Beam Optics in the Cooling Channel

Paul Bogdan Jurj
Imperial College London
paul.jurj13@imperial.ac.uk

June 27, 2018

Introduction

- Aim to evaluate the current understanding of the beam optics in the cooling channel
- Compare the beam optics (4D transverse emittance, beta function, alpha function) calculated from data and MC
- Implement a transfer matrix/map model to simulate the optics to first order and compare output with MC simulation and data

Data

- Analysis H57a, Run 10448
- 2017-02-7 setting
- Flip mode, 3T in SSU (M1, M2 on), 2T in SSD (M1 off, M2 on)
- LiH Empty (None)
- $140 \mathrm{MeV} / \mathrm{c}$, nominal emittance $3 \mathrm{~mm}, \beta_{\perp}=500 \mathrm{~mm}$

Analysis Procedure

- Reconstruct beam optics in the trackers from real data, applying the following cuts:
- TKU Chi2/ndf < 4
- TOF01 consistent with muon peak: 29-31 ns
- TKU: $135 \mathrm{MeV} / \mathrm{c}<$ total momentum $<145 \mathrm{MeV} / \mathrm{c}$
- Transmission cut: analyse only events with 1 track in each tracker
- For all particles that survive the first three cuts above, extract their information at the first scifi plane in station 5 of TKU \rightarrow feed it into the MC simulation
- Calculate beam optics of the MC simulated beam at a series of virtual planes along the cooling channel, between both stations 5 of TKU and TKD

MC Comparison: Alpha, Beta

MC Comparison: Emittance

- Applied cuts at $5,10,15 \mathrm{~mm}$

Transfer matrix/map (TM)

- A linear optics model for beam transport in the solenoidal cooling channel
- Transports the initial particle coordinate $\left(x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}\right)$ at $z=0$ to $\left(x, x^{\prime}, y, y^{\prime}\right)$ at z
- Map at z is dependent on the following parameters: $\beta_{0}, \beta(z), \alpha_{0}, \alpha(z), B_{z 0}, B_{z}, p_{z 0}, p_{z}$ (obtained from MC)
- For maths insight: G. Franchetti, Linear Beam Optics in Solenoidal Channels, (2001)
- Applied the transfer map to each particle in the distribution extracted from data; computed beta, alpha and emittance

Transfer matrix: Beta

(a) No amplitude cut (L), Amplitude cut $15 \mathrm{~mm}(\mathrm{R})$

(b) Amplitude cut 10 mm (L), Amplitude cut 5 mm (R)

Transfer Matrix: Emittance

- Applied matrix model to particle distributions that survived the amplitude cut

Transfer Matrix with parameters from reconstructed data

- Twiss parameters $\left(\alpha\right.$ and β) and p_{z} taken from reconstructed data, B_{z} from geometry
- Phase advance ψ and Larmor angle ϕ are unknown, where

$$
\begin{gather*}
\psi(z)=\int_{0}^{z} \frac{1}{\beta\left(z^{\prime}\right)} d z^{\prime} ; \quad \phi(z)=\int_{0}^{z} \frac{S\left(z^{\prime}\right)}{2} d z^{\prime} \text { where } \tag{1}\\
S(z)=\frac{q B_{z}(z)}{p_{z}(z)} \tag{2}
\end{gather*}
$$

- Given two transverse phase space coordinates of a particle $\left(x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}\right)$ at $z=0$ and $\left(x, x^{\prime}, y, y^{\prime}\right)$ at z use the Transfer Matrix model to fit for ψ, ϕ

ψ at reference planes: Data vs MC Truth vs Analytic

- 'analytic' ψ value calculated from

$$
\frac{1}{2} \beta \beta^{\prime \prime}-\frac{1}{4} \beta^{\prime 2}+\frac{S^{2}}{4} \beta^{2}=1
$$

ϕ at reference planes: Data vs MC Truth

ψ at reference planes: Data vc MC Recon

Conlcusions

- Good optics agreement in SSU, discrepancies in SSD persist even after amplitude cut is applied
- Matrix model works OK in the linear regime
- The emittance non-uniformity in matrix model suspected to be due to the fact that it is applied regions with high-gradient fields and fringe fields
- Discrepancy between ψ fitted from data and truth MC suspected to be caused by the same issue, also beam not cylindrically symmetric; this needs further study
- Next steps
- Determine the the source of discrepancies
- Apply the diffuser cut on the data
- Introduce higher order terms in the matrix model

Thank you!

Backup

$\psi:$ Analytic vs MC Truth

X Y Distribution at TKU5

X VS y

Transfer matrix with data beam: Alpha

Transfer matrix with data beam: Emittance

Transfer matrix with data beam: Sanity check

- Emittance from matrix model is expected to be conserved across the cooling channel (matrix is symplectic), while results show variation
- Alpha and beta also differ significantly from MC
- Decided to test the transfer map on beams that approach the linear regime
- Simulated beams with $\alpha_{0}=0, \beta_{0}=300 \mathrm{~mm}, \epsilon_{\perp 0}=0.5 \mathrm{~mm}$ and with momentum distribution:
- a) monochromatic: $140 \mathrm{MeV} / \mathrm{c}$
- b) gaussian centred at $140 \mathrm{MeV} / \mathrm{c}, 5 \mathrm{MeV} / \mathrm{c}$ RMS

TM with monochromatic 'perfect' beam: Alpha, Beta

TM with gaussian 'perfect' beam: Alpha, Beta

TM with monochromatic \& gaussian 'perfect' beam : Emittance

- Emittance growth in AFC and at SSD entrance ($\sim 2.5 \%$ at downstream reference plane)

TM: Further

- Further decided to examine the optics evolution in both MC and matrix model as a function of the initial beam emittance (departure from linear regime)
- Kept the more realistic gaussian momentum distribution, $\alpha_{0}=0, \beta_{0}=300 \mathrm{~mm}$
- Varied initial emittance: $0.5,1.0,1.5,2.0 \mathrm{~mm}$
- Even with initial emittance of 2 mm , alpha and beta calculated from MC and transfer map agree (next slide)

TM with monochromatic \& gaussian 'perfect' beam: Alpha, Beta $\left(\epsilon_{\perp 0}=2 \mathrm{~mm}\right)$

TM with monochromatic \& gaussian 'perfect' beam: Emittance conservation

- Matrix model OK - constant emittance
- MC shows $\sim 2.5 \%$ emittance growth at downstream reference plant

