Advanced Simulations using Volunteer Computing:

JANE ARLETH DELA CRUZ

Supervisors:

Laurence Field, Ben Segal, Francois Grey

Volunteer Computing

Berkeley Open Infrastructure for Network Computing

ATLAS@home (Event Simulations)

Beauty(Beauty Physics Simulations)

CMS@Home(Event Simulations)

SixTrack(Beam Simulations)

Test4Theory(Monte Carlo Events)

LHC@Home Project for "SDG"

 Help some non-CERN scientists use the same LHC@Home infrastructure to solve health-related problems such as epidemiology modelling

 Run Machine Learning using Keras and Tensorflow Test on BOINC for the first time.

Machine Learning for SDG

- Combining satellite imagery and machine learning to predict poverty (Stanford University, USA, National Bureau of Economic Research, USA)
- Classifying Smoking Urges Via Machine Learning (University of Pittsburgh, USA)
- Machine Learning Based Big Data Processing Framework for Cancer Diagnosis Using Hidden Markov Model and GM Clustering

Explored Solutions	Pros	Cons
Virtualization Virtualization Virtualization	Hosts are heterogeneous in terms of OS Provide a unified software environment	Requires Hypervisor GPU support untested
Containerization Singularity	Runs natively on SLC6/CentOS7(Can run on GPU's)	Only runs on Linux

Build Singularity Container

Python 2.7, Keras 2.2, Tensorflow 1.70

Test Container with ML jobs

Training and Prediction

Make the BOINC Application

Submit the application to BOINC-server via Condor Submission

 Run application on Volunteer Computer via BOINC-Manager

Conclusion

- LHC@Home has potential to run ML jobs.
- Potential Internal ML Computing Resource using Desktop Computers
- First time to run ML (Keras+Tensorflow) on VC.
- (For now,) ML jobs can be run on Linux only with Singularity.

References

LHC@Home: http://lhcathome.web.cern.ch/

BOINC: http://boinc.berkeley.edu

Singularity Python Methods, University of Arizona HPC:

https://docs.hpc.arizona.edu/display/UAHPC/Singularity+-+CentOS7%2C+Tensorflow1.4.1%2C+Keras%2C+Python3.5%2C+Cuda8.0%2C+cuDNN6

LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN: http://ceur-ws.org/Vol-1973/paper02.pdf

Advances in ATLAS@Home towards a major ATLAS computing resource: http://cds.cern.ch/record/2626282/files/ATL-SOFT-SLIDE-2018-409.pdf

Backfilling the Grid with Containerized BOINC in the ATLAS computing:

https://indico.cern.ch/event/587955/contributions/2937192/attachments/1683819/2706562/Backfilling_the_Grid_with_Containerized_BOINC_in_the_ATL AS_computing.pdf

Innovative Big Data Approaches for Capturing and Analyzing Data to Monitor and Achieve the SDGs:

https://reliefweb.int/sites/reliefweb.int/files/resources/Innovative%20Big%20Data%20Approaches%20for%20Capturing%20and%20Analyzing%20Data%20to%20Monitor%20and%20Achieve%20the%20SDGs.pdf

