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CHALLENGES OF TRIGGERING AT LHC

M CMS Experiment at the LHC, CERN
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to manageable levels

Challenge : To maintain physics in
increasingly complex environment
» Un-triggered event will lost forever

T

\

27, \‘\
7 e \\\\
,, //’ ~‘|\“

] B
£ ¥ openlab UMAR KHAYYAM - OPENLAB PRESENTAION SESSION 2018 2



Solution?

MACHINE

LEARNING
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ML & FPGAs

« All ML-Algorithms methods are typically deployed offline analysis.
- Low Latency — Real Time implementation just begun.
« This can be achieved by embedded devices called FPGA’s

CONFIGUEABLE LOGIC
BLOCKS (CLB)
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General Structure of FPGA

Interconncction Network
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Field Programmable Gate Arrays
(FPGA)

Contain array of logic cells used to configure low level operations (bit masking,
shifting, addition)

e Parallelized & Pipelined Implementation.

* [ow power consumption.

How Do We Program them?? — L
: \ nputs —2] 4P D Fiip } Out
* Typical way: Hardware Descriptive Language (HDL) = Clock b FIOP
« New way: High Level Synthesis (HLS) '-‘::';;:P Flip-flop
(logic) (registers)
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Implementation of efficient neural
network design for FPGAs

Focus is to tuning neural network inference such that It uses FPGA resources efficiently without
having performance loss.

Three handling rules:

. Reduce number of neurons to reducing Neural multiplication w/o
suffering any performance loss

. Reduces the precision of the calculations (inputs, weights, biases)

. tune how much to parallelize to make the inference faster/slower

versus FPGA resources
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High Level Synthesis for Machine
Learning

hls 4 ml

Compression, Quantization, and Parallelization made easy in

Keras
TensorFlow

PyTorch

Co-processing kernel

his 4 ml

compressed
model HLS. _
conversion Custom firmware
- . design
Usual machine learning »lf g
software workflow

tune configuration v
precision
reuse/pipeline N
ALL PROGRAMMABLE.

Only comaptible with Xilinx Vivado HLS,
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Intel Altera Quartus HLS

Task was to translating of HLS4ML to work with ALTERA QUARTUS HLS

Understood
the structure
of existing
library.
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Changed
Xilinix
Specific
Directives.
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Results

O

Synthesized

Done some

test projects test project

on Vivado — on Quartus
HLS. 14
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But we are
not finished
yet, The
project is still
under
progress.
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Results up till now from SIMULATIONS
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FUTURE WORK




THANK YOU
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Special Thanks to My Supervisors
Jennifer Ngadiuba — Maurizio Pierini

CERN OPENLAB Organizers
Summer Fellows
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