now than at the beginning of this project.

● What requires more time
– Full cascade algorithms – it is a long process, because of the large number of non-trivial functions involved.

● [see backup slides for more details on the Bertini processing fow]

– Supporting tools will be very helpful
● Intra-algorithm re-basketization in GeantV
● Native support to Vector<double> ← → Vector<int> in VecCore

– Full vectorized prototype corresponding to Tatsumi’s tests for hadron-nucleus toy experiments, showing
some speedup due to vectorization (not started)

– Vectorization of hadron-nucleus and nucleus-nucleus processes (is Bertini used for those?)
– profling-based optimization of vectorized algorithms
– Full assessment of performance gains from vectorization → further performance optimization

Backup slides

15 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Bertini processing fow
● Start from Tatsumi’s example, gxbertTest, whichw

– Sets up a large number of homogeneous collisions
(e.g. projectiles(=protons) on targets(=Lead)

– calls GXCascadeInterfacewwApplyYourself(bullet,target) for each pair

16 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Class G4InuclCollider
We try to simplify complex inheritance structures

hadron-hadron collisions
~ 20% of incl. CPU time

hadron-nucleus or
nucleus-nucleus collisions
~ 66% of excl. CPU time

17 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Class G4ElementaryParticleCollider

Function: collide()
This class has a large number of non-trivial functions!

Plans to re-write these steps
with vectorization in mind, to
profit from vectorized boosts.
Originally, all secondaries are
stored in an std::vector.

18 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

Class G4ElementaryParticleCollider
Functions: generateSCMfinalState(), generateMultiplicity(), generateOutgoingPartTypes()

Are these possible
to be vectorized?
Maybe, iff multiplicity
is homogeneous

Experiment with
intra-algorithm

re-basketization

19 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

G4CascadeFinalStateGenerator class

20 G. Lima23rd Geant4 Collaboration Meeting – 2018-08-30

G4CascadeFinalStateAlgorithm class

Several different objects
returned depending on
is (initial state),
fs (final state)
and multiplicity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

