Nuclear Medium Effects on the Structure Functions

Sergey Kulagin
Institute for Nuclear Research of the Russian Academy of Sciences, Moscow
Talk at the
SIS/DIS Workshop
Gran Sasso Science Institute, L'Aquila, Italy October 11-13, 2018

Outline

- Experimental observations on modification of partonic structure of nuclei
- Understanding and modelling nuclear corrections in DIS region
- Sketch of basic mechanisms of nuclear DIS in different kinematic regions.
- Brief review of our efforts to build a quantitative model of nuclear structure functions.
- Extend the model into the resonance region. Discuss the ratios $D /(p+n)$ and ${ }^{3} \mathrm{He} / D$ and ${ }^{3} \mathrm{He} /(D+p)$ in comparison with JLab BONuS, 2015 and Hall C, 2009 measurements.
- Summary/Conclusions

Data summary on nuclear effects on the parton level

- Nuclear ratios $\mathcal{R}(A / B)=\sigma_{A}\left(x, Q^{2}\right) / \sigma_{B}\left(x, Q^{2}\right)$ or F_{2}^{A} / F_{2}^{B} from DIS experiments
- Data for nuclear targets from ${ }^{2} \mathrm{H}$ to ${ }^{208} \mathrm{~Pb}$
- Fixed-target experiments with e / μ :
- Muon beam at CERN (EMC, BCDMS, NMC) and FNAL (E665).
- Electron beam at SLAC (E139, E140), HERA (HERMES), JLab (E03-103).
- Kinematics and statistics:

Data covers the region $10^{-4}<x<1.5$ and $0<Q^{2}<150 \mathrm{GeV}^{2}$. About 800 data points for the nuclear ratios $\mathcal{R}(A / B)$ with $Q^{2}>1 \mathrm{GeV}^{2}$.

- Nuclear effects for antiquarks have been probed by Drell-Yan experiments at FNAL (E772, E866).
- Nuclear cross sections from high-energy measurements with neutrino BEBC $\left({ }^{2} \mathrm{H}\right.$ and $\left.{ }^{20} \mathrm{Ne}\right)$, NOMAD (${ }^{12} \mathrm{C}$ and $\left.{ }^{56} \mathrm{Fe}\right)$ CDHS, CCFR and NuTeV $\left({ }^{56} \mathrm{Fe}\right)$ CHORUS (${ }^{207} \mathrm{~Pb}$). Nuclear cross section ratios $\mathrm{Fe} / \mathrm{CH}$ and $\mathrm{Fe} / \mathrm{CH}$ from MINERvA in the region of low Q^{2}.

Nuclear ratios from DIS experiments

HERMES and JLab measurements on ${ }^{3} \mathrm{He}$

SLAC E139 and JLab BONUS results on ${ }^{2} \mathrm{H}$

- SLAC E139 [PRD49(1994)4348] obtains $R_{D}=F_{2}^{D} /\left(F_{2}^{p}+F_{2}^{n}\right)$ by extrapolating data on $R_{A}=F_{2}^{A} / F_{2}^{D}$ with $A \geq 4$ assuming $R_{A}-1$ scales as nuclear density.
- BONuS [PRC92(2015)015211] obtains R_{D} from a direct measurement of F_{2}^{n} / F_{2}^{D} [PRC89(2014)045206] using "world data" on F_{2}^{D} / F_{2}^{p}.

Why nuclear corrections survive at DIS?

Space-time scales in DIS

$$
\begin{array}{r}
W_{\mu \nu}=\int \mathrm{d}^{4} x \exp (i q \cdot x)\langle p|\left[J_{\mu}(x), J_{\nu}(0)\right]|p\rangle \\
q \cdot x=q_{0} t-|\boldsymbol{q}| z=q_{0} t-\sqrt{q_{0}^{2}+Q^{2}} z \simeq q_{0}(t-z)-\frac{Q^{2}}{2 q_{0}} z
\end{array}
$$

- DIS proceeds near the light cone: $|t-z| \sim 1 / q_{0}$ and $t^{2}-z^{2} \sim Q^{-2}$.
- In the TARGET REST frame the characteristic time and longitudinal distance are NOT small at all: $t \sim z \sim 2 q_{0} / Q^{2}=1 / M x_{\mathrm{Bj}}$. DIS proceeds at the distance $\sim 1 \mathrm{Fm}$ at $x_{\mathrm{Bj}} \sim 0.2$ and at the distance $\sim 20 \mathrm{Fm}$ at $x_{\mathrm{Bj}} \sim 0.01$.
- Two different regions in nuclei from comparison of coherence length (loffe time) $L=1 / M x_{\mathrm{Bj}}$ with average distance between bound nucleons r_{NN} :
- $L<r_{\text {NN }}($ or $x>0.2) \Rightarrow$ Nuclear DIS \approx incoherent sum of contributions from bound nucleons. Nuclear corrections $\sim E L$ and $\sim|\boldsymbol{p}|^{2} L^{2}$ where $E(p)$ typical energy (momentum) in the nuclear ground state.
- $L \gg r_{\mathrm{NN}}($ or $x \ll 0.2) \Rightarrow$ Coherent effects of interactions with a few nucleons are important.

Incoherent nuclear scattering

A good starting point is incoherent scattering off bound protons and neutrons

$$
F_{2}^{A}=\int \mathrm{d}^{4} p K\left(\mathcal{P}^{p} F_{2}^{p}+\mathcal{P}^{n} F_{2}^{n}\right)
$$

- The four-momentum of the bound proton (neutron) $p=(M+\varepsilon, \boldsymbol{p})$
- $\mathcal{P}^{p, n}(\varepsilon, \boldsymbol{p})$ the proton (neutron) nuclear spectral function, which is normalized to the nucleon number $\int \operatorname{d} \varepsilon \mathrm{d} \boldsymbol{p} \mathcal{P}^{p}=Z$ and describes probability to find a bound nucleon with momentum \boldsymbol{p} and energy $p_{0}=M+\varepsilon$.
- The bound nucleon structure functions depend on 3 independent variables $F_{2}^{p, n}=F_{2}^{p, n}\left(x^{\prime}, p^{2}, Q^{2}\right), x^{\prime}=Q^{2} / 2 p \cdot q$ is the Bjorken variable of a nucleon with four-momentum p. Note the nucleon virtuality p^{2} is additional variable for off-shell nucleon.
- Kinematical factor $K=\left(1+p_{z} / M\right)\left(1+\mathcal{O}\left(\boldsymbol{p}^{2} /|\boldsymbol{q}|^{2}\right)\right)$.

Nuclear spectral function

The nuclear spectral function describes probability to find a bound nucleon with momentum \boldsymbol{p} and energy $p_{0}=M+\varepsilon$:

$$
\begin{aligned}
\mathcal{P}(\varepsilon, \boldsymbol{p}) & =\int \mathrm{d} t e^{-i \varepsilon t}\left\langle\psi^{\dagger}(\boldsymbol{p}, t) \psi(\boldsymbol{p}, 0)\right\rangle \\
& \left.=\sum_{i}\left|\left\langle(A-1)_{i},-\boldsymbol{p}\right| \psi(0)\right| A\right\rangle\left.\right|^{2} 2 \pi \delta\left(\varepsilon+E_{i}^{A-1}(\boldsymbol{p})-E_{0}^{A}\right)
\end{aligned}
$$

- The sum runs over all possible states of the spectrum of $A-1$ residual system.
- The nuclear spectral function determines the rate of nucleon removal reactions such as $\left(e, e^{\prime} p\right)$. For low separation energies and momenta, $|\varepsilon|<50 \mathrm{MeV}$, $p<250 \mathrm{MeV} / \mathrm{c}$, the observed spectrum is dominated by bound states $A-1$ similar to those predicted by the mean-field model.
- High-energy and high-momentum components of nuclear spectrum is not described by the mean-field model and driven by correlation effects in nuclear ground state (short-range correlations, or SRC). We combine the mean-field together with SRC contributions and consider a two-component model $\mathcal{P}=\mathcal{P}_{\mathrm{MF}}+\mathcal{P}_{\text {cor }}$ Ciofi degli Atti \& Simula, 1995 S.K. \& Sidorov, 2000 S.K. \& Petti, 2004

EMC effect in impulse approximation (IA)

- Impulse approximation:
$F_{2}\left(x^{\prime}, Q^{2}, p^{2}\right)=F_{2}\left(x^{\prime}, Q^{2}, M^{2}\right)$
- Momentum distribution (Fermi motion) leads to a rise at large Bjorken x Atwood \& West, 1970s.
- Nuclear binding correction is important and results in a "dip" at $x \sim 0.6-0.7$
Akulinichev, Vagradov \& S.K., 1984.
- However, even realistic nuclear spectral function fails to accurately explain the slope and the position of the minimum in IA. Corrections to IA are needed!

Nucleon off-shell effect (OS)

Bound nucleons are off-mass-shell, $p^{2}<M^{2}$. The treatment of p^{2} dependence can greatly be simplified in the vicinity of the mass shell. If the virtuality parameter $v=\left(p^{2}-M^{2}\right) / M^{2}$ is small (e.g. average virtuality $v \sim-0.15$ for ${ }^{56} \mathrm{Fe}$) then expand $q\left(x, Q^{2}, p^{2}\right)$ in series in v

$$
F_{2}^{N}\left(x, Q^{2}, p^{2}\right) \approx F_{2}^{N}\left(x, Q^{2}\right)\left(1+\delta f\left(x, Q^{2}\right) v\right)
$$

- $\delta f\left(x, Q^{2}\right)$ is a special structure function describing the modification of the off-shell nucleon PDFs in the vicinity of the mass shell.
- Off-shell correction is closely related to modification of the nucleon size in nuclear environment S.K. \& R.Petti, 2004.

Nuclear meson-exchange current effect (MEC)

Leptons can scatter on nuclear meson field which mediate interaction between bound nucleons. This process generate a MEC correction to nuclear sea quark distribution

$$
\delta F_{2}^{\mathrm{MEC}}\left(x, Q^{2}\right)=\int_{x} \mathrm{~d} y f_{\pi / A}(y) F_{2}^{\pi}\left(\frac{x}{y}, Q^{2}\right)
$$

- Contribution from nuclear pions (mesons) is important to balance nuclear light-cone momentum $\langle y\rangle_{\pi}+\langle y\rangle_{N}=1$.
- The nuclear pion distribution function is localized in a region $y<p_{F} / M \sim 0.3$. For this reason the MEC correction to nuclear (anti)quark distributions is localized at $x<0.3$.
- The magnitude of the correction is driven by average number of "nuclear pion excess" $n_{\pi}=\int \mathrm{d} y f_{\pi / A}(y)$ and $n_{\pi} / A \sim 0.1$ for a heavy nucleus like ${ }^{56} \mathrm{Fe}$.

Nuclear shadowing

Coherent nuclear correction is due to propagation of intermediate state $\gamma^{*} \rightarrow h$ in nuclear environment, which can be described in the multiple scattering theory Glauber, Gribov 1970s.

$$
\begin{aligned}
\frac{\delta F_{2 A}^{c o h}}{F_{2 N}} & =\frac{\operatorname{Im} \delta \mathcal{A}}{\operatorname{Im} a} \\
\delta \mathcal{A} & =\delta \mathcal{A}^{(2)}+\delta \mathcal{A}^{(3)}+\ldots \\
\delta \mathcal{A}^{(2)} & =i a^{2} \int_{z_{1}<z_{2}} \mathrm{~d}^{2} \boldsymbol{d} z_{1} \mathrm{~d} z_{2} \rho\left(\boldsymbol{b}, z_{1}\right) \rho\left(\boldsymbol{b}, z_{2}\right) e^{i \frac{z_{1}-z_{2}}{L}}
\end{aligned}
$$

- $\rho(\boldsymbol{r})$ is the nuclear number density, $\int \mathrm{d}^{3} \boldsymbol{r} \rho(\boldsymbol{r})=A$
- $a=\frac{\sigma}{2}(i+\alpha)$ is the (effective) forward scattering amplitude of intermediate state h off the nucleon
- L is the coherence length of intermediate state which accounts finite life time of intermediate state, $1 / L=M x\left(1+m_{h}^{2} / Q^{2}\right)$. Its presence suppresses the coherence effect in the region of large x.

Modelling the nuclear corrections

Assemble everything together and confront model to data S.K. \& R.Petti, NPA765(2006)126; PRC82(2010)054614; PRC90(2014)045204

$$
F_{2}^{A}=Z\left\langle F_{2}^{p}\right\rangle+N\left\langle F_{2}^{n}\right\rangle+\delta F_{2}^{\mathrm{MEC}}+\delta F_{2}^{\mathrm{coh}}
$$

Strategy of the analysis:

- Compute the proton and neutron structure functions in terms of free proton PDF with relevant perturbative QCD corrections, TMC, as well as HT correction.
- Using $F_{2}^{p, n}$ compute nuclear structure functions/cross sections with accurate treatment of nuclear spectral function effects (Fermi-motion and nuclear binding), MEC and nuclear shadowing correction.
- Treat the off-shell function $\delta f(x)$ and effective amplitude a as unknown and parametrize them. Study the data on the nuclear DIS in terms of the ratios F_{2}^{A} / F_{2}^{B} and determine $\delta f(x)$ together with the amplitude a from data.
- Use the normalization conditions and the DIS sum rules (GLS, Adler) to determine the amplitude a (responsible for nuclear shadowing) in the region of high Q^{2}, which is not constrained by data.
- Verify the model by comparing the calculations with data not used in analysis.

Structure functions in the DIS region

If Q^{2} is large compared the nucleon mass, the operator product expansion in QCD produces power series:

$$
F_{2}\left(x, Q^{2}\right)=F_{2}^{L T, T M C}\left(x, Q^{2}\right)+\frac{H_{2}(x, Q)}{Q^{2}}+\cdots
$$

The leading term is given in terms of PDFs convoluted with coefficient functions:

$$
\begin{aligned}
F_{2}^{L T} & =\left[1+\frac{\alpha_{S}}{2 \pi} C_{q}^{(1)}\right] \otimes x \sum_{q} e_{q}^{2}(q+\bar{q}) \\
& +\frac{\alpha_{S}}{2 \pi} C_{g}^{(1)} \otimes x g+\mathcal{O}\left(\alpha_{S}^{2}\right)
\end{aligned}
$$

The HT terms involve interaction between quarks and gluons and lack simple probabilistic interpretation. In the region of high Bjorken x and/or low Q^{2} (small W^{2}) one has to account for the target mass correction Georgi \& Politzer, 1976

$$
F_{2}^{L T, T M C}\left(x, Q^{2}\right)=\frac{x^{2}}{\xi^{2} \gamma^{2}} F_{2}^{L T}\left(\xi, Q^{2}\right)+\frac{6 x^{3} M^{2}}{Q^{2} \gamma^{4}} \int_{\xi}^{1} \frac{\mathrm{~d} z}{z^{2}} F_{2}^{L T}\left(z, Q^{2}\right)+\mathcal{O}\left(Q^{-4}\right)
$$

$\xi=2 x /(1+\gamma)$ is the Nachtmann variable and $\gamma^{2}=1+4 x^{2} M^{2} / Q^{2}$. In this work we use the results of the PDF global analysis performed to QCD NNLO approximation (i.e. to order α_{S}^{2}) and which includes the proton (and deuteron) data sets from DIS, DY and collider data. Kinematical range $0.8<Q^{2}<10^{5} \mathrm{GeV}^{2}$ and $10^{-6}<x<1$ with the cut $W>1.8 \mathrm{GeV}$ S.Alekhin, K.Melnikov, F.Petriello, 2007; S.Alekhin, S.K., R.Petti, 2007

Determination of the off-shell function $\delta f(x)$

- Analysis of A / D and A / C ratios with a model
$\delta f(x)=C_{N}\left(x-x_{1}\right)\left(x-x_{0}\right)\left(1+x_{0}-x\right)$ gives a good fit to all studied nuclei from ${ }^{4} \mathrm{He}$ to ${ }^{208} \mathrm{~Pb}$ with

$$
\chi^{2} / \text { d.o.f. }=459 / 556 \text { S.K. \& R.Petti, } 2006 .
$$

- A different approach: global QCD analysis using deuteron data and a model $\delta f(x)=A x^{2}+B x+C$ Alekhin, S.K., Petti, 2017.

- The function $\delta f(x)$ provides a measure of the modification of the quark distributions in a bound nucleon.
- The slope of $\delta f(x)$ in a single-scale nucleon model is related to the change of the radius of the nucleon in the nuclear environment S.K. \& R.Petti, 2006. The observed slope suggests an increase in the bound nucleon radius in the iron by about 10% and in the deuteron by about 2%.

Off-shell effect and the modification of the bound nucleon

 radiusThe valence quark distribution in a (off-shell) nucleon Kulagin, Piller \& Weise, PRC50(1994)1154

$$
\begin{aligned}
q_{\mathrm{val}}\left(x, p^{2}\right) & =\int^{k_{\max }^{2}} \mathrm{~d} k^{2} \Phi\left(k^{2}, p^{2}\right) \\
k_{\max }^{2} & =x\left(p^{2}-s /(1-x)\right)
\end{aligned}
$$

- A one-scale model of quark k^{2} distribution: $\Phi\left(k^{2}\right)=C \phi\left(k^{2} / \Lambda^{2}\right) / \Lambda^{2}$, where C and ϕ are dimensionless and Λ is the scale.
- Off-shell: $C \rightarrow C\left(p^{2}\right), \Lambda \rightarrow \Lambda\left(p^{2}\right)$
- The derivatives $\partial_{x} q_{\text {val }}$ and $\partial_{p^{2}} q_{\text {val }}$ are related

$$
\begin{aligned}
\delta f(x) & =\frac{\partial \ln q_{\mathrm{val}}}{\partial \ln p^{2}}=c+\frac{\mathrm{d} q_{\mathrm{val}}(x)}{\mathrm{d} x} x(1-x) h(x) \\
h(x) & =\frac{(1-\lambda)(1-x)+\lambda s / M^{2}}{(1-x)^{2}-s / M^{2}}
\end{aligned}
$$

$$
c=\frac{\partial \ln C}{\partial}, \lambda=\frac{\partial \ln \Lambda^{2}}{2}
$$

- A simple pole model $\phi(y)=(1-y)^{-n}$ (note that $y<0$ so we do not run into singularity) provides a resonable description of the nucleon valence distribution for $x>0.2$ and large $Q^{2}\left(s=2.1 \mathrm{GeV}^{2}, \Lambda^{2}=1.2 \mathrm{GeV}^{2}, n=4.4\right.$ at $Q^{2}=15 \div 30 \mathrm{GeV}^{2}$).
- The size of the valence quark confinement region $R_{c} \sim \Lambda^{-1}$ (nucleon core radius).
- Off-shell corection is independent of specific choice of profile $\phi(y)$ and is given by $\left(\ln q_{\text {val }}(x)\right)^{\prime}$.
- Fix c and λ to reproduce $\delta f\left(x_{0}\right)=0$ and the slope $\delta f^{\prime}\left(x_{0}\right)$.

We obtain $\lambda \approx 1$ and $c \approx-2.3$. The positive parameter λ suggests decreasing the scale Λ in nuclear environment (swelling of a bound nucleon)

$$
\begin{aligned}
& \frac{\delta R_{c}}{R_{c}} \sim-\frac{1}{2} \frac{\delta \Lambda^{2}}{\Lambda^{2}}=-\frac{1}{2} \lambda \frac{\left\langle p^{2}-M^{2}\right\rangle}{M^{2}} \\
& { }^{56} \mathrm{Fe}: \delta R_{c} / R_{c} \sim 9 \% \\
& { }^{2} \mathrm{H}: \quad \delta R_{c} / R_{c} \sim 2 \%
\end{aligned}
$$

Determination of effective cross section

- The monopole form $\sigma=\sigma_{0} /\left(1+Q^{2} / Q_{0}^{2}\right)$ for the effective cross section of C-even $q+\bar{q}$ combination provides a good fit to data on DIS nuclear shadowing for $Q^{2}<15 \mathrm{GeV}^{2}$ with $\sigma_{0}=27 \mathrm{mb}$ and $Q_{0}^{2}=1.43 \pm 0.06 \pm 0.195 \mathrm{GeV}^{2}$. Note σ_{0} is fixed from $Q^{2} \rightarrow 0$ limit by the vector meson dominance model. Also we assume $\operatorname{Re} a / \operatorname{Im} a$ for C-even amplitude to be given by VMD at all energies.

- Nuclear shadowing correction for the C-odd valence distribution $q-\bar{q}$ is also driven by same cross section σ. Note, however, important interference effect between the phases of C-even and C-odd effective amplitude.
- The cross section at high $Q^{2}>15 \mathrm{GeV}^{2}$ is not constrained by data. It is possible to evaluate σ in this region using the the normalization condition. Requiring exact cancellation between the off-shell and the shadowing correction in the normalization we have:

$$
\int_{0}^{1} \mathrm{~d} x\left(\langle v\rangle q_{\mathrm{val}}\left(x, Q^{2}\right) \delta f(x)+\delta q_{\mathrm{val}}^{\mathrm{coh}}\left(x, Q^{2}\right)\right)=0
$$

with $\langle v\rangle=\left\langle p^{2}-M^{2}\right\rangle / M^{2}$ the average nucleon virtuality. Numeric solution to this equation is shown by dotted curve.

Summary of results on the nuclear ratios F_{2}^{A} / F_{2}^{D}

Verification with recent JLab data (not a fit)

- Very good agreement of our predictions S.K. \& R.Petti, PRC82(2010)054614 with JLab E03-103 for all nuclear targets: $\chi^{2} /$ d.o.f. $=26.3 / 60$ for $W^{2}>2 \mathrm{GeV}^{2}$.
- Nuclear corrections at large x is driven by nuclear spectral function, the off-shell function $\delta f(x)$ was fixed from previous studies.
- A comparison with the Impulse Approximation (shown in blue) demonstrates that the off-shell correction is crucial to describe the data leading to both the modification of the slope and the position of the minimum of the ratios.

Verification with HERMES data (not a fit)

- A good agreement of our predictions S.K. \& R.Petti, PRC82(2010)054614 with HERMES data for ${ }^{14} \mathrm{~N} / \mathrm{D}$ and ${ }^{84} \mathrm{Kr} / \mathrm{D}$ with $\chi^{2} /$ d.o.f. $=14.7 / 24$
- A comparison with CERN NMC data for ${ }^{12} \mathrm{C} / \mathrm{D}$ shows a notable Q^{2} dependence at small x in the shadowing region related to the Q^{2} dependence of effective cross-section.

The model correctly describes the observed x and Q^{2} dependence.

Comparison of DIS and RES/SIS fits
 Proton F_{2}
 Neutron F_{2}

Deuteron F_{2}

Kulagin (INR)

Duality

DIS and RES structure functions are dual in the integral sense Bloom \& Gilman, 1970:

$$
\int_{W_{\mathrm{th}}^{2}}^{W_{0}^{2}} \mathrm{~d} W^{2} F_{2}^{\mathrm{DIS}}\left(W^{2}, Q^{2}\right)=\int_{W_{\mathrm{th}}^{2}}^{W_{0}^{2}} \mathrm{~d} W^{2} F_{2}^{\mathrm{RES}}\left(W^{2}, Q^{2}\right)
$$

$W_{\mathrm{th}}=M_{p}+m_{\pi}$ the pion production threshold energy and $W_{0}=2 \mathrm{GeV}$ the boundary of the resonance region.

Comparing Christy-Bosted (RES) and Alekhin (DIS) analyses:

- For the proton the error of the duality relation is better than 5% for $1 \leq Q^{2}<10 \mathrm{GeV}^{2}$.
- For the neutron the error is larger $\sim 5-10 \%$. This could be related to a different treatment of the deuteron correction in Alekhin and CB fits.

Hybrid model for the proton

A good matching between RES and DIS models in overlap region of $1.8<W<3 \mathrm{GeV}$ motivates us to use a combined model in a wide region of W and Q^{2} :
$F_{2}= \begin{cases}F_{2}^{\mathrm{RES}}\left(W^{2}\right), & W \leq W_{1}, \\ F_{2}^{\mathrm{RES}}\left(W_{1}^{2}\right)+\frac{W^{2}-W_{1}^{2}}{W_{2}^{2}-W_{1}^{2}}\left(F_{2}^{\mathrm{DIS}}\left(W_{2}^{2}\right)-F_{2}^{\mathrm{RES}}\left(W_{1}^{2}\right)\right), & W_{1}<W<W_{2}, \\ F_{2}^{\mathrm{DIS}}\left(W^{2}\right), & W \geq W_{2}\end{cases}$
Here $W_{1}=1.8 \mathrm{GeV}$ and $W_{2}=2 \mathrm{GeV}$.

Hybrid model for the neutron

- For the neutron, the matching between RES and DIS models is somewhat worse than for the proton. As the neutron is extracted from the deutron proton difference, a significant part of disagreement could arise from a different treatment of the deuteron correction (discussed below).
- We compute neutron F_{2}^{n} in the resonance region using the RES model for the proton and the ratio $R_{n p}=F_{2}^{n} / F_{2}^{p}$ from the DIS model.
- Special care has to be taken in the $\Delta(1232)$ region and near threshold. The isospin conservation suggests equal contribution to the proton and the neutron from the $\Delta(1232)$ resonace $=F_{2}^{\Delta}$ (supported by analysis Bosted \& Christy, 2010).

$$
F_{2}^{n(\mathrm{RES})}=R_{n p}\left(F_{2}^{p(\mathrm{RES})}-F_{2}^{\Delta}\right)+F_{2}^{\Delta}
$$

Performance of the model vs. proton and deuteron data

Proton and deuteron F_{2} computed at $Q^{2}=1.025,1.275,2.525,3.525 \mathrm{GeV}^{2}$ in a combined RES-DIS model. Data from SLAC Whitlow,1991 and JLab-CLAS Osipenko,2003,2005 and NMC,1997.

Comparison with BONuS data F_{2}^{n} / F_{2}^{D}

$\left(F_{2}^{p}+F_{2}^{n}\right) / F_{2}^{D}$ in the DIS and RES models

Comparison with ${ }^{3} \mathrm{He}$ from JLab E03103 experiment

$F_{2}^{3 \mathrm{He}} / F_{2}^{D}$ from JLab Seely et al, 2009 and HERMES measurement (both corrected for the proton excess) compared with model predictions. The dashed line is DIS model, the solid line is a combined DIS+RES model.

The isoscalar ratio $F_{2}^{3 \mathrm{He}} /\left(F_{2}^{D}+F_{2}^{p}\right)$ from Seely et al, 2009 (D. Gaskell, private communication) compared with our predictions. The notations are similar to those of the left panel.

Summary

- The data on the ratio of nuclear structure functions F_{2}^{A} / F_{2}^{B} (nuclear EMC effect) show nontrivial oscillating shape spanning different kinematical regions of Bjorken x.
- The data in the DIS region can be understood if we address a number of corrections including nuclear momentum distribution and binding effects, off-shell correction, meson-exchange currents as well as the matter propagation effects of hadronic component of virtual photon. Those nuclear effects result in the corrections relevant in different regions of x.
- In the resonance region (low Q^{2} and/or large x) the nuclear ratios for light nuclei $(2 \mathrm{H}, 3 \mathrm{He}$ and 3 H$)$ show a strong $Q^{2}-$ and x-dependence. Current data on those ratios (JLab) can be understood in terms of smearing of the resonance structures with nuclear spectral function (the wave function in the deuteron case) except for a region of a very large x close to $\Delta(1232)$.

Extras

Table of χ^{2} values for all nuclei

Targets				χ^{2} / D			
	NMC	EMC	E139	E140	BCDMS	E665	HERMES
${ }^{4} \mathrm{He} /{ }^{2} \mathrm{H}$	10.8/17		6.2/21				
${ }^{7} \mathrm{Li} /{ }^{2} \mathrm{H}$	28.6/17						
${ }^{9} \mathrm{Be} /{ }^{2} \mathrm{H}$			12.3/21				
${ }^{12} \mathrm{C} /{ }^{2} \mathrm{H}$	14.6/17		13.0/17				
${ }^{9} \mathrm{Be} /{ }^{12} \mathrm{C}$	5.3/15						
${ }^{12} \mathrm{C} /{ }^{7} \mathrm{Li}$	41.0/24						
${ }^{14} \mathrm{~N} /{ }^{2} \mathrm{H}$							9.8/12
${ }^{27} \mathrm{Al} /{ }^{2} \mathrm{H}$			14.8/21				
${ }^{27} \mathrm{Al} /{ }^{12} \mathrm{C}$	5.7/15						
${ }^{40} \mathrm{Ca} /{ }^{2} \mathrm{H}$	27.2/16		14.3/17				
${ }^{40} \mathrm{Ca} /{ }^{7} \mathrm{Li}$	35.6/24						
${ }^{40} \mathrm{Ca} /{ }^{12} \mathrm{C}$	31.8/24					1.0/5	
${ }^{56} \mathrm{Fe} /{ }^{2} \mathrm{H}$			18.4/23	4.5/8	14.8/10		
${ }^{56} \mathrm{Fe} /{ }^{12} \mathrm{C}$	10.3/15						
${ }^{63} \mathrm{Cu} /{ }^{2} \mathrm{H}$		7.8/10					
${ }^{84} \mathrm{Kr} /{ }^{2} \mathrm{H}$							4.9/12
${ }^{108} \mathrm{Ag} /{ }^{2} \mathrm{H}$			14.9/17				
${ }^{119} \mathrm{Sn} /{ }^{12} \mathrm{C}$	94.9/161						
${ }^{197} \mathrm{Au} /{ }^{2} \mathrm{H}$			18.2/21	2.4/1			
${ }^{207} \mathrm{~Pb} /{ }^{2} \mathrm{H}$						5.0/5	
${ }^{207} \mathrm{~Pb} /{ }^{12} \mathrm{C}$	6.1/15					0.2/5	

Values of $\chi^{2} /$ DOF between different data sets with $Q^{2} \geq 1 \mathrm{GeV}^{2}$ and the predictions of KP model NPA765(2006)126; PRC82(2010)054614. The sum over all data results in $\chi^{2} / \mathrm{DOF}=466.6 / 586$.

Sketch of the mean-field picture

In the the mean-field model the bound states of $A-1$ nucleus are described by the one-particle wave functions ϕ_{λ} of the energy levels λ. The spectral function is given by the sum over the occupied levels with the occupied number n_{λ} :

$$
\mathcal{P}_{\mathrm{MF}}(\varepsilon, \boldsymbol{p})=\sum_{\lambda<\lambda_{F}} n_{\lambda}\left|\phi_{\lambda}(\boldsymbol{p})\right|^{2} \delta\left(\varepsilon-\varepsilon_{\lambda}\right)
$$

- Due to interaction effects the δ-peaks corresponding to the single-particle levels acquire a finite width (fragmentation of deep-hole states).
- High-energy and high-momentum components of nuclear spectrum can not be described in the mean-field model and driven by short-range nucleon-nucleon correlation effects in the nuclear ground state as witnessed by numerous studies.

High-momentum part

- As nuclear excitation energy becomes higher the mean-field model becomes less accurate. High-energy and high-momentum components of nuclear spectrum can not be described in the mean-field model and driven by correlation effects in nuclear ground state as witnessed by numerous studies.
- The corresponding contribution to the spectral function is driven by $(A-1)^{*}$ excited states with one or more nucleons in the continuum. Assuming the dominance of configurations with a correlated nucleon-nucleon pair and remaining $A-2$ nucleons moving with low center-of-mass momentum we have

$$
|A-1,-\boldsymbol{p}\rangle \approx \psi^{\dagger}\left(\boldsymbol{p}_{1}\right)\left|(A-2)^{*}, \boldsymbol{p}_{2}\right\rangle \delta\left(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}+\boldsymbol{p}\right) .
$$

The matrix element can thus be given in terms of the wave function of the nucleon-nucleon pair embeded into nuclear environment. We assume factorization into relative and center-of-mass motion of the pair

$$
\left\langle(A-2)^{*}, \boldsymbol{p}_{2}\right| \psi\left(\boldsymbol{p}_{1}\right) \psi(\boldsymbol{p})|A\rangle \approx C_{2} \psi_{\mathrm{rel}}(\boldsymbol{k}) \psi_{\mathrm{CM}}^{A-2}\left(\boldsymbol{p}_{\mathrm{CM}}\right) \delta\left(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}+\boldsymbol{p}\right)
$$

where $\psi_{\text {rel }}$ is the wave function of the relative motion in the nucleon-nucleon pair with relative momentum $\boldsymbol{k}=\left(\boldsymbol{p}-\boldsymbol{p}_{1}\right) / 2$ and ψ_{CM} is the wave function of center-of-mass (CM) motion of the pair in the field of $A-2$ nucleons, $\boldsymbol{p}_{\mathrm{CM}}=\boldsymbol{p}_{1}+\boldsymbol{p}$. The factor C_{2} describes the weight of the two-nucleon correlated part in the full spectral function.

$$
\mathcal{P}_{\mathrm{cor}}(\varepsilon, \boldsymbol{p}) \approx n_{\mathrm{cor}}(\boldsymbol{p})\left\langle\delta\left(\varepsilon+\frac{\left(\boldsymbol{p}+\boldsymbol{p}_{A-2}\right)^{2}}{2 M}+E_{A-2}-E_{A}\right)\right\rangle_{A-2}
$$

Average separation and kinetic energies

Average separation $\langle\varepsilon\rangle$ and kinetic $\langle T\rangle$ energies are related by the Koltun sum rule (exact relation for nonrelativistic system with two-body forces)

$$
\langle\varepsilon\rangle+\langle T\rangle=2 \varepsilon_{B},
$$

where $\varepsilon_{B}=E_{0}^{A} / A$ is nuclear binding energy per bound nucleon

$$
\begin{aligned}
\langle\varepsilon\rangle & =A^{-1} \int[\mathrm{~d} p] \mathcal{P}(\varepsilon, \boldsymbol{p}) \varepsilon, \\
\langle T\rangle & =A^{-1} \int[\mathrm{~d} p] \mathcal{P}(\varepsilon, \boldsymbol{p}) \frac{\boldsymbol{p}^{2}}{2 M} .
\end{aligned}
$$

Nuclear binding, separation and kinetic energies
Nuclear energies

The two-component model of the spectral function

In what follows we combine the mean-field together with SRC contributions and consider a two-component model Ciofi degli Atti \& Simula, 1995 S. K. \& Sidorov, 2000 S. K. \& Petti, 2004

$$
\mathcal{P}=\mathcal{P}_{\mathrm{MF}}+\mathcal{P}_{\mathrm{cor}}
$$

We assume that the normalization is shared between the MF and the correlated parts as 0.8 to 0.2 for the nuclei $A \geq 4$ [for ${ }^{208} \mathrm{~Pb} 0.75$ to 0.25] following the observations on occupation of deeply-bound proton levels NIKHEF 1990s, 2001.

Different nuclear corrections for ${ }^{197} \mathrm{Au}$ at $Q^{2}=10 \mathrm{GeV}^{2}$

SLAC E139 Deuteron

Model predictions (curve with open squares) in comparison with the E139 data Gomez et.al., 1994. Note that the E139 data points are obtained by extrapolation to $A=2$ using the nuclear density model Frankfurt \& Strikman, 1990.

Comparison predictions for $D /(p+n)$ and ${ }^{3} \mathrm{He} /(2 p+n)$

R_{2} and R_{3} were calculated in the DIS model at the values of x and Q^{2} of JLab E03-103 experiment for $x>0.3$ and at fixed $Q^{2}=3 \mathrm{GeV}^{2}$ for $x<0.3$.

The Paris wave function was used for the deuteron, and the Hannover spectral function was used for ${ }^{3} \mathrm{He}$.

- R_{2} and R_{3} are similar in shape. A dip at $x \sim 0.7$ is somewhat bigger for R_{3} because of stronger nuclear binding in ${ }^{3} \mathrm{He}$.
- Nuclear effects cancel at $x \approx 0.35$, which is consistent with the measurement of EMC effect in other nuclei.

Comparison ${ }^{3} \mathrm{He} / \mathrm{D}$ with HERMES and JLab E03-103 data

To correct for proton excess, HERMES applies the factor

$$
C_{i s}=\frac{A F_{2}^{N}}{Z F_{2}^{p}+N F_{2}^{n}}
$$

with F_{2}^{n} / F_{2}^{p} from NMC. The E03-103 experiment does it differently, however correction factors are known.

- An unbiased way would be to compare uncorrected data, or corrected in a similar way. However, HERMES exact correction factors are not available. We uncorrect E03-103 data and then apply $C_{i s}$ together with the factor 1.03.
- After renormalization, E03-103 and HERMES data agree at the overlap ($x=0.35$). Also our predictions are in a good agreement with both data (except the region $x>0.8)$.

Extraction of F_{2}^{n} / F_{2}^{p} from ${ }^{3} \mathrm{He} / \mathrm{D}$ vs. D/p

Extraction of F_{2}^{n} / F_{2}^{p} with the full treatment of nuclear effect (full symbols) and also with no nuclear effects ($R_{2}=R_{3}=1$, open symbols).

- Significant mismatch in F_{2}^{n} / F_{2}^{p} extracted from different experiments. At $x \sim 0.35$, where nuclear corrections are negligible, the F_{2}^{n} / F_{2}^{p} from E03-103 is 15% higher than that from NMC.
- Normalization of F_{2}^{n} / F_{2}^{p} is directly related to normalization of ${ }^{3} \mathrm{He} / \mathrm{D}$. Requiring F_{2}^{n} / F_{2}^{p} from E03-103 match NMC, we obtain a renormalization factor of $1.03_{-0.008}^{+0.006}$ for ${ }^{3} \mathrm{He} / \mathrm{D}$ data.

Drell-Yan reaction

Production of a lepton pair in hadron collision $B+T \rightarrow \mu^{+} \mu^{-}+\ldots$ through the Drell-Yan mechanism:
$\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} x_{B} \mathrm{~d} x_{T}}=\frac{4 \pi \alpha^{2}}{9 Q^{2}} K \sum_{a} e_{a}^{2}\left[q_{a}^{B}\left(x_{B}, Q^{2}\right) \bar{q}_{a}^{T}\left(x_{T}, Q^{2}\right)+\bar{q}_{a}^{B}\left(x_{B}, Q^{2}\right) q_{a}^{T}\left(x_{T}, Q^{2}\right)\right]$

- $Q^{2}=s x_{T} x_{B}$ and $s=\left(p_{B}+p_{T}\right)^{2}$ the c.m. energy ${ }^{2}$.
- At small $Q^{2} / s \ll 1$ and large x_{B} the DY process probes the target's antiquarks. For the ratios on different targets A_{1} and A_{2} :

$$
\frac{\sigma_{A_{1}}^{\mathrm{DY}}}{\sigma_{A_{2}}^{\mathrm{DY}}} \approx \frac{\bar{q}_{A_{1}}\left(x_{T}\right)}{\bar{q}_{A_{2}}\left(x_{T}\right)}
$$

DY nuclear data from E772 and E866 experiments

Fermilab E772 and E866 experiments measure the ratio of DY yields for the DY process of $800-\mathrm{GeV}$ proton with a number of targets with $s \approx 1600 \mathrm{GeV}^{2}$ and $4<Q<9 \mathrm{GeV}$ and $Q>11 \mathrm{GeV}$ (excluding J / ψ region).

DY nuclear cross section ratios from Fermilab E772 and E866 experiments

Drell-Yan process with nuclear targets

DY process $p+A \rightarrow \gamma^{*} \rightarrow \mu^{+} \mu^{-}+X$
Cross section is driven by
$\sum e_{q}^{2}\left[q^{B}\left(x_{B}\right) \bar{q}^{T}\left(x_{T}\right)+\bar{q}^{B}\left(x_{B}\right) q^{T}\left(x_{T}\right)\right]$ In the context of Fermilab E772 \& E866 experiments:

Energy $E_{p}=800 \mathrm{GeV}, s \sim 1600 \mathrm{GeV}^{2}$ Muon pair masses: $4<Q<9 \mathrm{GeV}$ and $Q>11 \mathrm{GeV}$ (exclude quarkonium)

Probed region of target's Bjorken variable $0.04<x_{T}<0.27$

Comparison with the results of E772 \& E866 Fermilab experiments s.K. \& R.Petti, PRC90(2014)045204.

Detailed comparison with E772 by dimuon mass bin

Production of W / Z in $p+P b$ collisions at LHC

The DY mechanism of W / Z boson production in hadron/nuclear $A+B$ collisions:

$$
\frac{\mathrm{d}^{2} \sigma_{A B}}{\mathrm{~d} Q^{2} \mathrm{~d} y}=\sum_{a, b} \int \mathrm{~d} x_{a} \mathrm{~d} x_{b} q_{a / A}\left(x_{a}, Q^{2}\right) q_{b / B}\left(x_{b}, Q^{2}\right) \frac{\mathrm{d}^{2} \widehat{\sigma}_{a b}}{\mathrm{~d} Q^{2} \mathrm{~d} y}
$$

We study rapidity (y) distributions of production of W / Z bosons in $p+P b$ collisions at LHC with $Q^{2} \sim M_{Z}^{2}$ and $\sqrt{s}=5.02 \mathrm{TeV}$ using KP NPDF P.Ru, S.K., R.Petti, B-W.Zhang, arXiv:1608.06835.

Predictions for W^{+}and W^{-}and comparison with CMS data

Predictions for Z^{0} and comparison with CMS data

Comparison with ATLAS data on W / Z production

Performance of the model in terms of χ^{2}

Observable	$N_{\text {Data }}$	$\begin{gathered} \text { ABMP15 } \\ +\mathrm{KP} \\ \hline \end{gathered}$	$\begin{array}{r} \text { CT10 } \\ +\quad \text { EPS09 } \\ \hline \end{array}$	$\begin{aligned} & \text { ABMP15 } \\ & (\mathrm{Zp}+\mathrm{Nn}) \end{aligned}$
		CMS experiment:		
$\mathrm{d} \sigma^{+} / \mathrm{d} \eta^{l}$	10	1.052	1.532	3.057
$\mathrm{d} \sigma^{-} / \mathrm{d} \eta^{l}$	10	0.617	1.928	1.393
$\mathbf{N}^{+}\left(+\eta^{l}\right) / \mathbf{N}^{+}\left(-\eta^{l}\right)$	5	0.528	1.243	2.231
$\mathrm{N}^{-}\left(+\eta^{l}\right) / \mathrm{N}^{-}\left(-\eta^{l}\right)$	5	0.813	0.953	2.595
$\left(\mathrm{N}^{+}-\mathrm{N}^{-}\right) /\left(\mathrm{N}^{+}+\mathrm{N}^{-}\right)$	10	0.956	1.370	1.064
$\mathrm{d} \sigma / \mathrm{dy}^{Z}$	12	0.596	0.930	1.357
$\mathrm{N}\left(+\mathrm{y}^{Z}\right) / \mathrm{N}\left(-\mathrm{y}^{Z}\right)$	5	0.936	1.096	1.785
CMS combined	57	0.786	1.332	1.833
		ATLAS experiment:		
	10	0.586	0.348	1.631
$\mathrm{d} \sigma^{-} / \mathrm{d} \eta^{l}$	10	0.151	0.394	0.459
$\mathrm{d} \sigma / \mathrm{dy}^{2}$	14	1.449	1.933	1.674
CMS+ATLAS combined	91	0.796	1.213	1.635

Splitting the nuclear effects in W / Z boson production

Different nuclear effects on the production cross section of W (left) and Z boson (right) in $p+\mathrm{Pb}$ collisions at $\sqrt{s}=5.02 \mathrm{TeV}$ P.Ru, S.K., R.Petti, B-W.Zhang arXiv:1608.06835.

Upper axis is Bjorken x of Pb while the lower axis is (pseudo)rapidity $(\eta) y$.

Nuclear effects on valence quarks vs. antiquarks

The ratios $R_{a}=q_{a / A} /\left(Z q_{a / p}+N q_{n / A}\right)$ computed for the valence u and d (left) and the corresponding antiquarks (right) S.K. \& R.Petti, PRC90(2014)045204.

