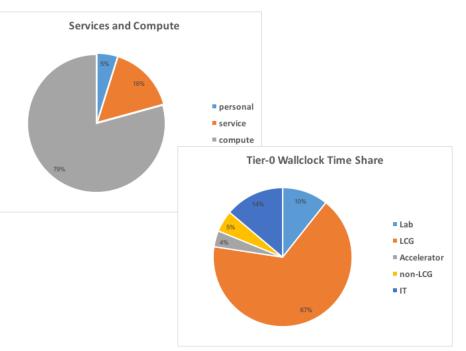
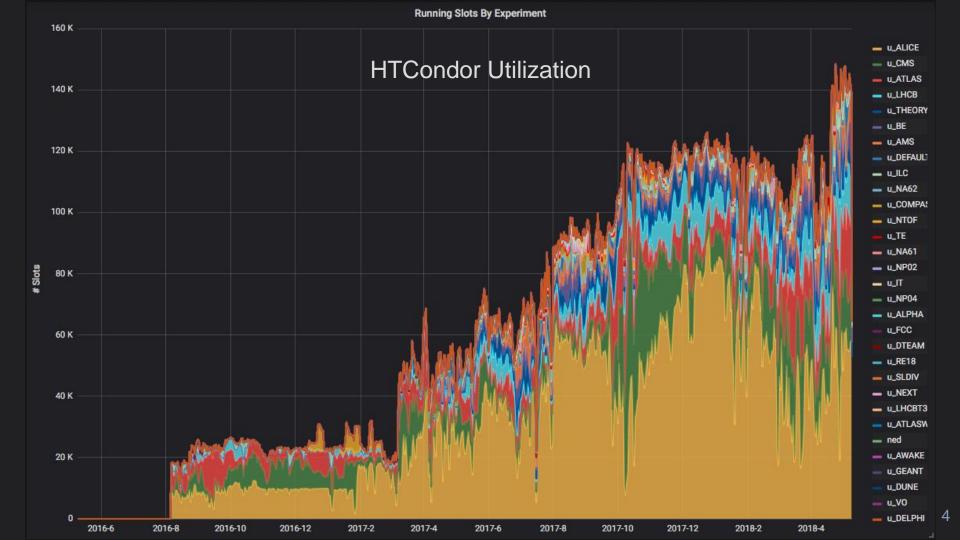


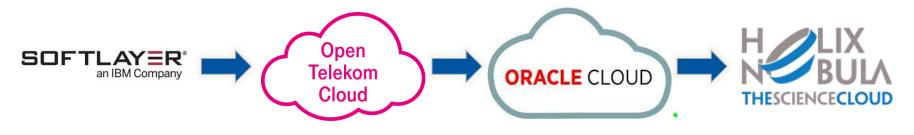
CERN Batch in the HNSciCloud


Ben Jones IT-CM



CERN Batch Service

- 230k cores of compute provided via HTCondor (or LSF) for LHC Grid and local users
- Large increase in capacity over last couple of years to support Run 2
- Batch service has been able to run on public cloud and other opportunistic resources – in particular grid workflows



Grid vs Local

	Grid	Local
Authentication	X509 Proxy	Kerberos
Submitters	LHC experiments, COMPASS, NA62, ILC, DUNE	Local users of experiments, Beams, Theorists, AMS, ATLAS Tier-0
Submission method	Submission frameworks: GlideinWMS, Dirac, PanDA, AliEn	From condor_submit by hand, to complicated DAGs, to Tier-0 submit frameworks.
Storage	Grid protocols. SRM, XRootD…	AFS, EOS

XBatch Cloud experience

2016

2017

2018

"XBatch" integrate cloud resources into standard pool with standard tools

Use Docker to abstract external cloud platform

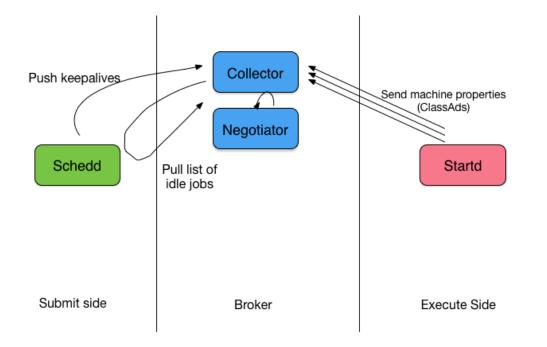
Batch on Cloud resources

- Grid jobs better candidate to run in cloud as already designed to be location agnostic, with sophisticated job management & monitoring
- Use same provisioning & orchestration for public cloud and local cloud, where possible
- We generally have flat capacity & more jobs than resources
- The machine / container running job the job lives longer than the job
- Limited infrastructure required in cloud (proxies...)

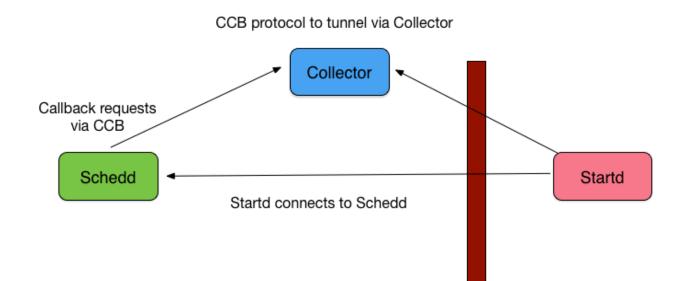
	Job of each layer is just to bootstrap the next	
Application	HTCondor startd / Docker Universe	
Configuration	Puppet / Foreman	
Personalization	Cloud-init / Provisioning Scripts	
Provisioning Terraform		

- Terraform selected as industry standard tool to abstract APIs
- Support out of the box for OpenStack (ie T-Systems, CERN) or CloudStack (Exoscale)
- Issues if used to expand / shrink regularly, but ideal for our purposes

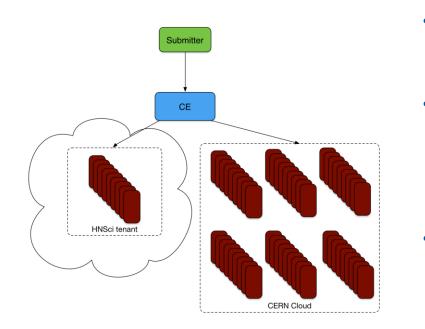
- Cloud-init personalizes
 machine
- Install and configure
 puppet client
- Use one-shot time limited secret, unique to each machine, to sign off x509 certificate needed for puppet & condor
- Terraform post-exec where cloud-init support lacking


- As with internal machines, foreman used for classification & inventory, puppet used for configuration
- Some differences with internal machines, but reuse components & configuration where possible

- HTCondor with Docker "universe" to abstract cloud machine from wlcg worker node environment
- Host provides CVMFS and HTCondor but can use Cloud-provided CentOS images
- HTCondor can be configured to work across firewalls & NATs


HTCondor Communication

14/06/2018


Communication via firewall

14/06/2018

CERN HTCondor to HNSci Cloud

- HTCondor works with symmetric matching of Host Properties with Job Requirements
- We route jobs explicitly asking for cloud resources (ie "WantHNSciRHEA" "WantHNSciTSys") to machines in those clouds
- For experiments, they can be monitored as specific sites. For HTCondor, they are separate routes

T-Systems Challenges

- T-Systems primarily RFC1918 addresses, requiring NAT.
- No issue for HTCondor, but additional issue for managing the network resource
- Initial deployment used self-managed SNAT server
 - Single point of failure, that in fact failed during Availability Zone outage
- Migrated to new T-Systems managed SNAT service
 - Different flavours of service by # of connections difficult to provision for
- Both solutions require manual intervention from T-Systems to set ports to 10Gb
 - Actual bandwidth has varied under testing
- Still unexplained network issues leading to expired jobs

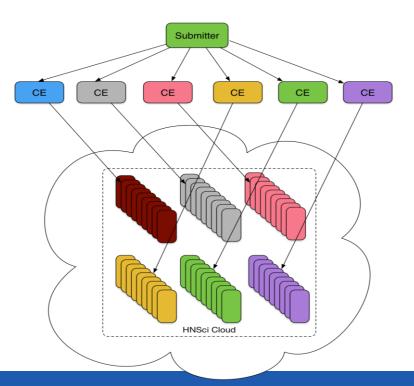
RHEA Challenges

- Prefer consistent use of provisioning via terraform against Cloud APIs rather than intermediate PaaS
- Necessary to re-provision resources after contract changes
- Exoscale flavours provide more RAM than strictly required
 - 8 core/32GB RAM (4GB/Core), WLCG standard is 2GB/core
- Terraform CloudStack provider sets disk in GiB, but gives status in KiB
 - Leads to circular provisioning for any change
 - Required to "ignore" Disk in terraform resource definition
 - We learn that we should just migrate to terraform-exoscale :)

Positives

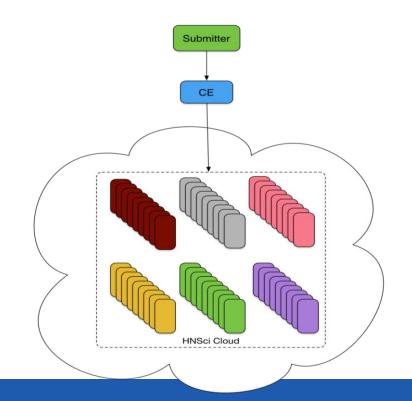
- TSystems API speed now much improved from previous engagement
 - No bottlenecks for terraform provisioning
- Exoscale performance very good, and useful features like online resizing of instances

WLCG Cloud Consolidation

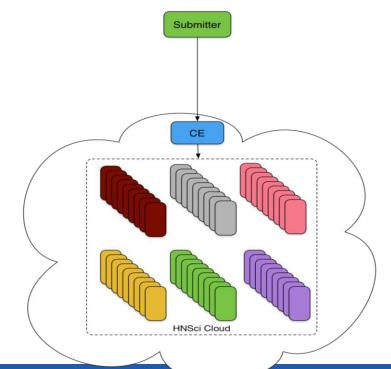


- 8 of the 10 members of the Buyers Group have WLCG workload
- Agreement to consolidate to a shared WLCG tenant
- Reduce effort at procurer sites to support WLCG workload in Commercial Cloud
- Reduce network traffic between each procurer site and commercial clouds to support WLCG workload
- Simplification for LHC experiments to exploit commercial cloud resources

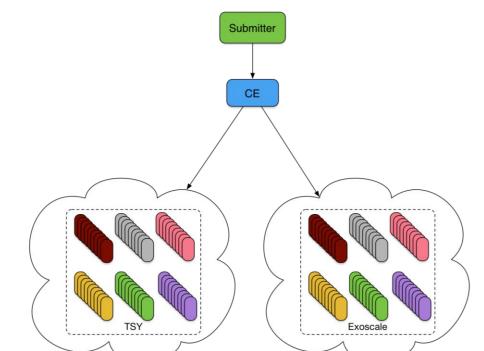
Unconsolidated


 In the current setup, an experiment could have to define 8 additional sites to send jobs to the same resources

Shared tenant


 With a shared tenant, and a single entry point (CE), only one site has to be set up, per cloud vendor

Vendor batch service


If Cloud vendors provide metered batch services (ie HTCondor) then there's the possibility of further simplifying

Multicloud

 If we have to manage multiple clouds, having entry points / routes onsite may remain the best solution.

Questions?