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What happens when the interaction takes place with a nucleon bound inside
the nucleus?

Aubert et al, Phys. Lett. B123, 275 (1983)
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Phenomenological vs Theoretical approaches

To understand nuclear medium effects, there are two approaches:
Phenomenological
Theoretical

Phenomenological Efforts

Phenomenological group data types used
EKS98 l+A DIS, p+A DY
HKM l+A DIS
HKN04 l+A DIS, p+A DY
nDS l+A DIS, p+A DY
EKPS l+A DIS, p+A DY
HKN07 l+A DIS, p+A DY
EPS08 l+A DIS, p+A DY, h±,π0,π± in d+Au
EPS09 l+A DIS, p+A DY, π0 in d+Au
nCTEQ l+A DIS, p+A DY
nCTEQ l+A and ν+A DIS, p+A DY
DSSZ l+A and ν+A DIS, p+A DY,

π0,π± in d+Au

Paukkunen and Salgado:JHEP2010: “find no apparent disagreement with the nuclear effects in
neutrino DIS and those in charged lepton DIS.”

CTEQ-Grenoble-Karlsruhe collaboration “observed that the nuclear corrections in ν-A DIS are
indeed incompatible with the predictions derived from l±-A DIS and DY data”
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Phenomenological vs Theoretical approaches

J G Morfin J. of Physics: Conf. Ser. 408 (2013) 012054; Kovarik et al. Phys.Rev.Lett. 106
(2011) 122301
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Phenomenological vs Theoretical approaches

MINERvA@Fermilab: Phys. Rev. D93 (2016) 071101
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Phenomenological vs Theoretical approaches

Theoretical approach

Aligarh-Valencia group

Kulagin-Petti group

z Fermi motion

z Pauli blocking

z Nucleon correlations

z Mesonic contributions

z Shadowing and Antishadowing

NuSTEC M. Sajjad Athar (AMU) NME in EM and Weak Structure Functions 8



Introduction Nuclear Effects Nuclear Model Neutrino-Nucleus Scattering Results

Phenomenological vs Theoretical approaches

The DCX for ν−N

d2σN

dΩdE′
∝ Lµν Wµν

N

gets modified to

d2σA

dΩdE′
∝ Lµν Wµν

A

for ν−A

Wµν

A =

(
qµ qν

q2 −gµν

)
W1A+

(
pµ

A −
pA.q
q2 qµ

)(
pν

A−
pA.q
q2 qν

)
W2A

M2
A

− iεµνρσ
pρ qσ

2M2
A

W3A

MW1A = F1A ; νW2A = F2A ; νW3A = F3A
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Model

We construct from the beginning a relativistic nucleon spectral function and
define everything within a field theoretical formalism.

The spectral functions has been calculated using Lehmann’s representation for
the relativistic nucleon propagator.

Nuclear many body theory is used to calculate it for an interacting Fermi sea in
nuclear matter.

A local density approximation is then applied to translate these results to finite
nuclei.

Nuclear information like Binding energy, Fermi motion, nucleon correlations, is
contained in the spectral function.

The mesonic contribution is incorporated in a many body field theoretical
approach.

For the shadowing and antishadowing effects, Glauber-Gribov multiple
scattering model has been used following the works of Kulagin and Petti[
PRD76(2007)094033].
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Fermi Gas Model

Assumptions

It is assured that the nucleons in a nucleus (or
nuclear matter) occupy one nucleon per unit cell
in phase space so that the total number of
Nucleons N is given by

N = 2V
∫ d3p

(2π)3

where a factor of two to account spin degree of
freedom.

All states upto a maximum momentum pF
(p < pF) are filled.

The momentum states higher than p > pF are
unoccupied.

pF

Unoccupied state

Occupied state
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The occupation number n(p) is defined as:

n(p) =1,p < pF

=0,p > pF

=⇒ ρ =
N
V

=
p3

F
3π2

∴ pF =(3π
2
ρ)

1
3

pF

n(p)

Protons and neutrons are supposed to have different Fermi sphere

pFp =

(
3
2

πρp

) 1
3

pFn =

(
3
2

πρn

) 1
3

This results a hole in the Fermi sea and a particle above
the sea. This is known as 1p1h excitation, with the
condition that:

initial momentum: |p|< pi
F

final momentum: |p+q|> pf
F

pF
W±(Z)

~q
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Local Fermi momentum
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p-h excitation:

ν disappears from the elastic flux, by inducing 1p1h, 1∆1h, etc. excitations.

Initial nucleon has a momentum (distribution) such that |p|< pf
F Fermi

momentum of initial nucleon.

Final nucleon should be outside the Fermi level so p =| p+q |> pf
F Fermi

momentum of final nucleon.

In the interaction (of W or Z) with the nucleon, a hole is created in Fermi sea
and excited to a particular state W +n−→ p.

Creation of 1p1h state: Diagrammatically
νl(k)

νl(k)

l(k′)

W (q)

W (q)

N(p) X(p′)

Wµ

p + q

Jµ

p

p p + q
p p + q

ν elastic flux Feynman Diagram 1p1h excitation 1p1h response
matrix element

NuSTEC M. Sajjad Athar (AMU) NME in EM and Weak Structure Functions 14
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The nucleons in a nucleus interact through two body NN potential (simply modeled
with π and ρ exchange. )

Once 1p1h are excited by an external probe, they can interact through the
NN–potential(π and ρ exchange) n number of times. In fact in this interaction they
can also produce ∆ leading to ph–∆h interaction which can be depicted as:

+ + +...........................

W+

W+

W+

W+

W+

W+

V V

V

W+

W+

The dashed line shows the
N-N potential.
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NN potential

V(~r1,~r2) = C0
{

f0 + f ′0~τ1.~τ2 +g0~σ1.~σ2 +g′0~σ1.~σ2~τ1.~τ2
}

f0 & g0 is strength of the NN-potential in isoscalar spin-independent and
spin-dependent channel.

f ′0 & g′0 is strength of the NN-potential in isovector spin-independent and
spin-dependent channel.
σ and τ are Pauli matrices acting on the nucleon spin and isospin spaces.

V =Vπ +Vρ

Vπ =
f 2
π

m2
π

~σ1.~q~σ2.~q

q2
0− ~q2−m2

π + i ∈

Vρ =
f 2
ρ

m2
ρ

~σ1×~q ~σ2×~q
q2

0−~q2−m2
ρ + i ∈

~τ.~τ

Vl(q) =
f 2

m2
π

{(
Λ2

π −m2
π

Λ2
π −q2

)2
~q 2

q2−m2
π

+g′
}

Vt(q) =
f 2

m2
π

Cρ

(
Λ2

ρ −m2
ρ

Λ2
ρ −q2

)2
~q2

q2−m2
ρ

+g′
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ΓdtdS provides probability times differential of area (dS), which is a contribution to
(νl, l) cross section

dσ = ΓdtdS = Γ
dt
dl

dSdl = Γ
dV
v

= Γ
E(k)
|k| d3r

f =
1

k0−E(k)+ i Γ

2

G(k0,k) = ∑
r

ūr(k′)ur(k)
k0−E(k)− ml

E ūr(k′)Σ(k)ur(k)

Γ = − 2ml

E(k)
ImΣ(k)

dσ = −2ml

|k| ImΣ(k)d3r
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−igµν

q2

l(k′)

l(k)

l(k)
γ∗(q)

γ∗(q)

N (p) X(p′)

ul(k)

ūl(k)
ieγν

ieγµ

−igµν

q2

i( 6k′+ml)

k
′2−m2

l

Πµν
l(k′)

l(k)

l(k)
γ∗(q)

γ∗(q)

N (p) X(p′)

Lepton self energy Σ(k):

−iΣ(k) =
∫ d4q

(2π)4 ūl(k) ieγ
µ i

6k′+m
k′2−m2 + iε

ieγ
ν ul(k)

× −igµρ

q2 (−i) Πρσ (q)
−igσν

q2

ImΣ(k) = e2
∫ d3q

(2π)3
1

2E
θ(q0) Im[Πµν (q)]

1
q4

1
2ml

Lµν ,

Π
µν (q) = e2

∫ d4p
(2π)4 G(p)∑

X
∑

sp ,sl
∏

N

i=1

∫ d4p′i
(2π)4 ∏

l

Gl(p′l) ∏
j

Dj(p′j)

< X|Jµ |H >< X|Jν |H >∗ (2π)4
δ

4(q+p−
N

∑
i=1

p′i)
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Free nucleon propagator

Let us start with the relativistic Dirac propagator G0(p0,p) for a free nucleon:

G0(p0,p) =
1

6 p−M+ iε
=

6 p+M
(p2−M2 + iε)

In terms of positive and negative energy components of the nucleon

G0(p0,p) =
M

E(p)

{
∑r ur(p)ūr(p)
p0−E(p)+ iε

+
∑r vr(−p)v̄r(−p)

p0 +E(p)− iε

}
In a non-interacting Fermi sea, it may be written as

G0(p0,p) =
M

EN(p)

{
∑
r

ur(p)ūr(p)
[

1−n(p)
p0−EN(p)+ iε

+
n(p)

p0−EN(p)− iε

]
+

∑r vr(−p)v̄r(−p)
p0 +EN(p)− iε

}
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Relativistic nucleon propagator with positive energy component

G0(p0,p) =
M

EN(p) ∑
r

ur(p)ūr(p)

 1−n(p)
p0−EN(p)+ iε︸ ︷︷ ︸

p≥pF

+
n(p)

p0−EN(p)− iε︸ ︷︷ ︸
p<pF


Apart from negative energy contribution, which plays no role in our problem,
the only difference with a nonrelativistic propagator

G0(p0,p) =
1−n(p)

p0− ε(p)+ i ε
+

n(p)
p0− ε(p)− i ε

is the presence of
M

E(p)
−−−−−→
N.R.limit

1

∑
r

ur(p)ūr(p)−−−−−→
N.R.limit

1
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Relativistic propagator in the interacting Fermi sea

We wish to sum the Dyson series of the nucleon self-energy diagrams

+ + + +.............

k kkk

This perturbative expansion is summed in a ladder approximation:
G(p0,p) = G0(p0,p)+G0(p0,p)ΣN(p0,p)G0(p0,p)+G0(p0,p)ΣN(p0,p)G(p0,p)+ ......

=
M

E(p)
∑r ur(p)ūr(p)

p0−E(p)
+

M
E(p)

∑r ur(p)ūr(p)
p0−E(p)

Σ
N(p0,p)

M
E(p)

∑s us(p)ūs(p)
p0−E(p)

+ .....

=
M

E(p) ∑
r

ur(p)ūr(p)
p0−E(p)− ūr(p)Σ

N(p0,p)︸ ︷︷ ︸
self−energy

ur(p) M
E(p)
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Spectral Function

Nucleon self-energy

Nucleon self energy ΣN(p0,p) is complex in nature:

Σ
N(p0,p) = Re{ΣN(p0,p)} + iIm{ΣN(p0,p)}

We rewrite

G(p0,p) =
M

E(p) ∑
r

ur(p)ūr(p)
p0−E(p)− M

E(p)ReΣ+ i M
E(p) ImΣ(

p0−E(p)− M
E(p) ReΣ

)2
+
(

M
E(p) ImΣ

)2

Relativistic nucleon propagator in the nuclear medium:

G(p0,p) =
M

E(p) ∑
r

ur(p)ūr(p)
[∫

µ

−∞

d ω
Sh(ω,p)

p0−ω− iε
+
∫

∞

µ

d ω
Sp(ω,p)

p0−ω + iε

]
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Spectral Function

For p0 ≤ µ

Sh(p
0,p) =

1
π

M
E(p) ImΣ(p0,p)

(p0−E(p)− M
E(p)ReΣ(p0,p))2 +( M

E(p) ImΣ(p0,p))2

For p0 > µ

Sp(p0,p) =− 1
π

M
E(p) ImΣ(p0,p)

(p0−E(p)− M
E(p)ReΣ(p0,p))2 +( M

E(p) ImΣ(p0,p))2

In an inclusive process only hole spectral function is relevant.

Through Sh the effects of Fermi motion, Pauli blocking and nucleon correlations
are incorporated.

P.Fernandez de Cordoba and E. Oset, PRC 46, 1697(1992)
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Spectral Function

Behaviour of hole spectral function

In the absence of interactions, the nucleon energy p0 is the free relativistic
energy E(p)
The dressed propagator G(p) reduces to the free propagator G0(p) i.e. if
ΣN(p) = 0 then

Sh(p0,p) = Sp(p0,p) = δ (p0−E(p))

then∫
µ

−∞

dp0 Sh(p0,p) =
∫

µ

−∞

dp0 δ (p0−E(p)) =
{

1 if µ > E(p)
0 if µ < E(p)∫

∞

µ

dp0 Sp(p0,p) =
∫

∞

µ

dp0 δ (p0−E(p)) =
{

1 if µ < E(p)
0 if µ > E(p)
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Spectral Function

Spectral functions for proton and neutron, are normalized to the total number of
protons and neutrons in the nucleus:

2
∫

d3r
∫ d3p

(2π)3

∫
µ

−∞

Sp
h(ω,pp,ρp(r)) dω = Z

2
∫

d3r
∫ d3p

(2π)3

∫
µ

−∞

Sn
h(ω,pn,ρn(r)) dω = A−Z

We ensure to get correct binding energy for each nucleus and thus there are no free
parameters in the model.
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Spectral Function

Nuclear hadronic tensor is written as a convolution of nucleonic hadronic tensor
with the hole spectral function

Wµν

A = 4
∫

d3r
∫ d3p

(2π)3
M

EN(p)

∫
µ

−∞

dp0Sh(p
0,p,ρ(r))Wµν

N (p,q)

By choosing the appropriate components for the nucleon and nuclear hadronic
tensors,

Taking q along the z direction such that q = (q0,0,0, |q|)

We evaluate dimensionless nuclear structure functions

NuSTEC M. Sajjad Athar (AMU) NME in EM and Weak Structure Functions 26
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We evaluate dimensionless nuclear structure functions
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Spectral Function

Nuclear Structure Function

F1A(xA) = 2 ∑
i=p,n

AM
∫

d3r
∫ d3p

(2π)3
M

E(p)

∫
µi

−∞

dp0Si
h(p

0,p,ρ i(r))[
FN

1 (xN)

M
+

1
M2 px

2 FN
2 (xN)

ν

]

F2A(xA) = 2 ∑
i=p,n

∫
d3r

∫ d3p
(2π)3

M
E(p)

∫
µi

−∞

dp0Si
h(p

0,p,ρ i(r))FN
2 (xN)

×
[

Q2

q2
z

(
p2 − p2

z

2M2

)
+

(p.q)2

M2ν2

(
pz Q2

p.qqz
+ 1

)2 q0M
p0 q0 − pz qz

]

F3A(xA) = 2 ∑
i=p,n

∫
d3r

∫ d3p
(2π)3

M
E(p)

∫
µi

−∞

dp0Si
h(p

0,p,ρ i(r))
p0γ−pz

(p0−pzγ)γ
FN

3 (xN)
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Spectral Function

We have not used the Bjorken limit.

Evolution of F1(x,Q2) and F2(x,Q2) are done independently.

For the evolution at next-to-the-leading order we use following Refs.:

Vermaseren et al., Nucl. Phys. B 724, 3 (2005)

van Neerven et al. Nucl. Phys. B 568, 263 (2000); ibid 588, 345 (2000).

Moch et al., Phys. Lett. B 606 123, (2005)

Moch et al., Nucl. Phys. B 813, 220 (2009).

For the nucleon PDFs CTEQ6.6 parameterization is used.
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Mesonic Contribution

π and ρ mesons contribution to the SF

X(p′) +

l−(k)

l−(k′)

l−(k)
γ∗(q)

γ∗(q)
N (p)

1h 1p +
l−(k′)

N (p)

1h 1∆X(p′)

l−(k)

l−(k) γ∗(q)

γ∗(q)
l−(k)

l−(k)
γ∗(q)

γ∗(q)

l−(k′)
1h 1p

1∆1h

X(p′) +......................

π, ρ, ...

π, ρ, ....

π, ρ, ....

Nucleons interact among themselves via the exchange of virtual mesons.

P
γ∗
meson becomes finite along with the P

γ∗

nucleon.

Contributions from π and ρ mesons have been incorporated.

Implemented following the many body field theoretical approach.

For pion PDFs parameterization by Gluck et al. has been used.
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Mesonic Contribution

π and ρ mesons contribution to the nuclear structure function

FA
1,π (xπ ) = −6AM

∫
d3r

∫ d4p
(2π)4 θ(p0) δ ImD(p) 2mπ ×[

F1π (xπ )

mπ

+
|p|2 − p2

z
2(p0 q0 − pzqz)

F2π (xπ )

mπ

]

FA
1,ρ (xρ ) = −12AM

∫
d3r

∫ d4p
(2π)4 θ(p0) δ ImDρ (p) 2mρ ×[

F1ρ (xρ )

mρ

+
|p|2 − p2

z
2(p0 q0 − pz qz)

F2ρ (xρ )

mρ

]

Pion propagator in the nuclear medium
D(p) = [p0

2−p 2−m2
π −Ππ (p0,p)]−1

with
Ππ (p0,p) =

f 2/m2
π F2(p)p 2Π∗

1− f 2/m2
π V ′LΠ∗

, and F(p) = (Λ2−m2
π )/(Λ

2 +p2)
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Mesonic Contribution

Structure functions for π and ρ mesons without using Callan-Gross relation:

FA
2,π

(xπ ) = −6
∫

d3r
∫ d4p

(2π)4 θ(p0) δ ImD(p) 2mπ

mπ

p0 − pz γ
×[

Q2

q2
z

( |p|2 − p2
z

2m2
π

)
+

(p0 − pz γ)2

m2
π

(
pz Q2

(p0 − pz γ)q0qz
+ 1

)2]
F2π (xπ )

FA
2,ρ

(xρ ) = −12
∫

d3r
∫ d4p

(2π)4 θ(p0) δ ImDρ (p) 2mρ

mρ

p0 − pz γ
×[

Q2

q2
z

(
|p|2 − p2

z

2m2
ρ

)
+

(p0 − pz γ)2

m2
ρ

(
pz Q2

(p0 − pz γ)q0qz
+ 1

)2]
F2ρ (xρ )
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Mesonic Contribution

Pion structure function
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Mesonic Contribution

Variation of Λπ,ρ in l−A scattering
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Nucl. Phys. A 857 29, (2011)
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Mesonic Contribution

Variation of Λπ,ρ in νl−A scattering
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Results for l±−A: FEM
2A (x,Q2) vs x

0
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• At LO(SF→Full): ∼ 18% increase at low x in 12C, increases with A and negligible at high x.
• At NLO: Results at low x get suppressed while at high x results get enhanced compared to LO results.

Nucl. Phys. A 943 58 (2015) J Lab Data: arXiv: 1202.1457
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Results for l±−A: FEM
2A (x,Q2) vs x
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• NME increases with the increase in A.

Nucl. Phys. A 943 58 (2015) J Lab Data: arXiv: 1202.1457
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Results for l±−A: FEM
2A (x,Q2) vs x

0 0.1 0.2 0.3 0.4 0.5 0.6
x

0.7

0.8

0.9

1

1.1

F 2F
eEM

(x
,Q

2 ) /
 F

2C

EM
(x

,Q
2 )

NLO SF
NLO SF+π+ρ

NLO Total
NMC

0 0.1 0.2 0.3 0.4 0.5 0.6
x

0.7

0.8

0.9

1

1.1

F 2P
bEM

(x
,Q

2 ) /
 F

2C

EM
(x

,Q
2 ) 

NLO SF
NLO SF+π+ρ

NLO Total
NMC

0 0.1 0.2 0.3 0.4 0.5 0.6
x

0.7

0.8

0.9

1

1.1

F 2A
uEM

(x
,Q

2 ) /
 F

2F
eEM

(x
,Q

2 )

NLO Total (Isoscalar)

NLO Total (Nonisoscalar)

SLAC-E139

0 0.1 0.2 0.3 0.4 0.5 0.6
x

0.7

0.8

0.9

1

1.1

F 2P
bEM

(x
,Q

2 ) /
 F

2F
eEM

(x
,Q

2 )
NLO Total (Isoscalar)

NLO Total (Nonisoscalar)

NMC

Isoscalar Isoscalar

Q
2
 = 5 GeV

2

• Results are obtained at NLO at 3 < Q2 < 67 GeV2 corresponding to NMC.
• 3−4% deviation from unity due to NME.
• Enhancement due to mesonic contribution(5-8%) & suppression due to shadowing is observed.
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Results for νl−A: FWI
2A (x,Q

2) vs x
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• NME are important even for very high Q2.
• Difference is found be the same as in the case of EM interaction.

Nucl. Phys. A 955 58 (2016)
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l±−A vs νl−A scattering
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F3 vs x
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l±−A vs νl−A scattering
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Nuclear medium effects in electromagnetic and weak nuclear structure
functions are different.

For the nuclear medium effects, we took into account Fermi motion, nuclear
binding, nucleon correlations, effect of meson degrees of freedom, and
shadowing effects. The calculations are performed both at LO and NLO.

Non-isoscalarity corrections are taken properly into account.

The plan is to perform these calculations with Higher Twist effect.

We have also performed the calculations for (ν̄τ )ντ −N DIS processes where
F4 and F5 are the additional contributions. Also the massive charm quark
contributes in (ν̄τ )ντ induced processes.

The plan is to study NME in nuclear structure functions Fis for (ν̄τ )ντ −A
process.
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