This Helix Nebula Science Cloud (HNSciCloud) Pilot Phase Open Session

Geneva, Switzerland

Frédéric Hemmer
CERN - IT Department
The Mission of CERN

- **Push back** the frontiers of knowledge

 E.g. the secrets of the Big Bang … what was the matter like within the first moments of the Universe’s existence?

- **Develop** new technologies for accelerators and detectors

 Information technology - the Web and the GRID
 Medicine - diagnosis and therapy

- **Train** scientists and engineers of tomorrow

- **Unite** people from different countries and cultures
LHC Progress - 2018

Multi-annual Integrated Performance

Run1 + Run 2: Luminosity Production

Peak Luminosity
2018 shows steepest increase in peak luminosity of all years

<table>
<thead>
<tr>
<th>Period</th>
<th>Int. Luminosity [fb⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>29.2</td>
</tr>
<tr>
<td>Run 2: 2015</td>
<td>4.2</td>
</tr>
<tr>
<td>Run 2: 2016</td>
<td>39.7</td>
</tr>
<tr>
<td>Run 2: 2017</td>
<td>50.2</td>
</tr>
<tr>
<td>Run 2: 2018</td>
<td>22.3</td>
</tr>
<tr>
<td>Total Run 1+2</td>
<td>145.6</td>
</tr>
</tbody>
</table>

10.06.2018

2018: A Production Year to complete Run2
Data in 2018

250+ PB on tape
559 M files

<table>
<thead>
<tr>
<th>Year</th>
<th>LHC (PB)</th>
<th>Total (PB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>48.3</td>
<td>69.8</td>
</tr>
<tr>
<td>2017</td>
<td>38.8</td>
<td>64.3</td>
</tr>
<tr>
<td>2018</td>
<td>28.4!</td>
<td>38.8</td>
</tr>
</tbody>
</table>
New peak: ~210 M HS06-days/month
~ 685 k cores continuous
Run 3 Planning (2021-2023):

Similar to 2018

- If the experiments luminosity level at a higher pile-up and for longer ➔
 - Potentially higher average pileup
 - Non-linear increase in CPU time

- Possibly less time between fills – more live time

- Overall the best estimate is 30% (50% conservatively) more resources needed than in 2018
 - But we have not seen 2018 yet

- For 2021: 1st year after LS2, could be only half-year live time but ramp up to optimal conditions rapidly

- Unknown:
 - Still need plans for experiment trigger rates
 - And plans for luminosity levelling
Resource evolution

CPU Growth
- **Pledge**
- **20% Growth**
- **20% Growth from 2015**

Disk Growth
- **Pledge**
- **20% Growth**
- **25% Growth from 2015**

Tape Growth
- **Pledge**
- **20% Growth**
- **25% Growth from 2015**

- **2010-2018 – pledges**
- **2021 assume 1.5 x 2018**
However …

- ALICE and LHCb are upgrading during LS2, so the expectations of their needs do not follow the assumptions in the previous slides:

 - **LHCb:**
 - luminosity and pileup increase by factor 5.
 - Major changes in computing model result in higher trigger rate and HLT output bandwidth.
 - LHCC milestone for computing model in Q3/2018, together with engineering TDR – currently under review

 - **ALICE:**
 - Factor 100 increase in readout rate (50 kHz)
 - Data volume increase mitigated by online reconstruction and raw data compression in new O2 facility
 - O2 TDR is approved; summary needs are:
 - Increases in 2021 wrt 2018: CPU: 48%, disk: 74%, tape 90%
Scale of data tomorrow ...

10 Year Horizon

Data: ~25 PB/year → 400 PB/year

Compute: Growth > x50

Technology revolutions are needed

What we think is affordable unless we do something differently

Frédéric Hemmer, 14.6.2018
The WLCG Strategy Document

• The HL-LHC computing challenge: provide the computing capacity needed for the LHC physics program, managing the cost

• The WLCG strategy document is a specific view of the CWP, prioritizing R&Ds relevant to the HL-LHC computing challenge

• The prototyped solutions will be the foundation of the WLCG TDR for HL-LHC, planned for 2020. Timing to be re-considered?

• This is a presentation of the content of the strategy document
 • http://cern.ch/go/Tg79
WLCG Strategy - Outline

The strategy develops around five main themes …

1. Software performance
2. Algorithmic improvements / changes (e.g. generators, fast MC, reconstruction)
3. Reduction of data volumes
4. Managing operations cost
5. Optimizing hardware costs

It defines an R&D program with rough timelines, organized in sections:

• The HL-LHC challenge, hardware trends and a cost model
• Computing Models
• Experiments Software
• System Performance and Efficiency
• Data and Processing Infrastructures
• Sustainability
• Data Preservation and Reuse

The goal is to demonstrate to the funding agencies that we are in control of the HL-LHC cost, while exploiting the full potential of the physics program.
Sharing Open Science Services

Many research disciplines
Business models

Pay-as-You-Go
- Pay only for services consumed
- Adjusts to business requirements
- No commitment
- Higher price
- Expenses can be unpredictable

Term Subscription
- Discounted pricing/improved ROI
- Predictable expense
- Payment upfront
- Committed to a specific term
- Properly scope and forecast requirements

For long tail of science, new & exploratory usage, SLA breach compensation

Data Controller vs. Data Processor

Need to repatriate data

EOSC Summit - Rules of Participation Workshop, Brussels 11th June 2018
Thank you for your attention

"The task of the mind is to produce future"

Paul Valéry