Nuclear Medium Effects on the Structure Functions

Sergey Kulagin

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

Talk at the SIS/DIS Workshop

Gran Sasso Science Institute, L'Aquila, Italy October 11-13, 2018

Outline

- Experimental observations on modification of partonic structure of nuclei
- Understanding and modelling nuclear corrections in DIS region
 - Sketch of basic mechanisms of nuclear DIS in different kinematic regions.
 - Brief review of our efforts to build a quantitative model of nuclear structure functions.
- Extend the model into the resonance region. Discuss the ratios D/(p+n) and ${}^{3}\text{He}/D$ and ${}^{3}\text{He}/(D+p)$ in comparison with JLab *BONuS*, 2015 and *Hall C*, 2009 measurements.
- Summary/Conclusions

Data summary on nuclear effects on the parton level

- ► Nuclear ratios $\mathcal{R}(A/B) = \sigma_A(x,Q^2)/\sigma_B(x,Q^2)$ or F_2^A/F_2^B from DIS experiments
- \blacktriangleright Data for nuclear targets from $^2{\rm H}$ to $^{208}{\rm Pb}$
 - Fixed-target experiments with e/μ :
 - Muon beam at CERN (EMC, BCDMS, NMC) and FNAL (E665).
 - ► Electron beam at SLAC (E139, E140), HERA (HERMES), JLab (E03-103).
 - Kinematics and statistics:

Data covers the region $10^{-4} < x < 1.5$ and $0 < Q^2 < 150 \text{ GeV}^2$. About 800 data points for the nuclear ratios $\mathcal{R}(A/B)$ with $Q^2 > 1 \text{ GeV}^2$.

- Nuclear effects for antiquarks have been probed by Drell-Yan experiments at FNAL (E772, E866).
- Nuclear cross sections from high-energy measurements with neutrino BEBC (²H and ²⁰Ne), NOMAD (¹²C and ⁵⁶Fe) CDHS, CCFR and NuTeV (⁵⁶Fe) CHORUS (²⁰⁷Pb). Nuclear cross section ratios Fe/CH and Fe/CH from MINERvA in the region of low Q².

Nuclear ratios from DIS experiments

Kulagin (INR)

HERMES and JLab measurements on ${}^{3}\text{He}$

Kulagin (INR)

SLAC E139 and JLab BONUS results on ^{2}H

- ► SLAC E139 [PRD49(1994)4348] obtains R_D = F₂^D/(F₂^p + F₂ⁿ) by extrapolating data on R_A = F₂^A/F₂^D with A ≥ 4 assuming R_A − 1 scales as nuclear density.
- ▶ BONuS [*PRC92(2015)015211*] obtains R_D from a direct measurement of F_2^n/F_2^D [*PRC89(2014)045206*] using "world data" on F_2^D/F_2^p .

Why nuclear corrections survive at DIS?

Space-time scales in DIS

$$W_{\mu\nu} = \int d^4 x \exp(iq \cdot x) \langle p | [J_{\mu}(x), J_{\nu}(0)] | p \rangle$$
$$q \cdot x = q_0 t - |\mathbf{q}| z = q_0 t - \sqrt{q_0^2 + Q^2} z \simeq q_0 (t - z) - \frac{Q^2}{2q_0} z$$

- ▶ DIS proceeds near the light cone: $|t z| \sim 1/q_0$ and $t^2 z^2 \sim Q^{-2}$.
- ► In the TARGET REST frame the characteristic time and longitudinal distance are NOT small at all: t ~ z ~ 2q₀/Q² = 1/Mx_{Bj}. DIS proceeds at the distance ~ 1 Fm at x_{Bj} ~ 0.2 and at the distance ~ 20 Fm at x_{Bj} ~ 0.01.
- Two different regions in nuclei from comparison of coherence length (loffe time) $L = 1/Mx_{Bj}$ with average distance between bound nucleons r_{NN} :
 - ▶ $L < r_{NN}$ (or x > 0.2) \Rightarrow Nuclear DIS \approx incoherent sum of contributions from bound nucleons. Nuclear corrections $\sim EL$ and $\sim |\mathbf{p}|^2 L^2$ where E(p)typical energy (momentum) in the nuclear ground state.
 - ► $L \gg r_{NN}$ (or $x \ll 0.2$) \Rightarrow Coherent effects of interactions with a few nucleons are important.

Incoherent nuclear scattering

A good starting point is incoherent scattering off bound protons and neutrons

$$F_2^A = \int \mathrm{d}^4 p \, K \left(\mathcal{P}^p F_2^p + \mathcal{P}^n F_2^n \right)$$

- ▶ The four-momentum of the bound proton (neutron) $p = (M + \varepsilon, p)$
- ▶ $\mathcal{P}^{p,n}(\varepsilon, p)$ the proton (neutron) nuclear spectral function, which is normalized to the nucleon number $\int d\varepsilon dp \mathcal{P}^p = Z$ and describes probability to find a bound nucleon with momentum p and energy $p_0 = M + \varepsilon$.
- ▶ The bound nucleon structure functions depend on 3 independent variables $F_2^{p,n} = F_2^{p,n}(x', p^2, Q^2)$, $x' = Q^2/2p \cdot q$ is the Bjorken variable of a nucleon with four-momentum p. Note the nucleon virtuality p^2 is additional variable for off-shell nucleon.
- Kinematical factor $K = (1 + p_z/M) \left(1 + \mathcal{O}(\boldsymbol{p}^2/|\boldsymbol{q}|^2) \right).$

Nuclear spectral function

The nuclear spectral function describes probability to find a bound nucleon with momentum p and energy $p_0 = M + \varepsilon$:

$$\mathcal{P}(\varepsilon, \boldsymbol{p}) = \int \mathrm{d}t \, e^{-i\varepsilon t} \langle \psi^{\dagger}(\boldsymbol{p}, t)\psi(\boldsymbol{p}, 0) \rangle$$
$$= \sum_{i} |\langle (A-1)_{i}, -\boldsymbol{p}|\psi(0)|A \rangle|^{2} \, 2\pi \delta \left(\varepsilon + E_{i}^{A-1}(\boldsymbol{p}) - E_{0}^{A}\right)$$

- The sum runs over all possible states of the spectrum of A 1 residual system.
- ▶ The nuclear spectral function determines the rate of nucleon removal reactions such as (e, e'p). For low separation energies and momenta, $|\varepsilon| < 50$ MeV, p < 250 MeV/c, the observed spectrum is dominated by bound states A 1 similar to those predicted by the mean-field model.
- ▶ High-energy and high-momentum components of nuclear spectrum is not described by the mean-field model and driven by correlation effects in nuclear ground state (short-range correlations, or SRC). We combine the mean-field together with SRC contributions and consider a two-component model $\mathcal{P} = \mathcal{P}_{\rm MF} + \mathcal{P}_{\rm cor}$ *Ciofi degli Atti & Simula, 1995 S.K. & Sidorov, 2000 S.K. & Petti, 2004*

EMC effect in impulse approximation (IA)

- Impulse approximation: $F_2(x', Q^2, p^2) = F_2(x', Q^2, M^2)$
- Momentum distribution (Fermi motion) leads to a rise at large Bjorken x Atwood & West, 1970s.
- Nuclear binding correction is important and results in a "dip" at $x \sim 0.6 0.7$

Akulinichev, Vagradov & S.K., 1984.

However, even realistic nuclear spectral function fails to accurately explain the slope and the position of the minimum in IA. Corrections to IA are needed!

Nucleon off-shell effect (OS)

Bound nucleons are off-mass-shell, $p^2 < M^2$. The treatment of p^2 dependence can greatly be simplified in the vicinity of the mass shell. If the virtuality parameter $v = (p^2 - M^2)/M^2$ is small (e.g. average virtuality $v \sim -0.15$ for ⁵⁶Fe) then expand $q(x,Q^2,p^2)$ in series in v

$$F_2^N(x, Q^2, p^2) \approx F_2^N(x, Q^2) \left(1 + \delta f(x, Q^2) v\right)$$

- $\delta f(x, Q^2)$ is a special structure function describing the modification of the off-shell nucleon PDFs in the vicinity of the mass shell.
- Off-shell correction is closely related to modification of the nucleon size in nuclear environment S.K. & R.Petti, 2004.

Nuclear meson-exchange current effect (MEC)

Leptons can scatter on nuclear meson field which mediate interaction between bound nucleons. This process generate a MEC correction to nuclear sea quark distribution

$$\delta F_2^{\mathsf{MEC}}(x,Q^2) = \int_x \mathrm{d}y f_{\pi/A}(y) F_2^{\pi}(\frac{x}{y},Q^2)$$

- Contribution from nuclear pions (mesons) is important to balance nuclear light-cone momentum ⟨y⟩_π + ⟨y⟩_N = 1.
- ▶ The nuclear pion distribution function is localized in a region $y < p_F/M \sim 0.3$. For this reason the MEC correction to nuclear (anti)quark distributions is localized at x < 0.3.
- ► The magnitude of the correction is driven by average number of "nuclear pion excess" $n_{\pi} = \int dy f_{\pi/A}(y)$ and $n_{\pi}/A \sim 0.1$ for a heavy nucleus like ⁵⁶Fe.

Nuclear shadowing

Coherent nuclear correction is due to propagation of intermediate state $\gamma^* \rightarrow h$ in nuclear environment, which can be described in the multiple scattering theory *Glauber, Gribov 1970s.*

$$\frac{\delta F_{2A}^{\text{coh}}}{F_{2N}} = \frac{\text{Im } \delta \mathcal{A}}{\text{Im } a}$$
$$\delta \mathcal{A} = \delta \mathcal{A}^{(2)} + \delta \mathcal{A}^{(3)} + \dots$$
$$\delta \mathcal{A}^{(2)} = ia^2 \int_{z_1 < z_2} d^2 \boldsymbol{b} \, dz_1 dz_2 \, \rho(\boldsymbol{b}, z_1) \rho(\boldsymbol{b}, z_2) \, e^{i \frac{z_1 - z_2}{L}}$$

- $\blacktriangleright~\rho({\bm r})$ is the nuclear number density, $\int {\rm d}^3 {\bm r} \rho({\bm r}) = A$
- ► $a = \frac{\sigma}{2}(i + \alpha)$ is the (effective) forward scattering amplitude of intermediate state h off the nucleon
- ▶ L is the coherence length of intermediate state which accounts finite life time of intermediate state, $1/L = Mx(1 + m_h^2/Q^2)$. Its presence suppresses the coherence effect in the region of large x.

Modelling the nuclear corrections

Assemble everything together and confront model to data S.K. & R.Petti, NPA765(2006)126; PRC82(2010)054614; PRC90(2014)045204

 $F_{2}^{A} = Z \left\langle F_{2}^{p} \right\rangle + N \left\langle F_{2}^{n} \right\rangle + \delta F_{2}^{\text{MEC}} + \delta F_{2}^{\text{coh}}$

Strategy of the analysis:

- Compute the proton and neutron structure functions in terms of free proton PDF with relevant perturbative QCD corrections, TMC, as well as HT correction.
- ► Using F₂^{p,n} compute nuclear structure functions/cross sections with accurate treatment of nuclear spectral function effects (Fermi-motion and nuclear binding), MEC and nuclear shadowing correction.
- ► Treat the off-shell function $\delta f(x)$ and effective amplitude a as unknown and parametrize them. Study the data on the nuclear DIS in terms of the ratios F_2^A/F_2^B and determine $\delta f(x)$ together with the amplitude a from data.
- ▶ Use the normalization conditions and the DIS sum rules (GLS, Adler) to determine the amplitude *a* (responsible for nuclear shadowing) in the region of high *Q*², which is not constrained by data.
- Verify the model by comparing the calculations with data not used in analysis.
 Kulagin (INR)
 14 / 57

Structure functions in the DIS region

If Q^2 is large compared the nucleon mass, the operator product expansion in QCD produces power series:

$$F_2(x,Q^2) = F_2^{LT,TMC}(x,Q^2) + \frac{H_2(x,Q)}{Q^2} + \cdots$$

The leading term is given in terms of PDFs convoluted with coefficient functions:

$$\begin{split} F_2^{LT} &= \left[1 + \frac{\alpha_S}{2\pi} C_q^{(1)}\right] \otimes x \sum_q e_q^2 (q + \bar{q}) \\ &+ \frac{\alpha_S}{2\pi} C_g^{(1)} \otimes xg + \mathcal{O}(\alpha_S^2) \end{split}$$

The HT terms involve interaction between quarks and gluons and lack simple probabilistic interpretation. In the region of high Bjorken x and/or low Q^2 (small W^2) one has to account for the target mass correction *Georgi & Politzer*, 1976

$$F_2^{LT,TMC}(x,Q^2) = \frac{x^2}{\xi^2 \gamma^2} F_2^{LT}(\xi,Q^2) + \frac{6x^3M^2}{Q^2 \gamma^4} \int_{\xi}^1 \frac{\mathrm{d}z}{z^2} F_2^{LT}(z,Q^2) + \mathcal{O}(Q^{-4})$$

 $\xi = 2x/(1 + \gamma)$ is the Nachtmann variable and $\gamma^2 = 1 + 4x^2M^2/Q^2$. In this work we use the results of the PDF global analysis performed to QCD NNLO approximation (i.e. to order α_S^2) and which includes the proton (and deuteron) data sets from DIS, DY and collider data. Kinematical range $0.8 < Q^2 < 10^5 \text{ GeV}^2$ and $10^{-6} < x < 1$ with the cut W > 1.8 GeV *S.Alekhin, K.Melnikov, F.Petriello, 2007*; *S.Alekhin, S.K., R.Petti, 2007*

Kulagin (INR)

Determination of the off-shell function $\delta f(x)$

- The function $\delta f(x)$ provides a measure of the modification of the quark distributions in a bound nucleon.
- ► The slope of $\delta f(x)$ in a single-scale nucleon model is related to the change of the radius of the nucleon in the nuclear environment *S.K. & R.Petti, 2006.* The observed slope suggests an increase in the bound nucleon radius in the iron by about 10% and in the deuteron by about 2%.

Off-shell effect and the modification of the bound nucleon radius

The valence quark distribution in a (off-shell) nucleon *Kulagin, Piller & Weise, PRC50(1994)1154*

$$q_{\rm val}(x,p^2) = \int^{k_{\rm max}^2} dk^2 \Phi(k^2,p^2) \\ k_{\rm max}^2 = x \left(p^2 - s/(1-x) \right)$$

- A one-scale model of quark k^2 distribution: $\Phi(k^2) = C\phi(k^2/\Lambda^2)/\Lambda^2$, where C and ϕ are dimensionless and Λ is the scale.
- ▶ Off-shell: $C \to C(p^2), \ \Lambda \to \Lambda(p^2)$

Kulagin

▶ The derivatives $\partial_x q_{\mathsf{val}}$ and $\partial_{p^2} q_{\mathsf{val}}$ are related

$$\delta f(x) = \frac{\partial \ln q_{\text{val}}}{\partial \ln p^2} = c + \frac{\mathrm{d}q_{\text{val}}(x)}{\mathrm{d}x}x(1-x)h(x)$$

$$h(x) = \frac{(1-\lambda)(1-x) + \lambda s/M^2}{(1-x)^2 - s/M^2}$$
(INR)
$$c = \frac{\partial \ln C}{\partial 1 - c^2}, \ \lambda = \frac{\partial \ln \Lambda^2}{\partial 1 - c^2}$$
17/57

- A simple pole model φ(y) = (1 − y)⁻ⁿ (note that y < 0 so we do not run into singularity) provides a resonable description of the nucleon valence distribution for x > 0.2 and large Q² (s = 2.1 GeV², Λ² = 1.2 GeV², n = 4.4 at Q² = 15 ÷ 30 GeV²).
- The size of the valence quark confinement region R_c ~ Λ⁻¹ (nucleon core radius).
- ► Off-shell correction is independent of specific choice of profile φ(y) and is given by (ln q_{val}(x))'.
- Fix c and λ to reproduce δf(x₀) = 0 and the slope δf'(x₀).
 We obtain λ ≈ 1 and c ≈ -2.3. The positive parameter λ suggests decreasing the scale Λ in nuclear environment (swelling of a bound nucleon)

$$\frac{\delta R_c}{R_c} \sim -\frac{1}{2} \frac{\delta \Lambda^2}{\Lambda^2} = -\frac{1}{2} \lambda \frac{\langle p^2 - M^2 \rangle}{M^2}$$

 56 Fe: $\delta R_c/R_c \sim 9\%$ 2 H: $\delta R_c/R_c \sim 2\%$

Determination of effective cross section

► The monopole form $\sigma = \sigma_0/(1 + Q^2/Q_0^2)$ for the effective cross section of *C*-even $q + \bar{q}$ combination provides a good fit to data on DIS nuclear shadowing for $Q^2 < 15 \text{ GeV}^2$ with $\sigma_0 = 27 \text{ mb}$ and $Q_0^2 = 1.43 \pm 0.06 \pm 0.195 \text{ GeV}^2$. Note σ_0 is fixed from $Q^2 \rightarrow 0$ limit by the vector meson dominance model. Also we assume Re a/ Im a for *C*-even amplitude to be given by VMD at all energies.

- Nuclear shadowing correction for the C-odd valence distribution q q̄ is also driven by same cross section σ. Note, however, important interference effect between the phases of C-even and C-odd effective amplitude.
- ▶ The cross section at high $Q^2 > 15 \text{ GeV}^2$ is not constrained by data. It is possible to evaluate σ in this region using the the normalization condition. Requiring exact cancellation between the off-shell and the shadowing correction in the normalization we have:

$$\int_0^1 \mathrm{d}x \left(\langle v \rangle \, q_{\mathrm{val}}(x, Q^2) \delta f(x) + \delta q_{\mathrm{val}}^{\mathrm{coh}}(x, Q^2) \right) = 0$$

with $\langle v\rangle=\left\langle p^2-M^2\right\rangle/M^2$ the average nucleon virtuality. Numeric solution to this equation is shown by dotted curve.

Kulagin (INR)

Summary of results on the nuclear ratios F_2^A/F_2^D

20 / 57

Kulagin (INR)

Verification with recent JLab data (not a fit)

- ► Very good agreement of our predictions S.K. & R.Petti, PRC82(2010)054614 with JLab E03-103 for all nuclear targets: $\chi^2/d.o.f. = 26.3/60$ for $W^2 > 2$ GeV².
- Nuclear corrections at large x is driven by nuclear spectral function, the off-shell function δf(x) was fixed from previous studies.
- A comparison with the Impulse Approximation (shown in blue) demonstrates that the off-shell correction is crucial to describe the data leading to both the modification of the slope and the position of the minimum of the ratios.

Verification with HERMES data (not a fit)

- A good agreement of our predictions S.K. & R.Petti, PRC82(2010)054614 with HERMES data for ¹⁴N/D and ⁸⁴Kr/D with $\chi^2/d.o.f. = 14.7/24$
- A comparison with CERN NMC data for ¹²C/D shows a notable Q² dependence at small x in the shadowing region related to the Q² dependence of effective cross-section.

The model correctly describes the observed \boldsymbol{x} and \boldsymbol{Q}^2 dependence.

Kulagin (INR)

$Comparison of DIS and RES/SIS fits \\ __{Proton F_2}$

Kulagin (INR)

Duality

DIS and RES structure functions are dual in the integral sense Bloom & Gilman, 1970:

$$\int_{W_{\rm th}^2}^{W_0^2} \mathrm{d}W^2 \, F_2^{\rm DIS}(W^2,Q^2) = \int_{W_{\rm th}^2}^{W_0^2} \mathrm{d}W^2 \, F_2^{\rm RES}(W^2,Q^2)$$

 $W_{\rm th}=M_p+m_\pi$ the pion production threshold energy and $W_0=2~{\rm GeV}$ the boundary of the resonance region.

Comparing Christy-Bosted (RES) and Alekhin (DIS) analyses:

- ▶ For the proton the error of the duality relation is better than 5% for $1 \le Q^2 < 10 \text{ GeV}^2$.
- ▶ For the neutron the error is larger $\sim 5 10\%$. This could be related to a different treatment of the deuteron correction in Alekhin and CB fits.

Hybrid model for the proton

A good matching between RES and DIS models in overlap region of 1.8 < W < 3 GeV motivates us to use a combined model in a wide region of W and Q^2 :

$$F_{2} = \begin{cases} F_{2}^{\text{RES}}(W^{2}), & W \leq W_{1}, \\ F_{2}^{\text{RES}}(W_{1}^{2}) + \frac{W^{2} - W_{1}^{2}}{W_{2}^{2} - W_{1}^{2}} \left(F_{2}^{\text{DIS}}(W_{2}^{2}) - F_{2}^{\text{RES}}(W_{1}^{2})\right), & W_{1} < W < W_{2}, \\ F_{2}^{\text{DIS}}(W^{2}), & W \geq W_{2} \end{cases}$$

Here $W_1 = 1.8 \text{ GeV}$ and $W_2 = 2 \text{ GeV}$.

Hybrid model for the neutron

- For the neutron, the matching between RES and DIS models is somewhat worse than for the proton. As the neutron is extracted from the deutron – proton difference, a significant part of disagreement could arise from a different treatment of the deuteron correction (discussed below).
- ▶ We compute neutron F_2^n in the resonance region using the RES model for the proton and the ratio $R_{np} = F_2^n / F_2^p$ from the DIS model.
- ► Special care has to be taken in the $\Delta(1232)$ region and near threshold. The isospin conservation suggests equal contribution to the proton and the neutron from the $\Delta(1232)$ resonace = F_2^{Δ} (supported by analysis *Bosted & Christy, 2010*).

$$F_2^{n(\mathsf{RES})} = R_{np} \left(F_2^{p(\mathsf{RES})} - F_2^{\Delta} \right) + F_2^{\Delta}$$

Performance of the model vs. proton and deuteron data

Proton and deuteron F_2 computed at $Q^2 = 1.025$, 1.275, 2.525, 3.525 GeV² in a combined RES-DIS model. Data from SLAC Whitlow,1991 and JLab-CLAS Osipenko,2003,2005 and NMC,1997. Kulagin (INR) 28 / 57

Comparison with BONuS data F_2^n/F_2^D

Kulagin (INR)

$(F_2^p + F_2^n)/F_2^D$ in the DIS and RES models

Kulagin (INR)

Comparison with ³He from JLab E03103 experiment

 $F_2^{3\mathrm{He}}/F_2^D$ from JLab Seely et al, 2009 and HERMES measurement (both corrected for the proton excess) compared with model predictions. The dashed line is DIS model, the solid line is a combined DIS+RES model.

The isoscalar ratio $F_2^{3\text{He}}/(F_2^D + F_2^p)$ from Seely et al, 2009 (D.Gaskell, private communication) compared with our predictions. The notations are similar to those of the left panel.

Summary

- ► The data on the ratio of nuclear structure functions F^A₂/F^B₂ (nuclear EMC effect) show nontrivial oscillating shape spanning different kinematical regions of Bjorken x.
- ▶ The data in the DIS region can be understood if we address a number of corrections including nuclear momentum distribution and binding effects, off-shell correction, meson-exchange currents as well as the matter propagation effects of hadronic component of virtual photon. Those nuclear effects result in the corrections relevant in different regions of *x*.
- In the resonance region (low Q² and/or large x) the nuclear ratios for light nuclei (2H, 3He and 3H) show a strong Q²− and x−dependence. Current data on those ratios (JLab) can be understood in terms of smearing of the resonance structures with nuclear spectral function (the wave function in the deuteron case) except for a region of a very large x close to ∆(1232).

	l varu	5 IUI a	in nucl	-1			
Targets	χ^2 /DOF						
	NMC	EMC	E139	E140	BCDMS	E665	HERMES
$^{4}\mathrm{He}/^{2}\mathrm{H}$	10.8/17		6.2/21				
$^{7}\mathrm{Li}/^{2}\mathrm{H}$	28.6/17						
$^{9}\mathrm{Be}/^{2}\mathrm{H}$			12.3/21				
$^{12}C/^{2}H$	14.6/17		13.0/17				
${}^{9}{\rm Be}/{}^{12}{\rm C}$	5.3/15						
$^{12}C/^{7}Li$	41.0/24						
$^{14}N/^{2}H$							9.8/12
$^{27}Al/^{2}H$			14.8/21				
$^{27}Al/^{12}C$	5.7/15						
$^{40}\mathrm{Ca}/^{2}\mathrm{H}$	27.2/16		14.3/17				
$^{40}\mathrm{Ca}/^{7}\mathrm{Li}$	35.6/24						
$^{40}Ca/^{12}C$	31.8/24					1.0/5	
56 Fe/ 2 H			18.4/23	4.5/8	14.8/10		
${}^{56}{\rm Fe}/{}^{12}{\rm C}$	10.3/15						
$^{63}\mathrm{Cu}/^{2}\mathrm{H}$		7.8/10					
84 Kr/ ² H							4.9/12
$^{108}Ag/^{2}H$			14.9/17				
$^{119}Sn/^{12}C$	94.9/161						
$^{197}\mathrm{Au}/^{2}\mathrm{H}$			18.2/21	2.4/1			
$^{207}Pb/^{2}H$						5.0/5	
$^{207} Pb/^{12} C$	6.1/15					0.2/5	
	~ = .			-2 · · · · · · ·			

Table of χ^2 values for all nuclei

Values of χ^2 /DOF between different data sets with $Q^2 \ge 1 \text{ GeV}^2$ and the predictions of KP model NPA765(2006)126; PRC82(2010)054614. The sum over all data results in χ^2 /DOF = 466.6/586.

Sketch of the mean-field picture

In the the mean-field model the bound states of A-1 nucleus are described by the one-particle wave functions ϕ_{λ} of the energy levels λ . The spectral function is given by the sum over the occupied levels with the occupied number n_{λ} :

$$\mathcal{P}_{\mathrm{MF}}(\varepsilon, \boldsymbol{p}) = \sum_{\lambda < \lambda_F} n_{\lambda} |\phi_{\lambda}(\boldsymbol{p})|^2 \delta(\varepsilon - \varepsilon_{\lambda})$$

- Due to interaction effects the δ-peaks corresponding to the single-particle levels acquire a finite width (fragmentation of deep-hole states).
- High-energy and high-momentum components of nuclear spectrum can not be described in the mean-field model and driven by short-range nucleon-nucleon correlation effects in the nuclear ground state as witnessed by numerous studies.

High-momentum part

- As nuclear excitation energy becomes higher the mean-field model becomes less accurate. High-energy and high-momentum components of nuclear spectrum can not be described in the mean-field model and driven by correlation effects in nuclear ground state as witnessed by numerous studies.
- ► The corresponding contribution to the spectral function is driven by (A 1)* excited states with one or more nucleons in the continuum. Assuming the dominance of configurations with a correlated nucleon-nucleon pair and remaining A-2 nucleons moving with low center-of-mass momentum we have

 $|A-1,-\boldsymbol{p}\rangle \approx \psi^{\dagger}(\boldsymbol{p}_1)|(A-2)^*,\boldsymbol{p}_2\rangle\delta(\boldsymbol{p}_1+\boldsymbol{p}_2+\boldsymbol{p}).$

The matrix element can thus be given in terms of the wave function of the nucleon-nucleon pair embedde into nuclear environment. We assume factorization into relative and center-of-mass motion of the pair

 $\langle (A-2)^*, \boldsymbol{p}_2 | \psi(\boldsymbol{p}_1)\psi(\boldsymbol{p}) | A \rangle \approx C_2 \psi_{\mathrm{rel}}(\boldsymbol{k}) \psi_{\mathrm{CM}}^{A-2}(\boldsymbol{p}_{\mathrm{CM}}) \delta(\boldsymbol{p}_1 + \boldsymbol{p}_2 + \boldsymbol{p}),$

where $\psi_{\rm rel}$ is the wave function of the relative motion in the nucleon-nucleon pair with relative momentum $\mathbf{k} = (\mathbf{p} - \mathbf{p}_1)/2$ and $\psi_{\rm CM}$ is the wave function of center-of-mass (CM) motion of the pair in the field of A-2 nucleons, $\mathbf{p}_{\rm CM} = \mathbf{p}_1 + \mathbf{p}$. The factor C_2 describes the weight of the two-nucleon correlated part in the full spectral function.

$$\mathcal{P}_{cor}(\varepsilon, \boldsymbol{p}) \approx n_{cor}(\boldsymbol{p}) \left\langle \delta \left(\varepsilon + \frac{(\boldsymbol{p} + \boldsymbol{p}_{A-2})^2}{2M} + E_{A-2} - E_A \right) \right\rangle_{A-2}$$

Average separation and kinetic energies

Average separation $\langle \varepsilon \rangle$ and kinetic $\langle T \rangle$ energies are related by the Koltun sum rule (exact relation for nonrelativistic system with two-body forces)

 $\langle \varepsilon \rangle + \langle T \rangle = 2\varepsilon_B,$

where $\varepsilon_B = E_0^A/A$ is nuclear binding energy per bound nucleon

$$\langle \varepsilon \rangle = A^{-1} \int [\mathrm{d}p] \mathcal{P}(\varepsilon, \boldsymbol{p}) \varepsilon,$$
$$\langle T \rangle = A^{-1} \int [\mathrm{d}p] \mathcal{P}(\varepsilon, \boldsymbol{p}) \frac{\boldsymbol{p}^2}{2M}.$$

Nuclear binding, separation and kinetic energies

Nuclear energies

The two-component model of the spectral function

In what follows we combine the mean-field together with SRC contributions and consider a two-component model *Ciofi degli Atti & Simula, 1995 S.K. & Sidorov, 2000 S.K. & Petti, 2004*

 $\mathcal{P}=\mathcal{P}_{\rm MF}+\mathcal{P}_{\rm cor}$

We assume that the normalization is shared between the MF and the correlated parts as 0.8 to 0.2 for the nuclei $A \ge 4$ [for ²⁰⁸Pb 0.75 to 0.25] following the observations on occupation of deeply-bound proton levels NIKHEF 1990s, 2001.

Different nuclear corrections for ^{197}Au at $Q^2 = 10 \,\mathrm{GeV}^2$

Kulagin (INR)

SLAC E139 Deuteron

Model predictions (curve with open squares) in comparison with the E139 data Gomez et.al., 1994. Note that the E139 data points are obtained by extrapolation to A = 2 using the nuclear density model *Frankfurt & Strikman*, 1990.

Comparison predictions for D/(p+n) and ${}^{3}\mathrm{He}/(2p+n)$

 R_2 and R_3 were calculated in the DIS model at the values of x and Q^2 of JLab E03-103 experiment for x > 0.3 and at fixed $Q^2 = 3 \text{ GeV}^2$ for x < 0.3.

The Paris wave function was used for the deuteron, and the Hannover spectral function was used for ^{3}He .

- R_2 and R_3 are similar in shape. A dip at $x \sim 0.7$ is somewhat bigger for R_3 because of stronger nuclear binding in ³He.
- ▶ Nuclear effects cancel at $x \approx 0.35$, which is consistent with the measurement of EMC effect in other nuclei.

Comparison ${}^{3}\text{He}/\text{D}$ with HERMES and JLab E03-103 data

To correct for proton excess, HERMES applies the factor

$$C_{is} = \frac{AF_2^N}{ZF_2^p + NF_2^n}$$

with F_2^n/F_2^p from NMC. The E03-103 experiment does it differently, however correction factors are known.

- An unbiased way would be to compare uncorrected data, or corrected in a similar way. However, HERMES exact correction factors are not available. We uncorrect E03-103 data and then apply C_{is} together with the factor 1.03.
- After renormalization, E03-103 and HERMES data agree at the overlap (x = 0.35). Also our predictions are in a good agreement with both data (except the region x > 0.8).

Extraction of F_2^n/F_2^p from ³He/D vs. D/p

Extraction of F_2^n/F_2^p with the full treatment of nuclear effect (full symbols) and also with no nuclear effects $(R_2 = R_3 = 1, \text{ open}$ symbols).

- Significant mismatch in F_2^n/F_2^p extracted from different experiments. At $x \sim 0.35$, where nuclear corrections are negligible, the F_2^n/F_2^p from E03-103 is 15% higher than that from NMC.
- ► Normalization of Fⁿ₂/F^p₂ is directly related to normalization of ³He/D. Requiring Fⁿ₂/F^p₂ from E03-103 match NMC, we obtain a renormalization factor of 1.03^{+0.006}_{-0.008} for ³He/D data.

Drell-Yan reaction

Production of a lepton pair in hadron collision $B + T \rightarrow \mu^+ \mu^- + \ldots$ through the Drell-Yan mechanism:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x_B\mathrm{d}x_T} = \frac{4\pi\alpha^2}{9Q^2} K \sum_a e_a^2 \left[q_a^B(x_B, Q^2) \bar{q}_a^T(x_T, Q^2) + \bar{q}_a^B(x_B, Q^2) q_a^T(x_T, Q^2) \right]$$

►
$$Q^2 = s x_T x_B$$
 and $s = (p_B + p_T)^2$ the c.m. energy².

At small Q²/s ≪ 1 and large x_B the DY process probes the target's antiquarks. For the ratios on different targets A₁ and A₂:

$$\frac{\sigma_{A_1}^{\mathsf{DY}}}{\sigma_{A_2}^{\mathsf{DY}}} \approx \frac{\bar{q}_{A_1}(x_T)}{\bar{q}_{A_2}(x_T)}$$

DY nuclear data from E772 and E866 experiments

Fermilab E772 and E866 experiments measure the ratio of DY yields for the DY process of 800-GeV proton with a number of targets with $s \approx 1600 \text{ GeV}^2$ and 4 < Q < 9 GeV and Q > 11 GeV (excluding J/ψ region).

Drell-Yan process with nuclear targets

DY process $p + A \rightarrow \gamma^* \rightarrow \mu^+ \mu^- + X$

Cross section is driven by

 $\sum e_q^2 \left[q^B(x_B) \bar{q}^T(x_T) + \bar{q}^B(x_B) q^T(x_T) \right]$

In the context of Fermilab E772 & E866 experiments:

Energy $E_p = 800$ GeV, $s \sim 1600$ GeV²

Muon pair masses: 4 < Q < 9 GeV and Q > 11 GeV (exclude quarkonium)

Probed region of target's Bjorken variable $0.04 < x_T < 0.27$

Comparison with the results of E772 & E866 Fermilab experiments S.K. & R.Petti, PRC90(2014)045204.

Detailed comparison with E772 by dimuon mass bin

Production of W/Z in p + Pb collisions at LHC

The DY mechanism of W/Z boson production in hadron/nuclear A + B collisions:

$$\frac{\mathrm{d}^2 \sigma_{AB}}{\mathrm{d}Q^2 \mathrm{d}y} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b q_{a/A}(x_a, Q^2) q_{b/B}(x_b, Q^2) \frac{\mathrm{d}^2 \widehat{\sigma}_{ab}}{\mathrm{d}Q^2 \mathrm{d}y}$$

We study rapidity (y) distributions of production of W/Z bosons in p + Pb collisions at LHC with $Q^2 \sim M_Z^2$ and $\sqrt{s} = 5.02 \,\text{TeV}$ using KP NPDF *P.Ru, S.K., R.Petti, B-W.Zhang, arXiv:1608.06835.*

Predictions for W^+ and W^- and comparison with CMS data

Predictions for Z^0 and comparison with CMS data

Comparison with ATLAS data on W/Z production

Performance of the model in terms of χ^2

Observable	N_{Data}	ABMP15	CT10	ABMP15
		+ KP	+ EPS09	(Zp + Nn)
		CMS experiment:		
$d\sigma^+/d\eta^l$	10	1.052	1.532	3.057
$d\sigma^{-}/d\eta^{l}$	10	0.617	1.928	1.393
$N^+(+\eta^l)/N^+(-\eta^l)$	5	0.528	1.243	2.231
$N^{-}(+\eta^{l})/N^{-}(-\eta^{l})$	5	0.813	0.953	2.595
$(N^{+} - N^{-})/(N^{+} + N^{-})$	10	0.956	1.370	1.064
${ m d}\sigma/{ m d}{ m y}^Z$	12	0.596	0.930	1.357
$N(+y^Z)/N(-y^Z)$	5	0.936	1.096	1.785
CMS combined	57	0.786	1.332	1.833
		ATLAS experiment:		
d $\sigma^+/{ m d}\eta^l$	10	0.586	0.348	1.631
$d\sigma^{-}/d\eta^{l}$	10	0.151	0.394	0.459
$d\sigma/dy^Z$	14	1.449	1.933	1.674
CMS+ATLAS combined	91	0.796	1.213	1.635

Splitting the nuclear effects in W/Z boson production

Different nuclear effects on the production cross section of W (left) and Z boson (right) in $p+{\rm Pb}$ collisions at $\sqrt{s}=5.02\,{\rm TeV}$ <code>P.Ru, S.K., R.Petti, B-W.Zhang</code>

Upper axis is Bjorken x of Pb while the lower axis is (pseudo)rapidity $(\eta)y$.

Nuclear effects on valence quarks vs. antiquarks

The ratios $R_a = q_{a/A}/(Zq_{a/p} + Nq_{n/A})$ computed for the valence u and d (left) and the corresponding antiquarks (right) *S.K. & R.Petti, PRC90(2014)045204*.

Kulagin (INR)