Status of Resonances in GENIE

Steve Dytman, Univ. of Pittsburgh

Emphasis on resonances above the $P_{33}(1232)$ 11 October, 2018

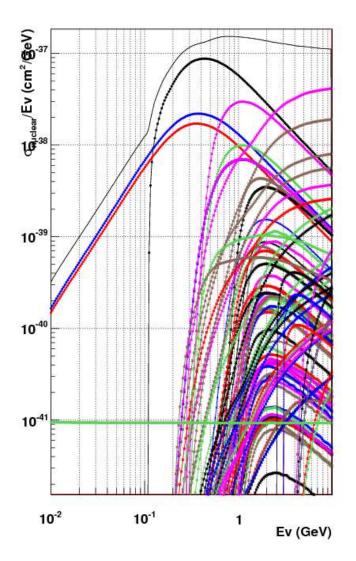
- •Rein-Sehgal is very old, but still used
- •Berger-Seghal improved, but same formalism
- •To me, RS and BS are shells, much remains
- •How do we go forward?

Resonances in GENIE

- Default before v3 has been Rein-Sehgal (RS) (1981)
- Many complaints about this "old and out-moded"
- Knowledge about resonances/non resonant bkgd has greatly improved since 1981!!
- Electron scattering experiments (my emphasis long ago)
 have fantastic statistics/interpretation on many targets
 - Masses, widths, photocoupling (Jlab) greatly improved
- Nonrelativistic quark model is no longer important
- Dividing line between resonances/DIS remains in dispute

GENIE progress

GENIE default (2017)

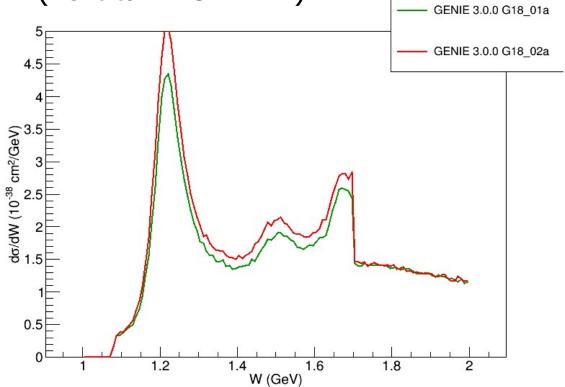

- Rein-Sehgal formalism
- Include all 3*, 4* PDG states, some 2* states (18 total so what?)
- Keep masses, widths up-to-date using PDG (major overhaul 2016)
- Resonances W<1.7 GeV, DIS for W>1.7 GeV (\sim 10 resonances)
- Nonresonant background from scaled Bodek-Yang (DIS tail averages over W)
- Dipole form factors axial and vector same for all resonances
- ► Corrected $\Delta \rightarrow N_{\gamma}$, Δ nonisotropic decay (θ)

Alternate models

- Berger-Sehgal (2007) add lepton mass/vac pol diagrams (also KLN)
- MiniBooNE axial form factors fit to all nucleon data
- MAID vector form factors (still private)

Many resonances!

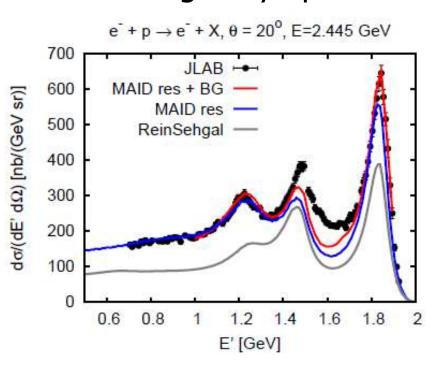
- Plot is of all GENIE processes for vC, but over half are resonances.
- Strengths vary, lots of overlap as function of E_v.

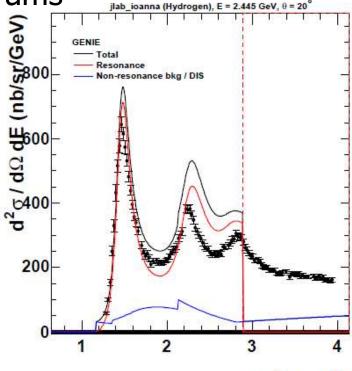


GENIE resonances

RS (01a) vs. BS (02a) (MINERVA LE flux)

Increase overall level due to new form factors


Resonances end at W=1.7 GeV, only 'DIS' at higher W (next talk - U-K Kim)



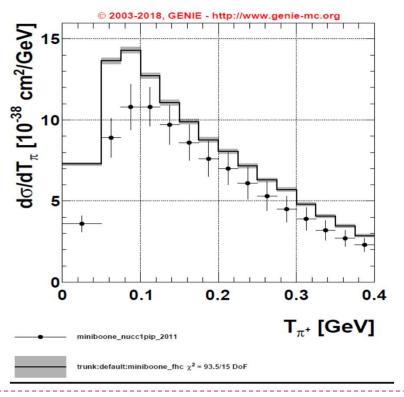
Repeat comparison from NUINT14

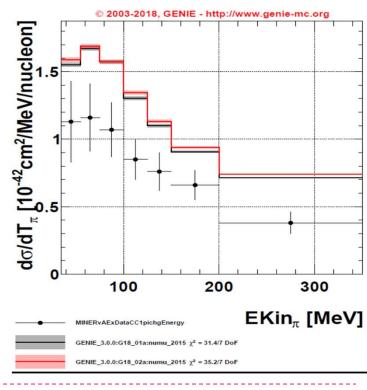
Complaints about Rein-Sehgal often assume same masses, width, and form factors as 1981 paper.

GENIE regularly updates res params

GiBUU from Tina Leitner, NUINT08

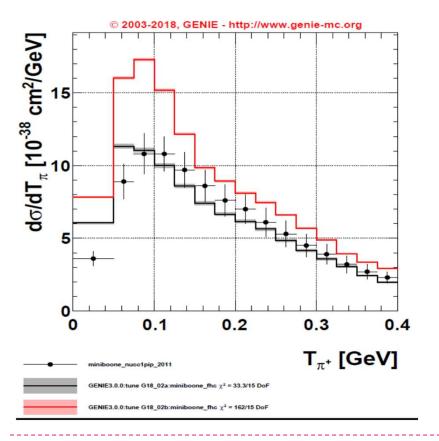
GENIE validation plot 2014 W² (GeV²)

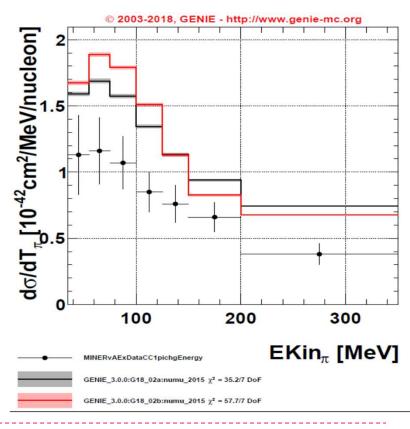

V3.0.0


Major release

- Make all models equally accessible (no switching of xml files)
- Model sets get designations
 - ▶ G00 00a is old default for historical reference
 - ► GI8_01a is updated old default (still RS)
 - ▶ G18 02a switches BS+MiniBooNE axial form factors for RES/COH
 - G18 10i adds LFG & Valencia quasielastic/2p2h & Z expansion GA
 - GI8_01b, GI8_02b, and GI8_10j switch hN for hA FSI
 - ▶ hN is new Cascade model with medium corrections for π , N
 - hA is schematic model which is data-based
- Include new fits to $vN\rightarrow \mu\pi N$ (see Julia Tena Vidal talk)
- All plots in this talk from v3.0.0 (very close to final)

RS+dipole vs. BS+updated GA [G18_01a vs. G18_02a]


- Change in form factors more important
- Show MiniBooNE 1π and Minerva 1π (2015)
 - What is available in GENIE



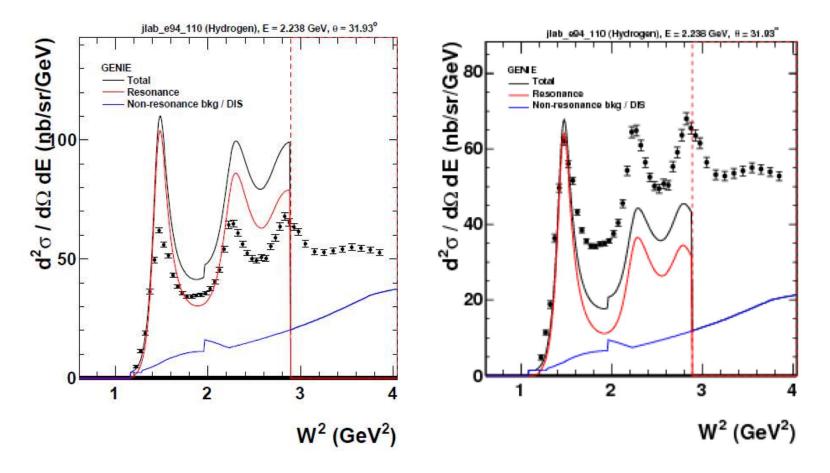
FSI effects - schematic vs. cascade [G18_02a vs. G18_02b using B5]

- BS with schematic does best
- BS with cascade is systematically high (too little abs?)

Where we are with v3.0.0

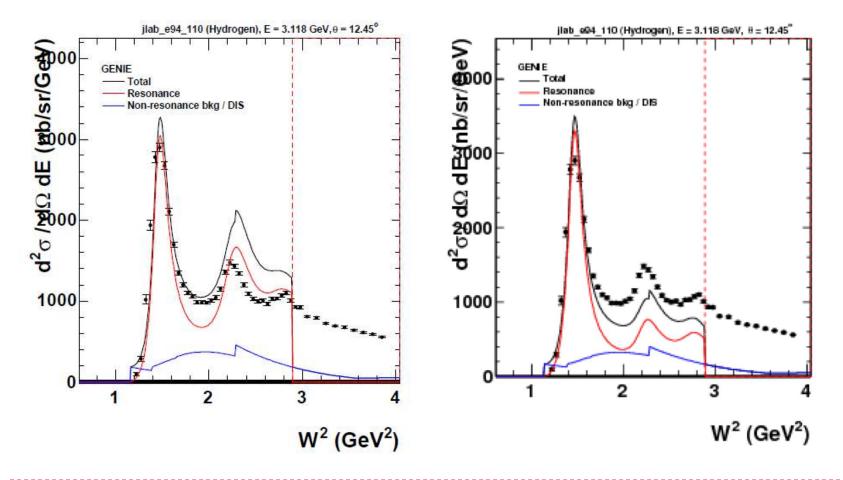
- ► All existing GENIE validation is ∆ dominated
 - All models tend to be above data (BS with schematic FSI best)
- That's where the data is, later MINERvA data will come shortly, more about that tomorrow.
- No medium corrections (not in e,e' either)
- All the high W resonances are there, but untested
 - All resonances have very similar form factors (not true for vector)
 - Vector form factors same as RS

Data available - primary input to models GENIE has extensive database

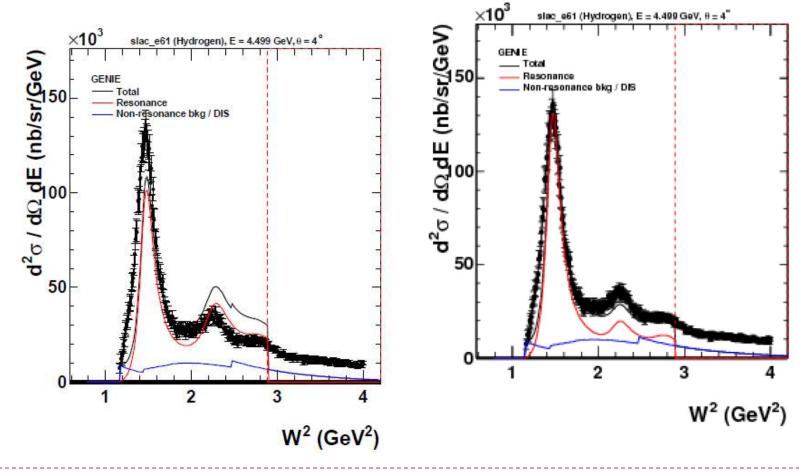

- Hadron-nucleus 100's of distributions for n, p, γ , π , K beams
- Electron-nucleus dozens of distributions for (e,e')
 - Nucleon, many nuclei
 - Inclusive only, need to get (e,e'p) data
 - No data for pion, multihadron production
- Neutrino-nucleon
 - \blacktriangleright All bubble chamber data including recent π reanalysis
 - Many final states, but limited statistics
- Neutrino-nucleus
 - Rapidly growing, but still small range in A, low statistics, and fluxintegrated
 - Most data for Carbon, new Argon detectors important
- For transition region lot of eN, some vN, very little eA or vA

Upgrades to GENIE in progress/anticipated Form factors

- MAID resonance vector form factors soon (long delay)
 - Retune axial form factor?
 - Axial form factors for each resonance?


New comparisons (ep->e'X) p, d targets

▶ Original on left, maid FF on right – high Q^2 at Δ peak


new

 $ightharpoonup Q^2 = .377 \text{ GeV}^2 - \text{better overall agreement}$

new

▶ Q²~0.09 GeV2

Summary of form factors

- Vector resonance form factors will be state of the art
 - Delta response at low Q2 was too large
- Need improved nonresonance response (at least vector)
- Need to refit axial form factors

Upgrades to GENIE in progress/anticipated Other than form factors

- New formalism beyond Rein-Sehgal, Berger-Sehgal?
- New ν N $\rightarrow \mu \pi$ N?
 - Nakamura, Sato, Lee... work has started
 - Lattice calculation?
- Medium corrections? (GIBUU had them, then taken out)
- MEC/2p2h for resonances
- FSI to properly match nucleon response

significant work remaining, varied needs

- Theory
 - Much remains to be done that we understand
 - Subjects for the future are also evident
- Generators are catching up to theory, still much to do
 - They reflect existing theory/data in simplified form
 - Existing (e,e') data at high W resonances only for nucleon targets
 - Vector response still not right
 - Existing vA data emphasizes ∆ in light targets
- More eA data JLab experiment recently approved
 - New neutrino-electron collaboration (e4√)
- More vA data − Minerva ME beam with C, Fe, Pb
- ▶ More vN data ?