Emittance Evolution Update

C. Rogers, ISIS Intense Beams Group Rutherford Appleton Laboratory

Overview

- Focus is now on revisiting/tidying the amplitude calculation
- Basic algorithm
- Correction for detector effects
- Systematic uncertainty on the correction

Reminder of the result

- Reminder - we are trying to measure amplitude
- The number of muons at different "temperature"
- Muons at low amplitude are "cooler"
- We want to show we have more muons at low amplitude after the absorber

Calculation of Amplitude

- Amplitude is area of beam ellipse enclosed by each muont
- But beam is not elliptical in tails
- Reject tails using an iterative algorithm
- Ignore muons with amplitude > amplitude bin
- Recalculate ellipse; and then amplitudes
- Zoom in on beam core
- Split into "reference" and "test" samples
- Use "reference" to calculate ellipses
- Use "test" for actual recorded amplitudes
- Swap samples around and recalculate to get full statistics

Calculation of Amplitude

TKU (10-140 None)

TKD (10-140 None)

Phrase as "beta" functions

Reminder - correction routine

Recon MC Recon Sample

Migration matrix, M_{ij}
MC Truth
Recon Sample
Efficiency correction, E_{i}
MC Truth
Truth Sample

$$
\mathrm{N}^{\text {truefreve }}=\mathrm{E}_{\mathrm{i}} \mathrm{M}_{\mathrm{ij}} \mathrm{~N}^{\text {recofreco }}{ }_{\mathrm{j}}
$$

data source sample

Mechanics of Calculation

- Record the upstream sample (~1e4 events) at TKU station 5
- Smear using KDE
- Sample ~1e5-1e6 events from resultant distribution
- Reapply following cuts:
- TKU chi2 cut
- TKU max radius cut
- TKU p cut
- All downstream cuts
- I did a MC production for 3-140, 6-140, 10-140 IH2 empty
- Stats errors are generated by taking standard deviation of 10 subsamples / sqrt(10)

Migration matrix

- Detector resolution causes muons to migrate between bins
- Migration matrix technique to calculate and correct migration
- $N_{i j}$ is number of events in ith bin in truth and jth bin in recon
- Always considering the sample of events that was reconstructed
- Then Migration matrix is
- $M_{i j}=N_{i j} / \operatorname{Sum}_{\mathrm{j}}\left(N_{\mathrm{ij}}\right)$
- So $N^{\text {truelreco }}{ }_{i}=M_{i j} N^{\text {recolreco }}{ }_{j}$

Migration matrix - Upstream

Simulated 2017-2.7 3-140 IH2 empty Systematics tku_base

Simulated 2017-2.7 6-140 IH2 empty Systematics tku_base

Simulated 2017-2.7 4-140 IH2 empty Systematics tku_base

Simulated 2017-2.7 10-140 IH2 empty Systematics Iku_base

Migration matrix - Downstream

Simulated 2017-2.7 3-140 IH2 empty Systematics tku_base

Simulated 2017-2.7 6-140 IH2 empty Systematics tku_base

Simulated 2017-2.7 4-140 IH2 empty Systematics tku_base

Simulated 2017-2.7 10-140 IH2 empty Systematics tku_base

Inefficiency

- Detector inefficiency causes muons to "disappear"
- Use MC to estimate the probability of disappearance
- $\mathrm{N}^{\text {truelreco }}{ }_{i}=$ number events in recon sample in bin i
- $N^{\text {trueltrue }}{ }_{i}=$ number events in true sample in bin i
- Always use recon truth to calculate the amplitudes
- Efficiency correction, $\mathrm{E}_{\mathrm{i}}=\mathrm{N}^{\text {trueltrue }} / \mathrm{N}^{\text {truelreco }}{ }_{\mathrm{i}}$

6-140

Systematic uncertainty in correctin

- Some systematic uncertainties arise because we don't quite know what was really installed in the hall
- Consider sources of systematic uncertainty (TKU and TKD)
- Tracker position (1 mm)
- Tracker tilt (1 mrad)
- E1 scale (5 \%)
- E2 scale (5 \%)
- CC scale (1 \%)
- Tracker glue density ($0.5 \mathrm{~g} / \mathrm{cm}^{3} \sim 25$ \%)
- Change each parameter; recalculate correction
- How sensitive is the correction to different uncertainties?
- Plot "modified correction" - "baseline correction" vs uncertainty
- Quoted uncertainties
- Apply each correction in turn; calculate $\mathbf{N}^{\text {trueltrue }}$
- Calculate the difference between $\mathrm{N}^{\text {trueltrue }}$ compared to the baseline
- Add in quadrature

TKU - migration matrix

3-140

6-140

4-140

10-140

- Change in diagonal terms of migration matrix

TKD - migration matrix

3-140

6-140

4-140

10-140

TKD - efficiency

3-140

6-140

4-140

Systematic - mis-PID

2017-2.7 10-140 None

Simulated 2017-2.7 10-140 None

- A few candidates for decay electrons in data
- ~1e-3 level impurity
- No decay electrons appear in MC
- No apparent pion impurity either in data or MC
- No uncertainty assigned yet
- Expect 1e-3 level uncertainty i.e. small

Job List

- Diffuser geometry
- Max Radius Cut
- FOF relative to e-peak
- 4 mm beam processing in progress
- Understand Delta TOF01 issue
- More statistics in data \& MC
- Systematic due to mis-PID
- Systematic due to downstream cuts
- Go over errors again
- Reprocess data with low pt fix in
- Finish writing note
- Target CM51

