Computing in High-Energy Physics

Tier-2 Centres (> 100) Tier-1 Centres

Dr Helge Meinhard / CERN-IT CERN openlab summer student lecture (with additions/updates by D. Duellmann) 3 July 2018

CERN

"Science for peace"

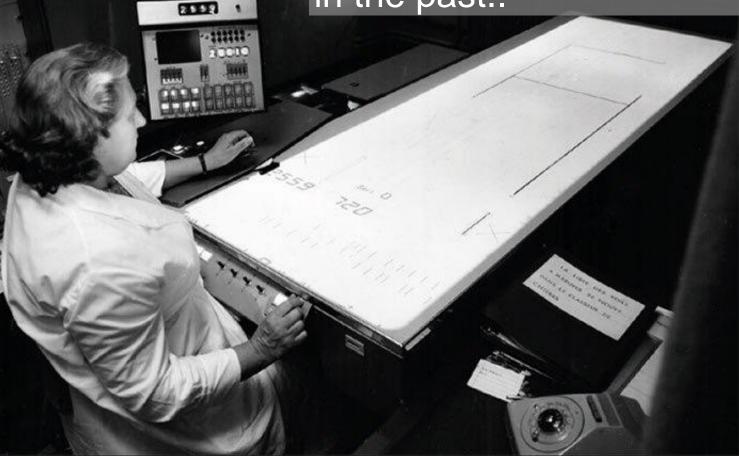
- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
- 22 member states, 1.1 B CHF budget
- ~ 2'500 staff, +fellows, +apprentices, +you, ...
- ~ 12'000 visiting scientists

Members: Austria, Belgium, Bulgaria, Czech Republic, Denmark Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland, United Kingdom Candidate for membership: Romania Associate members: India, Lithuania, Pakistan, Turkey, Ukraine Observers: European Commission, Japan, Russia, UNESCO, United States of America Numerous non-member states with collaboration agreement

2'531 staff members, 645 fellows, 21 apprentices

7'000 member states, 1'800 USA, 900 Russia, 270 Japan, ...

1954: 12 Member States


CERN – Where the Web was Born

Computing in HEP - Helge Meinhard at CERN.ch

Analysing Particle Collisions in the past..

Tools (1): LHC

Exploration

in p-p

LHC ring: 27 km circumference of a new energy frontier Run 1 (2010-2013): 4 + 4 TeV Run 2 (2015-2018): 6.5 + 6.5 TeV

LHC 27 k

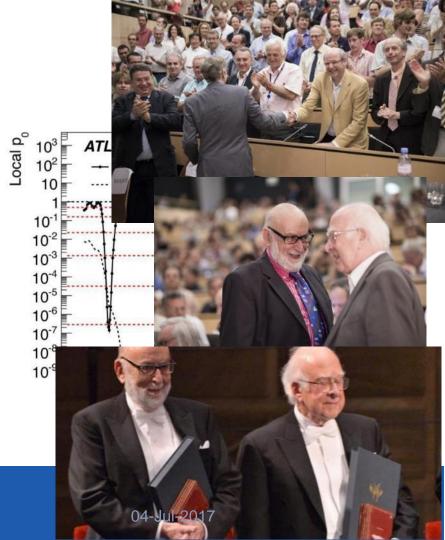
Tools (2): Detectors

ATLAS (A Toroidal Lhc ApparatuS)

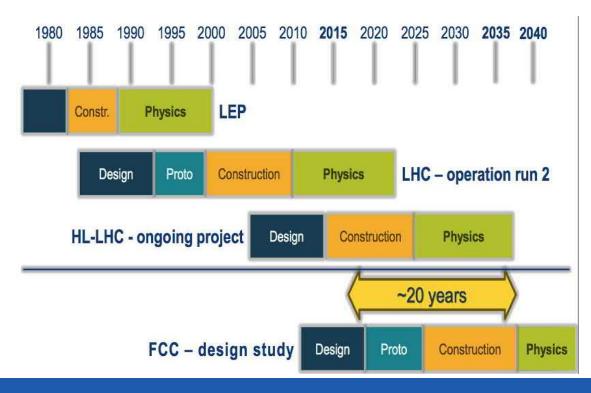
• 25 m diamet General Purpose, 00 tons

- 3'000 scienti proton-proton, heavy ions
- 150 million C Discovery of new physics: Higgs, Supersymmetry
- 40 MHz collision rate
- Event rate after filtering: 300 Hz in Run 1; 1'000 Hz in Run 2

Meinhard at CERN

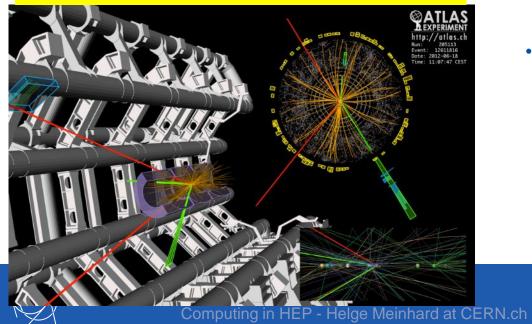

Heavy ions, pp (state of matter of early universe)

grad students)


Results so far

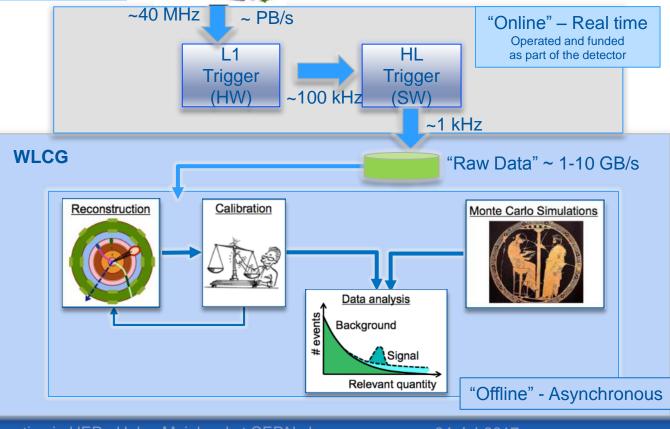
- Many... the most spectacular one being
- 04 July 2012: Discovery of a "Higgs-like particle"
- March 2013: The particle is indeed a Higgs boson
- 08 Oct 2013 / 10 Dec 2013: Nobel price to Peter Higgs and François Englert
 - CERN, ATLAS and CMS explicitly mentioned

HEP Timescales



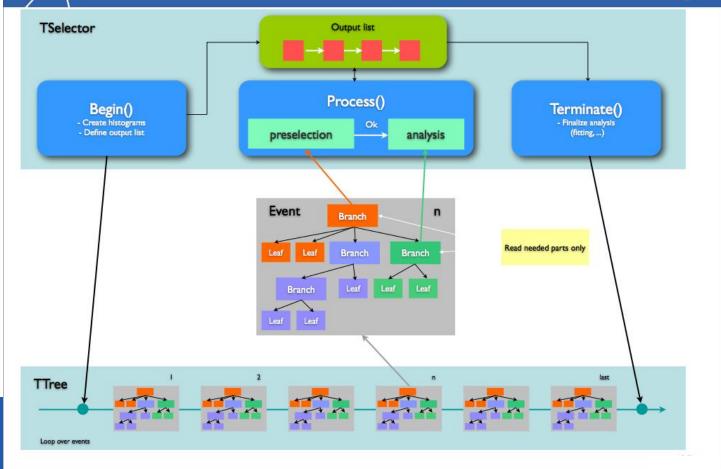
Computing in HEP – Dirk Duellmann

LHC Data – what does it consist of?


- 150 million sensors deliver data
 ... 40 million times per second
- Generates ~ 1 PB per second

- Raw data:
 - Was a sensor hit?
 - How much energy deposit?
 - What time?
- Reconstructed data:
 - Momentum of tracks (4-vectors)
 - Origin
 - Energy in clusters (jets)
 - Particle type
 - Calibration information

HEP Computing

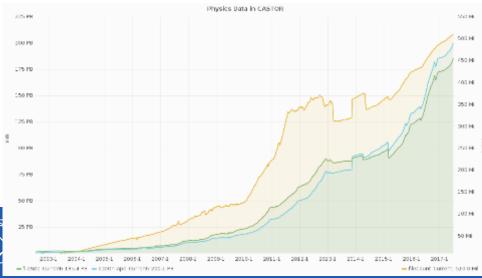


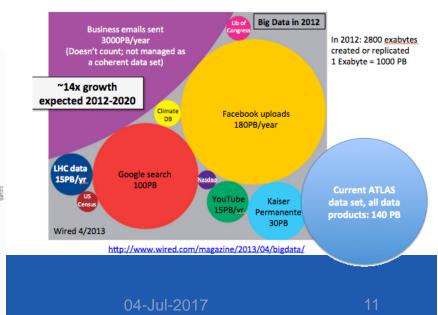
Typical Physics Analysis Flow

21

CERN

Nature of the Computing Task

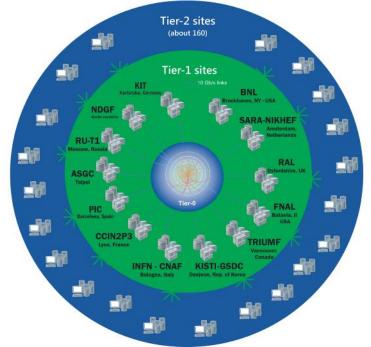

- Enormous number of proton or heavy ion collisions
 - Data from each collision are small (for protons: order 1...10 MB)
 - Each collision is "independent" of other collisions
- No supercomputers needed
 - Most cost-effective solution is standard PC architecture (x86) servers with 2 sockets, SATA drives (spinning or SSD), Ethernet network
 - Linux (RHEL variants: Scientific Linux, CentOS) used everywhere
- Calculations are mostly combinatorics
 - Rather integer than floating-point intensive


Computing in HEP - Helge Meinhard at CERN.ch

Scale of the Computing Problem

- Raw data: order 1...10 MB per collision
 event
 - 1 kHz, for ~7.10⁶ live seconds / year
 - > 7 PB/year per detector
- Several copies, derived data sets, replicated many times for performance, accessibility, etc

- ATLAS (for example) has a managed data set of ~ 285 PB
- CERN data archive on tape is ~200 PB



The Worldwide LHC Computing Grid

Tier-0 (CERN): data recording, reconstruction and distribution

Tier-1: permanent storage, re-processing, analysis

> Tier-2: Simulation, end-user analysis

~170 sites, 42 countries ~750'000 cores ~1'000 PB of storage

> 2 million jobs/day

10-100 Gb links

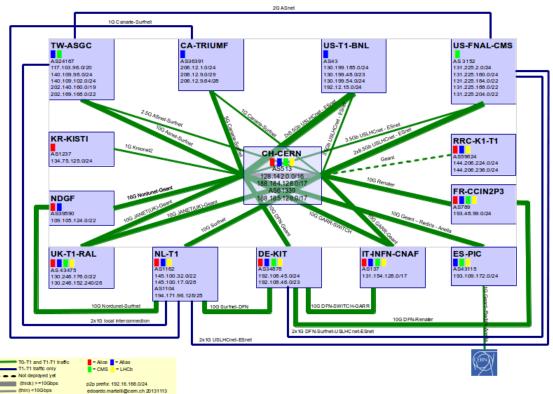
WLCG: An international collaboration to distribute and analyse LHC data

Integrates computer centres worldwide that provide computing and storage resource to a single infrastructure accessible by all LHC physicists

Computing in HEP - Helge Meinhard at CERN.ch

WLCG – a World-wide Infrastructure

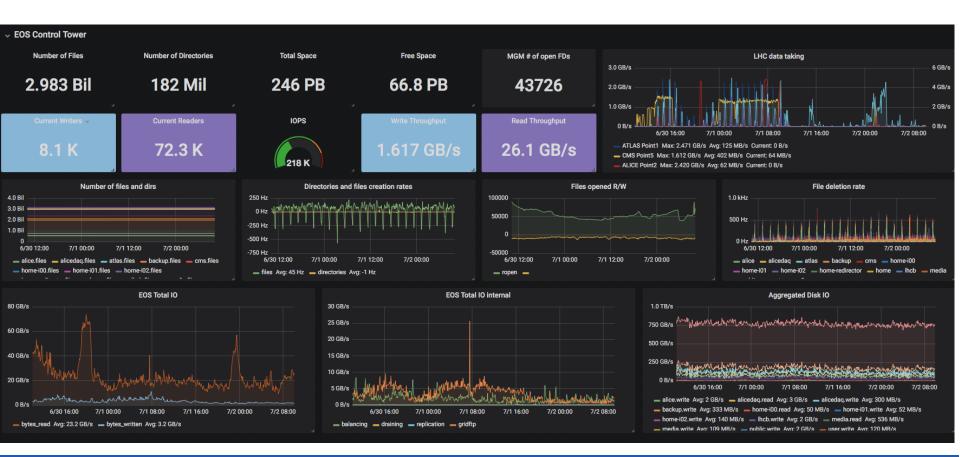
A distributed Tier-0



COMPUTING		STORAGE	
Servers (Meyrin)	Cores (Meyrin)	Disks (Meyrin)	Tape Drives
11.5 K	174.3 K	61.9 K	104
Servers (Wigner)	Cores (Wigner)	Disks (Wigner)	Tape Cartridges
3.5 K	56.0 K	29.7 K	32.2 K


LHC PN

- Optical Private Network
- Support T0 T1 transfers
- Some T1 T1 traffic
- Managed by LHC Tier 0
 and Tier 1 sites



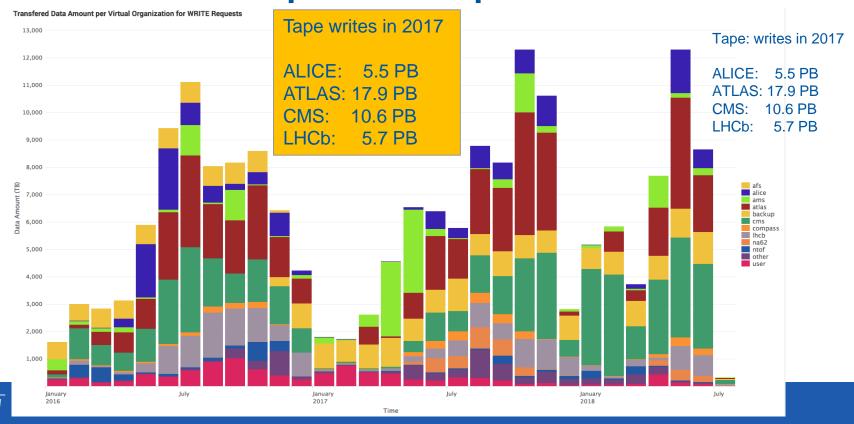
Processing Scale

WLCG: > 2 M jobs/day on ~1M CPU cores

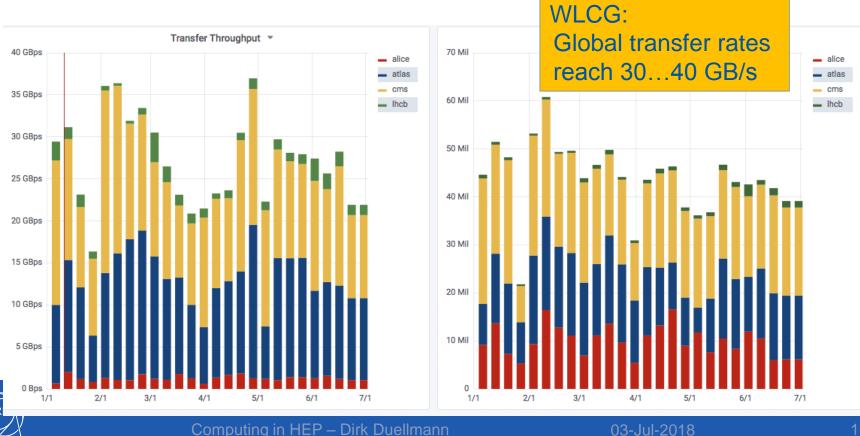
Computing in HEF

Media hierarchy

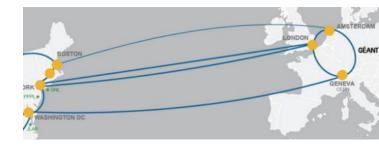
- We still use tape! Why?
 - \$/PB (TCO incl. power)
 - separate physical copy with high "destruction" latency
- We stopped trying "automatic" HSM (Hierarchical Storage Management) for large experiment users
 - file based HSM interface did not allow to specify user priorities
- Disk content is stable (until the experiment decides to replace active data)
- thousands of job streams at relatively low rate (cpu bound)

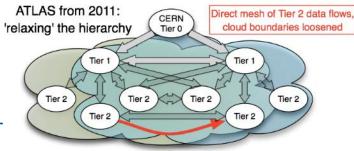


Tape access enabled only for a few production activities


Scale Examples: Tape Archive

Computing in HEP – Dirk Duellmann


Scale Example: Data Transfer


CEF

Distributed model

- Performance & reliability of the networks has exceeded earlier expectations
 - 10 Gb/s \rightarrow 100 Gb/s at large centres
 - >100 Gb/s transatlantic links in place
 - Many Tier 2s connected at 10 Gb/s or better
 - NB. Still concern over connectivity at sites in less-well connected countries
- Strict hierarchical model of Tiers evolved during Run 1 to optimize the use of available resources
 - Move away from the strict roles of the Tiers to more functional and service quality based
 - Better use of the overall distributed system
- Focus on use of resources/capabilities rather than "Tier roles"
 - Data access peer-peer: removal of hierarchical structure

Computing in HEP - Helge Meinhard at CERN.ch

Transforming In-House Resources (1)

Before Wigner deployment:

- Physical servers only
 - Inefficient resource usage
 - Strong coupling of services with HW life-cycle
- Vertical view
 - Service managers responsible for entire stack
- Home-made tools of 10 years ago
 - Successful at the time, but Increasingly brittle
 - Lack of support for dynamic host creation/deletion
 - Limited scalability
- Person-power: (at best) constant
 - ... despite many more machines

Computing in HEP - Helge Meinhard at CERN.ch

Transforming In-House Resources (2)

Current situation:

- Full support for physical and virtual servers
- Full support for remote machines
- Horizontal view
 - Responsibilities by layers of service deployment
- Large fraction of resources run as private cloud under OpenStack
- Scaling to large numbers (> 15'000 physical, several 100'000s virtual)
- Support for dynamic host creation/deletion
 - Deploy new services/servers in hours rather than weeks/months
 - Optimise operational and resource efficiency

Computing in HEP - Helge Meinhard at CERN.ch

Future Challenges for LHC

Data estimates for 1st year of HL-LHC (PB)

CPU Needs for 1st Year of HL-LHC (kHS06) ²⁵⁰⁰⁰⁰
ALICE ATLAS CMS LHCb

CPU (HS06)

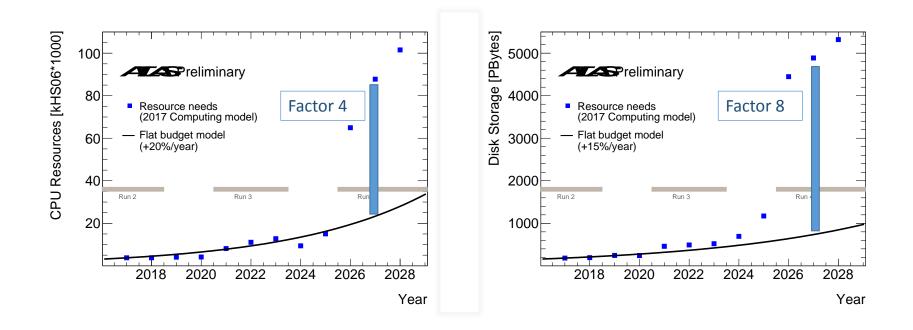
- Assuming 20% per year from technology, still
 - factors missing in terms of cores, storage etc.
- Moore's law coming to an end for business and financial reasons
- Large effort spent to improve software efficiency
 - Exploit multi-threading, new instruction sets, ...

Derived

Data:

1000

• Raw 2016: 50 PB → 2027: 600 PB

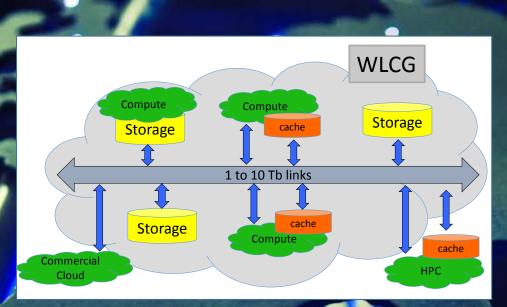

Raw

• Derived (1 copy): 2016: 80 PB → 2027: 900 PB

```
CPU:
```

x60 from 2016

Computing in HEP – Dirk Duellmann

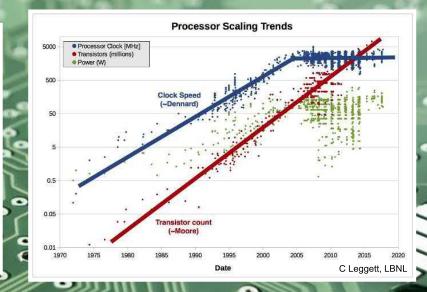

Trends – Software

- Recognizing the need to re-engineer HEP software
 - New architectures, parallelism everywhere, vectorisation, data structures, ...
- HEP Software Foundation (HSF) set up (<u>http://hepsoftwarefoundation.org/</u>)
 - Community wide buy-in from major labs, experiments, projects
 - Goals:
 - Address rapidly growing needs for simulation, reconstruction and analysis of current and future HEP experiments
 - Promote the maintenance and development of common software projects and components for use in current and future HEP experiments
 - Enable the emergence of new projects that aim to adapt to new technologies, improve the performance, provide innovative capabilities or reduce the maintenance effort
 - Enable potential new collaborators to become involved
 - Identify priorities and roadmaps
 - Promote collaboration with other scientific and software domains

Making hundreds of petabytes of data accessible globally to scientists is one the biggest challenges of WLCG

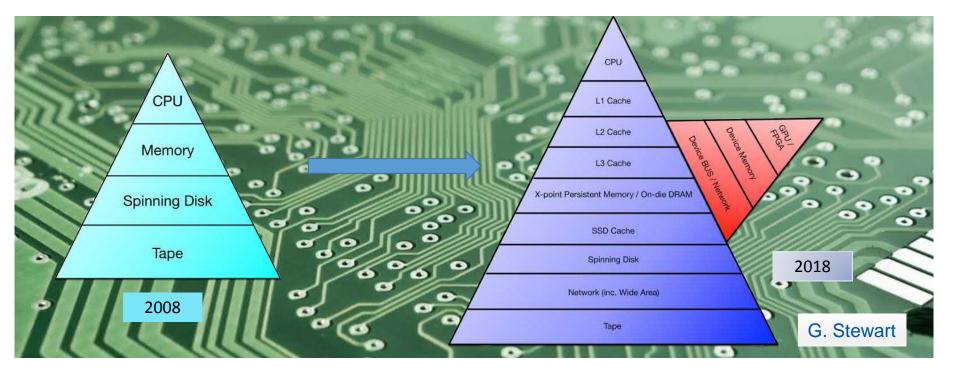
Data Organization, Management and Access in WLCG

Maria Girone CERN openlab CTO HEP has a vast investment in software


Significant effort to make efficient multi-threaded and vectorized CPU code

Accelerated computing devices (GPUs, FPGAs) offer a different model

Complexity of heterogeneous architectures


Simultaneously exploring lower performance but lower power alternatives like ARM

Software optimization can gain factors in performance.

Maria Girone CERN openlab CTO

Computing Hierarchy Changes

Computing in HEP – Dirk Duellmann

Opportunistic resources

•

- Today this has become more important
 - Opportunistic use of:
 - HPC facilities
 - Large cloud providers
 - Other offers for "off-peak" or short periods
 - ...
 - All at very low or no cost (for hardware)
 - But scale and cost are unpredictable

- Also growing in importance:
 - Volunteer computing (citizen science)
 - BOINC-like (LHC@home, ATLAS/CMS/LHCb@home, etc)
 - Now can be used for many workloads – as well as the outreach opportunities

Drivers of Change

- Must reduce the (distributed) provisioning layer of compute to something simple, we need a hybrid and be able to use:
 - Our own resources
 - Commercial resources
 - Opportunistic use of clouds, grids, HPC, volunteer resources, etc.
- Move towards simpler site management
 - Reduce operational costs at grid sites
 - Reduce "special" grid middleware support cost

- Today (2015) it is cheaper for us to operate our own data centres
 - We use 100% of our resources 24x365
- We also get a large synergistic set of resources in many Tier 2s essentially for "free" over and above the pledged resources
- However, commercial pricing is now getting more competitive
 - Large scale hosting contracts, commercial cloud provisioning

Scaling up Further: New On-Premise Resources

•

- Option of new data centre at CERN explored
- On CERN Prévessin site for power reasons
- Multi-stage up to 12 MW
- Attractive solution feasible
 - Investments compensated by power and network cost savings over 10 years

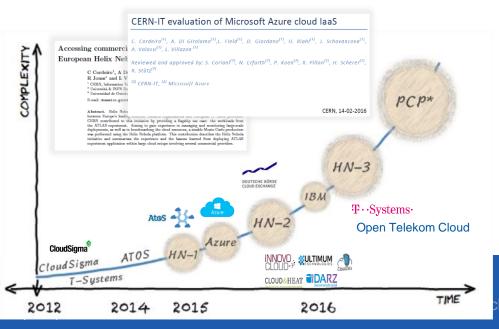
Project options and schedules being discussed

Possible integration of experiment on-line needs later

Computing in HEP - Helge Meinhard at CERN.ch

Scaling up Further: Commercial Clouds (1)

- Additional resources
 - Later to complement or replace
 on-premise capacity
- Potential benefits
 - Economy of scale
 - More elastic, adapts to changing demands
 - Somebody else worries about machines and infrastructure


- Potential issues
 - Cloud provider's business models not well adapted to procurement rules and procedures of public organisations
 - Lack of skills for and experience with procurements
 - Market largely not targeting compute-heavy tasks
 - Performance metrics/benchmarks not established
 - Legal impediments
 - Not integrated with on-premise resources and/or publicly funded e-infrastructures

Computing in HEP - Helge Meinhard at CERN.ch

Scaling up Further: Commercial Clouds (2)

- CERN
 - Series of short procurement projects of increasing size and complexity

- WLCG
 - Private cloud infrastructures at many sites
 - Use of AWS, Google, Rackspace etc. by FNAL, BNL, CERN, experiments, others
 - Helix Nebula The Science Cloud PCP
 project in Europe (together with other
 sciences)
 - Also testing real commercial procurements to understand cost
 - So far most use has been simulation, only now looking at data-intensive use cases

Conclusions

- LHC computing has successfully managed to collect and analyze in science unprecedented data volumes
- Initially used purpose-built tools, some of which of general utility for data-intensive sciences
 - Helping with adaptation / generalisation were needed
 - Focus on "core-business" and risk protection: eg ROOT, EOS
- Additional open-source tools and new technologies are being adopted/tested
 - Hadoop, Spark, Machine Learning, GPU based
 Deep Learning
 - This time some adaptation/generalization may be required on the side of HEP computing!

- Future expectations for data volume require further innovations,
 - Eg software optimisation and hardware investments beyond Moore/Kryder laws
- Integration between commercial clouds, scalable on-premise deployments and public e-infrastructures enables additional strategies
- The strength of HEP computing was always to seize the opportunities of the changing ITC market by exploiting the expertise in both computer engineering and scientific computing!

Thank you for your attention

Accelerating Science and Innovation

CERN Prévessin

HCh

Computing in HEP – Dirk Duellmann

SUISS

FRANCI

CMS

3-Jul-2018

ATLAS

SPS_7 km

FRN Mevri

29

ALICE