
1

Deep Inelastic Scattering 
Impact on NOvA
Mathew Muether

NUSTEC Workshop on DIS

Thursday, Oct. 11th, 2018 



2

Overview

• NOvA Oscillation measurements.
• Focus on Impact of DIS.

– Jeremy	Wolco-	will	speak	more	broadly	on	XS	model	impacts	
in	at	NuInt

• Future efforts in NOvA to explore the DIS region. 
– L.	Aliaga	and	M.	Judah	will	present	updates	and	results	from	
the	NOvA	XS	measurement	effort	at	NuInt.
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The NOvA Experiment
• Long-baseline neutrino 

oscillation experiment.
– NuMI	neutrino	beam	at	Fermilab

– Near	Detector	to	measure	the	
beam	before	oscillaIons

– Far	Detector	measures	the	
oscillated	spectrum.

• Primary goal:
measurement of 3-flavor 
oscillations via: 
– νμ→νμ	and	νμ→νe
– ν̅μ→ν̅μ	and	ν̅μ→ν̅e	
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• Production cross section is a little higher for π+→νμ than for π-→ ν̅μ
• Cross section for antineutrinos is 

~2.8 times lower than for neutrinos.

• Antineutrinos also tend to have more lepton energy and less hadronic energy.

Events	1-5	GeV

96% νμ
3% ν̅μ
1% νe

Events	1-5	GeV

15% νμ
84% ν̅μ
1% νe

Neutrino	Beam Antineutrino	Beam

8.9×1020 POT 6.9×1020	POT	

CC Interaction Spectrum in NuMI 
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• Far detector is 14 ktons, sits at 
the surface in Minnesota

• Near detector is 290 tons placed 
300 ft underground at Fermilab.

• Functionally identical
– Consist	of	plastic	cells	filled	with	liquid	scintillator

– Arranged	in	alternating	directions	for	3D	
reconstruction

– Light	collected	by	WLS	Fiber	and	readout	by	APD

NOvA Detectors
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Neutrino Candidates from ND Data
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Selecting νe’s and νµ’s with Computer Vision

A.	Aurisano and	A.	Radovic and	D.	Rocco	et.	al,	JINST	11 P09001	(2016)

• We use a convolutional neural network based on the GoogLeNet.
– “Feature	maps”	create	variants	of	the	original	image	which	enhance	different	features.

• Multi-label classifier – the same network used in multiple analyses – 
based on GENIE final state labels

• Separate training for the neutrino and antineutrino beams.

Input	Image

νe
νμ
ντ
NC

Cosmic

Learned	variations	on	the	
original	image

256	Feature	Maps
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Additional Selections

• Some basic additional cuts: Contained, fiducial events, well-reconstructed, 
reasonable energy range, cosmic rejection at FD.

• An additional νμ requirement: a track identified as a muon (ReMID>0.7).
– CVN	idenIfies	events	with	a	muon,	but	it	does	not	idenIfy	the	muon	track.

– IdenIfy	muons	in	reconstructed	tracks	using	a	kNN:	Track	length,	dE/dx,	sca-ering,	fracIon	of	
track-only	planes
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Binning for Sensitivity: νμ Events

• Oscillation sensitivity 
depends on spectrum 
shape.

• Improve sensitivity by 
separating high-
resolution and low-
resolution events.

• Split into 4 quantiles by 
hadronic energy fraction.

– Muon	energy	resoluIon	
(3%)	is	much	be-er	than	
hadronic	energy	resoluIon	
(30%).
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Binning for Sensitivity: νμ Events

• Data-MC shape agreement good within each quantile.

• Extrapolate each separately.
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Extrapolating 
from Near to 

Far

• Use the ND νμ sample to predict the FD νμ sample.
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Extrapolating 
from Near to 

Far

• Use the ND νμ sample to predict the FD νμ sample.
• Use the ND νμ sample to predict the FD νe signal.
• Use the ND νe-like sample to predict the FD νe backgrounds.
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Oscillation Fit

• All results come from a joint fit to neutrinos + antineutrinos, νe + νμ

– SystemaIcs	are	treated	together,	though	some	affect	the	samples	differently.

• All contours and 1D ranges are Feldman-Cousins corrected.

• sin22θ13 = 0.082 comes from the PDG average.

νμ ν̅μ

ν̅eνe
Δm2

32,	sin2θ23,	δCP

Octant,	Hierarchy,	
CP-violaIon
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Best	Fit
Normal hierarchy
Upper Octant
Δm2 = (2.51+0.12

-0.08)×10-3 eV2

sin2θ23 = 0.58 ± 0.03



16

CPδ

0.3

0.4

0.5

0.6

0.7

23θ2
si

n

0
2
π π

2
π3 π2

σ1 σ2 σ3 Best Fit

NOvA Preliminary

NH

CPδ

0.3

0.4

0.5

0.6

0.7

23θ2
si

n

0
2
π π

2
π3 π2

σ1 σ2 σ3 Best Fit

NOvA Preliminary

IH

Best	Fit
Normal hierarchy
Upper Octant
Δm2 = (2.51+0.12

-0.08)×10-3 eV2

sin2θ23 = 0.58 ± 0.03
δ = 0.17π

Exclude	IH,	δ=π/2	at	>	3σ



17

Systematic Uncertainties
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Most	important	systemaIcs:

• Detector	CalibraIon
– Will	be	improved	by	the	2019	test	beam	program

• Neutrino	cross	secIons
– ParIcularly	nuclear	effects	(RPA,	MEC)

• Muon	energy	scale

• Neutron	uncertainty	–	new	with	ν̅’s
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GENIE Tuning

• NOvA used GENIE v2.12.2 
for latest oscillation results.

• We tune our cross-section 
model primarily to account 
for nuclear effects.
– We	tune	using	a	combinaIon	of	
external	theory	inputs	and	our	
own	ND	data.

Fig: Teppei Katori, “Meson Exchange Current (MEC) Models in Neutrino 
Interaction Generators” AIP Conf.Proc. 1663 (2015) 030001
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From	external	theory:
• Valencia RPA model† of nuclear 

charge screening applied to QE. QE 
MA moved from 0.99 -> 1.04.

† “Model uncertainties for Valencia RPA effect for MINERvA”, 
Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932
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From	external	theory:
• Valencia RPA model† of nuclear 

charge screening applied to QE. QE 
MA moved from 0.99 -> 1.04.

• Same model applied to resonance.
• Reduced the normalization non-

resonant 1π production with W < 1.7 
GeV by 57% **

From	NOvA	ND	data:
• 10% increase in non-resonant 

inelastic scattering (DIS) at high W.

**	Rodrigues	et	al.	[Eur.Phys.J.	C76,	474]. 	Not	for	anIneutrinos.
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From	external	theory:
• Valencia RPA model† of nuclear 

charge screening applied to QE.
• Same model applied to resonance.
• Reduced the normalization non-

resonant 1π production with W < 1.7 
GeV by 57% **

From	NOvA	ND	data:
• 10% increase in non-resonant 

inelastic scattering (DIS) at high W.
• Add MEC interactions

– Start	from	Empirical	MEC*
– Retune	in	(q0,|q|)	to	match	ND	data

– Tune	separately	for	ν/	ν̅
* “Meson Exchange Current (MEC) Models in Neutrino Interaction 

Generators”, Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014

GENIE Tuning
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FHC Tune

• Good	agreement	between	MC	and	data	in	
general.

• DIS	has	significant	impact	at	high	visible	Ehad.
• W	distribuIons	do	not	include	the	high-W	

DIS	correcIon.
• Most	DIS	is	in	the	“transiIon”	regions.
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FHC W Resolution

• 10%	W	ResoluIon.	
• Small	bias	across	W.	
• ResoluIon	larger	in	QE/RES	region.	
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FHC Tune In DIS Enhanced Quartiles
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FHC Tune In DIS Enhanced Quartiles

• RES	and	DIS	are	fairly	muddled	together	in	NOvA		
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RHC Tune
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RHC W Resolution

• Similar	to	FHC.
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RHC Tune In DIS Enhanced Quartiles
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RHC Tune In DIS Enhanced Quartiles
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GENIE DIS Normalization Uncertainties

• GENIE includes DIS normalization systematics of 50% for 
1 and 2 pion final states in events with W < 1.7 GeV.  

• NOvA expands these to apply to final states with any 
number of pions.  

• We also increased the range of the systematic to apply up 
to a W of 3 GeV as the discontinuity of 50% < 1.7 GeV and 
0% > 1.7 GeV seems unphysical, even though we know 
higher energy regions are better constrained.

• We feel in general untrusting of this region in GENIE, 
hence the large uncertainties, and would greatly appreciate 
a closer look from the community at the model and the 
systematics GENIE provides.
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Additional impact of improved DIS 
Modeling

ReMID score
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• NOvA	has	observed	a	data/MC		
discrepancy	in	the	low	track-
length,	high	y	region	of	νμ-
selected	ND	events.

• CVN	recovers	many	of	the	low	
track-length	events	but	due	to	
this	discrepancy	we	conInue	to	
apply	a	muon	selecIon	using	
Remid.

• Resolving	this	discrepancy	and	
relaxing	ReMID	requirement	
would	boost	available	analysis	
staIsIcs.
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NOvA Cross-section measurement

• NOvA is currently working on a set of cross-
section measurements which may help better 
understand DIS. Results and updates on 
Wednesday.

CC	Neutral	Pion	ProducIon

• νμ		and	νe	inclusive	CC		
measurements.

• Charged	and	neutral	
pion	producIon	
measurements.
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Conclusion

• The transition DIS region is important to NOvA 
oscillation results.
– Improved	CVN	based	PIDs	conInue	to	increase	selecIon	
efficiency	for	νμ		CC.	Many	of	the	new	events	are	DIS	and	
gaining	confidence	in	including	these	in	the	NOvA	sample	
requires	conInued	effort	on	the	DIS	model.	

– For	the	exisIng	analysis	the	DIS	component	is	small	but	
couples	with	RES	(a	major	source	of	XS	uncertainty.)

– NOvA	is	conInuing	to	fine	tune	our	GENIE	implementaIon	
to	improve	agreement	in	addiIonal	variable	like	W.	

– DIS	uncertainIes	are	not	a	standard	GENIE	
implementaIon.	Input	from	the	community	is	welcome.	
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BACKUPS
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NOvA Detectors
• Light is produced when 

charged particles pass 
through the cells.

• The light is picked up by a 
wavelength shifting fiber.

It	is	then	transported	
to	an	Avalanche	

PhotoDiode	where	
the	light	is	collected	

and	amplified.
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Extrapolating 
from Near to 

Far

• Use the ND νμ sample to predict the FD νμ sample.
• Use the ND νμ sample to predict the FD νe signal.
• Use the ND νe-like sample to predict the FD νe backgrounds.
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• Production cross section is a little higher for 
π+→νμ than for π-→ ν̅μ

– p+	colliding	with	p+	and	n0	in	the	target	

• Wrong-sign: ν in the ν̅ beam (or vice versa).

• Off-axis beam reduces the wrong-sign.

– WS	primarily	comes	from	the	unfocused	high-
energy	tail.
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For	our	latest	analysis:
• A shorter, simpler architecture trained on updated simulation.
• Replaced Genie truth labels with final state labels.

– Exploring	using	final	states	with	protons	to	constrain	WS	backgrounds.
• Separate training for the neutrino and antineutrino beams.

– Wrong-sign	treated	as	signal	in	training.
– 14%	be-er	efficiency	for	ν̅e	with	a	dedicated	network.
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Binning for Sensitivity: νe Events

• The ND νe-like sample has no νe/ν̅e appearance 
– all background.

• For the neutrino beam we use two data-driven 
techniques to constraint the background 
composition.

• For the antineutrino beam scale all components 
proportionally for now.
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νe ν̅e

Neutrino Antineutrino

Beam	νe/ν̅e 55% 76%

NC 24% 17%

CC	νμ/ν̅μ 21% 7%
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• Additional cosmic rejection needed at the Far Detector.

– 11	billion	cosmic	rays/day	in	the	Far	Detector	on	the	surface.

– 107	rejecIon	power	required	aKer	Iming	cuts	are	applied.

• The νμ sample uses a BDT based on:

– Track	length	and	direcIon,	distance	from	the	top/sides,	fracIon	of	hits	in	the	muon,	and	CVN.

• Cosmic rejection for the νe sample is in 2 stages:

– Core	sample:	require	contained	events,	beam-directed	events,	away	from	the	detector	top

– Peripheral	sample:	events	failing	the	core	selecIon	can	pass	a	BDT	cut	plus	a	Ight	CVN	cut.

• Different	BDT	from	νμ	based	on	the	same	containment	variables	used	for	cuts	in	the	core	sample.
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• Additional cosmic rejection needed at the Far Detector.

– 11	billion	cosmic	rays/day	in	the	Far	Detector	on	the	surface.

– 107	rejecIon	power	required	aKer	Iming	cuts	are	applied.

• The νμ sample uses a BDT based on:

– Track	length	and	direcIon,	distance	from	the	top/sides,	fracIon	of	hits	in	the	muon,	and	CVN.

• Cosmic rejection for the νe sample is in 2 stages:

– Core	sample:	require	contained	events,	beam-directed	events,	away	from	the	detector	top

– Peripheral	sample:	events	failing	the	core	selecIon	can	pass	a	BDT	cut	plus	a	Ight	CVN	cut.

• Different	BDT	from	νμ	based	on	the	same	containment	variables	used	for	cuts	in	the	core	sample.
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Measuring Neutrino Energy
νμ	Events νe Events

• Neutrino energy is a function of 
EM and hadronic energy.

• EM “prongs” are identified with 
a single-prong CVN variant.

– All	remaining	acIvity	is	hadronic.

• Both energies reconstructed 
calorimetrically.

• Neutrino energy is the sum of 
muon and hadronic energy.

• Muon energy is a function of 
track length.

• Hadronic energy reconstructed 
calorimetrically.
– Includes	activity	overlapping	the	

muon	track.
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Binning for Sensitivity: νe	Events

• Oscillation sensitivity depends on separating νe signal from background.

• Bin by PID to separate a high-purity and low-purity sample. 

• Energy binning separates appearing νe from beam νe and has minor δ sensitivity.
– No	energy	bins	in	the	peripheral	sample	where	uncontained	events	make	energy	unreliable.

νe ν̅e
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νe Decomposition
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• νe and νμ events come from the same parents:
– Lower	energy	neutrinos	come	primarily	from	π decay.	

– Higher	energy	neutrinos	come	primarily	from	K decay.

• Use contained νμ data to constrain the π flux

• Use higher energy uncontained events to 
constraint the K flux.
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νe Decomposition

• The CC/NC constrains using the number of observed Michel electrons.
– Determine	the	fracIon	of	the	two	components	in	each	analysis	bin.
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νe and ν̅e Background at the Far Detector

• 14.7 – 15.4 total νe background 4.7 – 5.7 total νe̅ background
– Wrong-sign	background	depends	on	the	oscillaIon	parameters.

• Largest backgrounds are from real electrons: beam νe/ν̅e and wrong-sign.
– The	amount	of	wrong-sign	background	varies	with	the	oscillaIon	parameters.

• Most other beam backgrounds contain a π0.
49
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Wrong-sign Background

• The 11% wrong-sign fraction of the ν̅μ events is important since it becomes the 
WS background in the ν̅e appearance analysis.

• ~10% systematic uncertainty on wrong-sign from flux and cross section 
– Does	not	include	uncertainIes	from	detector	effects.

• Confirmed using data-driven cross-check of the wrong-sign contamination
– 11%	wrong-sign	in	the	ν̅μ	sample	checked	using	neutron	captures	in	the	neutrino	and	anIneutrino	

beams.
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New neutron response systematic

• ν̅’s have neutrons where ν’s have protons.
– O|en	several	hundred	MeV	of	energy.

– Modeling	these	fast	neutrons	is	known	to	be	
challenging.

• See some discrepancies in an enriched sample of 
neutron-like prongs.

• New systematic introduced:

– Scales	the	amount	of	deposited	energy	of	some	
neutrons	to	cover	the	low-energy	discrepancy.

• Shifts the mean νμ energy by 1% in the 
antineutrino beam and 0.5% in the neutrino 
beam.

– Negligible	impact	was	seen	on	selecIon	efficiencies.
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New neutron response systematic

• ν̅’s have neutrons where ν’s have protons.
– O|en	several	hundred	MeV	of	energy.

– Modeling	these	fast	neutrons	is	known	to	be	
challenging.

• See some discrepancies in an enriched sample of 
neutron-like prongs.

• New systematic introduced:

– Scales	the	amount	of	deposited	energy	of	some	
neutrons	to	cover	the	low-energy	discrepancy.

• Shifts the mean νμ energy by 1% in the 
antineutrino beam and 0.5% in the neutrino 
beam.

– Negligible	impact	was	seen	on	selecIon	efficiencies.
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νµ and νμ̅	Data at the Far Detector
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νμ
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ν̅μ
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• Good agreement in FD data distributions of muon 
and hadronic energy and inelasticity.

56

0 0.5 1 1.5 2 2.5 3
Reconstructed muon energy (GeV)

0

5

10

15

 P
O

T-
eq

ui
v

20
10×

Ev
en

ts
 / 

8.
85

FD data
Simulation

 CCµνWrong Sign: 
Total Bkg.
Cosmic Bkg.

NOvA PreliminaryNeutrino beam

0 0.5 1 1.5 2 2.5 3
Hadronic energy in the slice (GeV)

0

5

10

15

20

 P
O

T-
eq

ui
v

20
10×

Ev
en

ts
 / 

8.
85

FD data
Simulation

 CCµνWrong Sign: 
Total Bkg.
Cosmic Bkg.

NOvA PreliminaryNeutrino beam

0 0.5 1 1.5 2 2.5 3
Reconstructed muon energy (GeV)

0

2

4

6

8

10

12

 P
O

T-
eq

ui
v

20
10×

Ev
en

ts
 / 

6.
91

FD data
Simulation

 CCµνWrong Sign: 
Total Bkg.
Cosmic Bkg.

NOvA PreliminaryAntineutrino beam

0 0.5 1 1.5 2 2.5 3
Hadronic energy in the slice (GeV)

0

2

4

6

8

10

12
 P

O
T-

eq
ui

v
20

10×
Ev

en
ts

 / 
6.

91
FD data
Simulation

 CCµνWrong Sign: 
Total Bkg.
Cosmic Bkg.

NOvA PreliminaryAntineutrino beam

νμ

0 0.2 0.4 0.6 0.8 1
Hadronic energy fraction in the slice

0

5

10

15

 P
O

T-
eq

ui
v

20
10×

Ev
en

ts
 / 

6.
91

FD data
Simulation

 CCµνWrong Sign: 
Total Bkg.
Cosmic Bkg.

NOvA PreliminaryAntineutrino beam

0 0.2 0.4 0.6 0.8 1
Hadronic energy fraction in the slice

0

5

10

15

 P
O

T-
eq

ui
v

20
10×

Ev
en

ts
 / 

8.
85

FD data
Simulation

 CCµνWrong Sign: 
Total Bkg.
Cosmic Bkg.

NOvA PreliminaryNeutrino beam

ν̅μ

νμ

ν̅μ

νμ

ν̅μ



57

Reconstructed Neutrino Energy (GeV)
0

2

4

6

8

10

12

 P
O

T-
eq

ui
v

20
 1

0
×

Ev
en

ts
 / 

6.
91

 

NOvA Preliminary

FD data

2018 Best Fit

Wrong Sign Bkg.

Total Beam Bkg.

Cosmic Bkg.

Low PID High PID

C
or

e
Pe

rip
he

ra
l

1 2 3 4 1 2 3 4

Antineutrino beam

Reconstructed Neutrino Energy (GeV)
0

5

10

15

20

 P
O

T-
eq

ui
v

20
 1

0
×

Ev
en

ts
 / 

8.
85

 
NOvA Preliminary

FD data

2018 Best Fit

Wrong Sign Bkg.

Total Beam Bkg.

Cosmic Bkg.

Low PID High PID

C
or

e
Pe

rip
he

ra
l

1 2 3 4 1 2 3 4

Neutrino beam

57

ν̅eνe

Total	Observed 58 Range

Total	Prediction 59.0 30-75

Wrong-sign 0.7 0.3-1.0

Beam	Bkgd. 11.1

				Cosmic	Bkgd. 3.3

Total	Bkgd. 15.1 14.7-15.4

Total	Observed 18 Range

Total	Prediction 15.9 10-22

Wrong-sign 1.1 0.5-1.5

Beam	Bkgd. 3.5

				Cosmic	Bkgd. 0.7

Total	Bkgd. 5.3 4.7-5.7

Strong	(>4σ)	evidence	of	νe̅	appearance
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• We also determine uncertainties 
on the MEC component we 
introduce.
– Both	on	shape	and	total	rate.

• Repeat the tuning procedure with 
shifts in the Genie model.
– Turn	Genie	systematic	knobs	

coherently	to	push	the	non-MEC	
x-sec	more	QE-like	or	more	RES-like.

νμ̅

νμ



59

0 0.1 0.2 0.3 0.4
 (GeV)hadVisible E

20

40

60

80

 E
ve

nt
s

3
10

NOvA ND data
 tuneν + ν2018 NOvA 

MINERvA MEC
σNOvA - MEC shape -1
σNOvA - MEC shape +1

Non-MEC

0 0.1 0.2 0.3 0.4
 (GeV)hadVisible E

0.6
0.8

1
1.2
1.4

M
C

 / 
da

ta

Antineutrino Beam
NOvA Preliminary

0 0.1 0.2 0.3 0.4 0.5 0.6
 (GeV)hadVisible E

50

100

150

 E
ve

nt
s

3
10

NOvA ND data
 tuneν + ν2018 NOvA 

MINERvA MEC
σNOvA - MEC shape -1
σNOvA - MEC shape +1

Non-MEC

0 0.1 0.2 0.3 0.4 0.5 0.6
 (GeV)hadVisible E

0.8
0.9

1
1.1
1.2

M
C

 / 
da

ta

Neutrino Beam
NOvA Preliminary

MEC Uncertainties

59
* Minerva, Phys. Rev. Lett. 116, 071802 (2016)

Minerva, Phys. Rev. Lett. 120, 221805 (2018)

• We also determine uncertainties 
on the MEC component we 
introduce.
– Both	on	shape	and	total	rate.

• Repeat the tuning procedure with 
shifts in the Genie model.
– Turn	Genie	systematic	knobs	

coherently	to	push	the	non-MEC	
x-sec	more	QE-like	or	more	RES-like.

• Independently, Minerva* has also 
tuned a multi-nucleon component 
to their data.

• The resulting tune is ~1σ away 
from the NOvA tune.

νμ̅

νμ
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Energy difference and resolution for νµ events
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Q1 Q2

Energy difference and resolution for νµ events
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Q3 Q4

Energy difference and resolution for νµ events
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Energy difference and resolution for νµ events
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Q1 Q2

Energy difference and resolution for νµ events
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Q3 Q4

Energy difference and resolution for νµ events


