Computing in High-Energy Physics

Tier-2 Centres (>100) **Tier-1 Centres** 10 Gbit/s links

ASGO

Dr Helge Meinhard / CERN-IT CERN openlab summer student lecture (with additions/updates by D. Duellmann) 3 July 2018

CERN

"Science for peace"

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
- 22 member states, 1.1 B CHF budget
- \sim 2'500 staff, +fellows, +apprentices, +you, …
- \sim 12'000 visiting scientists

Members: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland, United Kingdom **Candidate for membership**: Romania **Associate members:** India, Lithuania, Pakistan, Turkey, Ukraine **Observers**: European Commission, Japan, Russia, UNESCO, United States of America Numerous **non-member states with collaboration agreements**

2'531 staff members, 645 fellows, 21 apprentices

7'000 member states, 1'800 USA, 900 Russia, 270 Japan, …

 $03 - 11$

1954: 12 Member States

CERN – Where the Web was Born

Analysing Particle Collisions in the past..

Tools (1): LHC

Exploration

LHC ring: 27 km circumference

in p-p Run 1 (2010-2013): 4 + 4 TeV Run 2 (2015-2018): 6.5 + 6.5 TeV

 $LHC = 27$ km

Tools (2): Detectors

ATLAS (A Toroidal Lhc ApparatuS)

\cdot 25 m diameter, $\frac{1}{6}$ meral Purpose $\frac{1}{2}$ 00 tons General Purpose,

- 3'000 scienti proton-proton, heavy ions) grad students) proton-proton, heavy ions
- **Exploration of a new physics: IION C** Higgs, Supersymmetry
 Repulsions rota • 150 million c
- 40 MHz collision rate
- Event rate after filtering: 300 Hz in Run 1; 1'000 Hz in Run 2

Heavy ions, pp (state of matter of early universe)

Results so far

- Many... the most spectacular one being
- 04 July 2012: Discovery of a "Higgs -like particle"
- March 2013: The particle is indeed a Higgs boson
- 08 Oct 2013 / 10 Dec 2013: Nobel price to Peter Higgs and François Englert
	- CERN, ATLAS and CMS explicitly mentioned

HEP Timescales

Computing in HEP – Dirk Duellmann 3-Jul-2018 10

LHC Data – what does it consist of?

150 million sensors deliver data … 40 million times per second Generates ~ 1 PB per second

- Raw data:
	- Was a sensor hit?
	- How much energy deposit?
	- What time?
- Reconstructed data:
	- Momentum of tracks (4-vectors)
	- **Origin**
	- Energy in clusters (jets)
	- Particle type
	- Calibration information

• …

HEP Computing

A Typical Physics Analysis Flow ERN

.
U

Nature of the Computing Task

- Enormous number of proton or heavy ion collisions
	- Data from each collision are small (for protons: order 1...10 MB)
	- Each collision is "independent" of other collisions
- No supercomputers needed
	- Most cost-effective solution is standard PC architecture (x86) servers with 2 sockets, SATA drives (spinning or SSD), Ethernet network
	- Linux (RHEL variants: Scientific Linux, CentOS) used everywhere
- Calculations are mostly combinatorics
	- Rather integer than floating-point intensive

Scale of the Computing Problem

- Raw data: order 1…10 MB per collision event
	- 1 kHz, for ~7.10⁶ live seconds / year
	- 7 PB/year …. per detector
- Several copies, derived data sets, replicated many times for performance, accessibility, etc

- **EXATLAS (for example) has a managed** data set of \sim 285 PB
- **► CERN data archive on tape is ~200 PB**

The Worldwide LHC Computing Grid

Tier-0 (CERN): data recording, reconstruction and distribution

Tier-1: permanent storage, re-processing, analysis

> **Tier-2: Simulation, end-user analysis**

~750'000 cores ~1'000 PB of storage ~170 sites, 42 countries

> 2 million jobs/day

10-100 Gb links

WLCG: An international collaboration to distribute and analyse LHC data

Integrates computer centres worldwide that provide computing and storage resource to a single infrastructure accessible by all LHC physicists

WLCG – a World-wide Infrastructure

A distributed Tier-0

LHC^OPN

• Optical Private Network

- Support T0 T1 transfers
- Some T1 T1 traffic
- Managed by LHC Tier 0 and Tier 1 sites

Processing Scale

WLCG: > 2 M jobs/day on ~1M CPU cores

Media hierarchy

- We still use tape! Why?
	- \$/PB (TCO incl. power)
	- separate physical copy with high "destruction" latency
- We stopped trying "automatic" HSM (Hierarchical Storage Management) for large experiment users
	- file based HSM interface did not allow to specify user priorities
- Disk content is stable (until the experiment decides to replace active data)
- thousands of job streams at relatively low rate (cpu bound)

Scale Examples: Tape Archive

Computing in HEP – Dirk Duellmann and Computing in HEP – Dirk Duellmann and Computing 24

Scale Example: Data Transfer

 $\widetilde{\mathsf{C}}$ FF

Distributed model

- Performance & reliability of the networks has *exceeded earlier expectations*
	- 10 Gb/s \rightarrow 100 Gb/s at large centres
	- >100 Gb/s transatlantic links in place
	- Many Tier 2s connected at 10 Gb/s or better
	- NB. Still concern over connectivity at sites in less-well connected countries
- Strict hierarchical model of Tiers evolved during Run 1 to optimize the use of available resources
	- Move away from the strict roles of the Tiers to more functional and service quality based
	- Better use of the overall distributed system
- Focus on use of resources/capabilities rather than "Tier roles"
	- Data access peer-peer: removal of hierarchical structure

Transforming In-House Resources (1)

Before Wigner deployment:

- Physical servers only
	- Inefficient resource usage
	- Strong coupling of services with HW life-cycle
- Vertical view
	- Service managers responsible for entire stack
- Home-made tools of 10 years ago
	- Successful at the time, but Increasingly brittle
	- Lack of support for dynamic host creation/deletion
	- Limited scalability
- Person-power: (at best) constant
	- ... despite many more machines

Transforming In-House Resources (2)

Current situation:

- Full support for physical and virtual servers
- Full support for remote machines
- Horizontal view
	- Responsibilities by layers of service deployment
- Large fraction of resources run as private cloud under OpenStack
- Scaling to large numbers (> 15'000 physical, several 100'000s virtual)
- Support for dynamic host creation/deletion
	- Deploy new services/servers in hours rather than weeks/months
	- Optimise operational and resource efficiency

Future Challenges for LHC

Data estimates for 1st year of HL-LHC (PB)

250000 CPU Needs for 1st Year of HL-LHC (kHS06) ALICE ATLAS CMS LHCb

CPU (HS06)

- **800 900 ASSuming 20% per year from technology, still**
- **700** factors missing in terms of cores, storage etc.
- **400** 500 **600 100000** Moore's law coming to an end for business and financial reasons
- 200 **300 EXALLET EXALLET IS EXALLET EXABLE THE LARGE EFFECTED FIELD FIELD**
- **0 100 Exploit multi-threading, new instruction sets, ...**

Data:

1000

- Raw 2016: 50 PB \rightarrow 2027: 600 PB
- Derived (1 copy): 2016: 80 PB \rightarrow 2027: 900 PB

Raw Derived

CPU:

• x60 from 2016

 $\overbrace{P(X)}$ Computing in HEP – Dirk Duellmann 3-Jul-2018

3 -Jul

Trends – Software

- Recognizing the need to re-engineer HEP software
	- New architectures, parallelism everywhere, vectorisation, data structures, …
- HEP Software Foundation (HSF) set up ([http://hepsoftwarefoundation.org/\)](http://hepsoftwarefoundation.org/)
	- Community wide buy-in from major labs, experiments, projects
	- Goals:
		- Address rapidly growing needs for simulation, reconstruction and analysis of current and future HEP experiments
		- Promote the maintenance and development of common software projects and components for use in current and future HEP experiments
		- Enable the emergence of new projects that aim to adapt to new technologies, improve the performance, provide innovative capabilities or reduce the maintenance effort
		- Enable potential new collaborators to become involved
		- Identify priorities and roadmaps
		- Promote collaboration with other scientific and software domains

Making hundreds of petabytes of data accessible globally to scientists is one the biggest challenges of WLCG

Data Organization, Management and Access in WLCG

CERN openlabCTO

HEP has a vast investment in software

Significant effort to make efficient multi-threaded and vectorized CPU code

Accelerated computing devices (GPUs, FPGAs) offer a different model

Complexity of heterogeneous architectures

Simultaneously exploring lower performance but lower power alternatives like ARM

Accelerated computing devices (GPUs, FPGAs)

offer a different model

Coftware optimization can gain factors in **condition of an at CERN of Actors**
 performance.
CERN openlab (performance. ● *Potentially much greater throughput* ● *Still many unresolved issues for legacy processing*

 \sim \cdot

MariaGirone CERN openlab CTO

Computing Hierarchy Changes

 λ and λ computing in HEP – Dirk Duellmann 3 -Jul-2017 34

Opportunistic resources

- Today this has become more important
	- Opportunistic use of:
		- HPC facilities
		- Large cloud providers
		- Other offers for "off-peak" or short periods
		- ...
		- All at very low or no cost (for hardware)
	- But scale and cost are unpredictable
- Also growing in importance:
	- Volunteer computing (citizen science)
		- BOINC-like (LHC@home, ATLAS/CMS/LHCb@home, etc)
		- Now can be used for many workloads – as well as the outreach opportunities

Drivers of Change

- Must reduce the (distributed) provisioning layer of compute to something simple, we need a hybrid and be able to use:
	- Our own resources
	- Commercial resources
	- Opportunistic use of clouds, grids, HPC, volunteer resources, etc.
- Move towards simpler site management
	- Reduce operational costs at grid sites
	- Reduce "special" grid middleware support cost
- Today (2015) it is cheaper for us to operate our own data centres
	- We use 100% of our resources 24x365
- We also get a large synergistic set of resources in many Tier 2s – essentially for "free" – over and above the pledged resources
- However, commercial pricing is now getting more competitive
	- Large scale hosting contracts, commercial cloud provisioning

Scaling up Further: New On-Premise Resources

- Option of new data centre at CERN explored
- On CERN Prévessin site for power reasons
- Multi-stage up to 12 MW
- Attractive solution feasible
	- Investments compensated by power and network cost savings over 10 years

• Project options and schedules being discussed

• Possible integration of experiment on-line needs later

Computing in HEP - Helge Meinhard at CERN.ch

Scaling up Further: Commercial Clouds (1)

- Additional resources
	- Later to complement or replace on-premise capacity
- Potential benefits
	- Economy of scale
	- More elastic, adapts to changing demands
	- Somebody else worries about machines and infrastructure
- Potential issues
	- Cloud provider's business models not well adapted to procurement rules and procedures of public organisations
	- Lack of skills for and experience with procurements
	- Market largely not targeting compute-heavy tasks
		- Performance metrics/benchmarks not established
	- Legal impediments
	- Not integrated with on-premise resources and/or publicly funded e-infrastructures

Scaling up Further: Commercial Clouds (2)

• CERN

Series of short procurement projects of increasing size and complexity

• WLCG

- Private cloud infrastructures at many sites
- Use of AWS, Google, Rackspace etc. by FNAL, BNL, CERN, experiments, others
- Helix Nebula The Science Cloud PCP project in Europe (together with other sciences)
- Also testing real commercial procurements to understand cost
- So far most use has been simulation, only now looking at data-intensive use cases

Conclusions

- LHC computing has successfully managed to collect and analyze in science unprecedented data volumes
- Initially used purpose-built tools, some of which of general utility for data-intensive sciences
	- Helping with adaptation / generalisation were needed
	- Focus on "core-business" and risk protection: eg ROOT, EOS
- Additional open-source tools and new technologies are being adopted/tested
	- Hadoop, Spark, Machine Learning, GPU based Deep Learning
	- This time some adaptation/generalization may be required on the side of HEP computing!
- Future expectations for data volume require further innovations,
	- Eg software optimisation and hardware investments beyond Moore/Kryder laws
- Integration between commercial clouds, scalable on-premise deployments and public e-infrastructures enables additional strategies
- The strength of HEP computing was always to seize the opportunities of the changing ITC market by exploiting the expertise in both computer engineering and scientific computing!

Thank you for your attention

Accelerating Science and Innovation

CERN Prévessin

 $HEP - Dirck DuelImann$ 3 -Jul-2018 \sim 29

SUISSI

FRANCI

 \leq CMS

ATIA

 $SPS - 7 km$

FRN Meyrin

ALICE⁻