Mechanical Simulation of Nb₃Sn Coils

<u>G. Vallone</u>, B. Bordini, N. Bourcey, M. Daly, P. Ferracin, C. Fichera, P. Grosclaude, M. Guinchard, S. Izquierdo Bermudez, C. Loffler, J. C. Perez

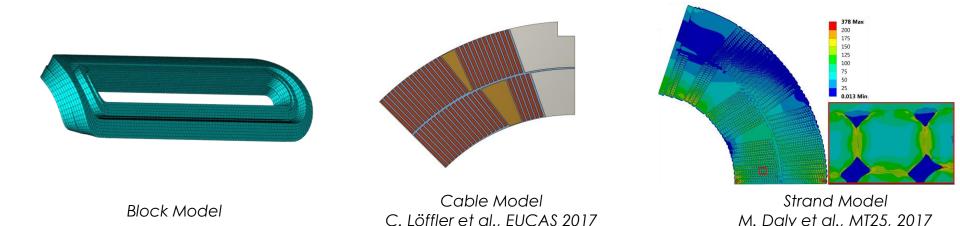
37th EuroCirCol WP5 Coordination Meeting CERN, 22/05/2018

Outline

- Introduction
- MQXF 'block coil' model
- Cable stacks 'strand' model
- MQXF 'strand' model
- 11T 'block coil' model
- Conclusion

Outline

- Introduction
- MQXF 'block coil' model
- Cable stacks 'strand' model
- MQXF 'strand' model
- 11T 'block coil' model
- Conclusion

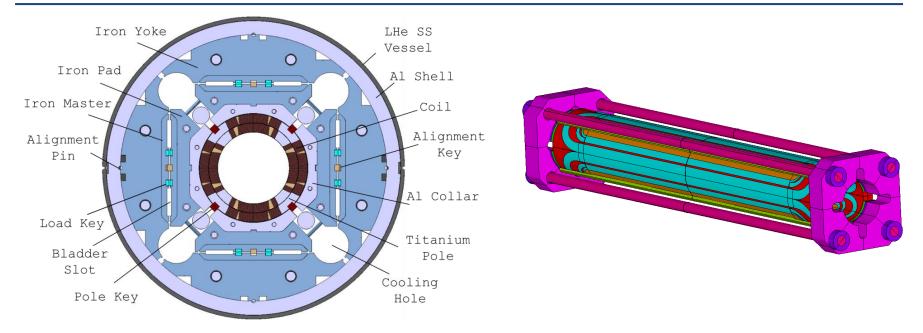


Introduction

- Magnet mechanical simulations rely somehow heavily on the assumptions made on coil behaviour
- Nb₃Sn strands are prone to critical current degradation under the effect of mechanical strains
 - Degradation can be produced both with **axial** and **transverse** strains
- Direct strain measurements on the conductor are considered unreliable:
 - Strain measured somewhere else \rightarrow Conductor strain extracted from FE
 - This relies on the correct knowledge of the cable/coil mechanics...
- Knowledge of the impregnated cable/coil mechanical properties is then a necessary information to avoid **magnet degradation**

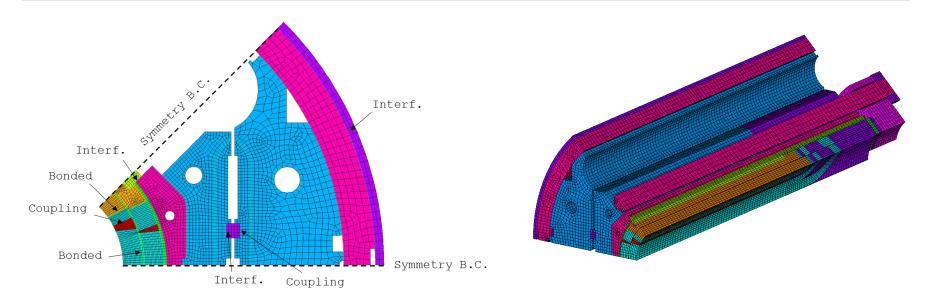
Modelling Strategies

- **Block model** is the current standard approach:
 - Coil approximated as an uniform **block** with uniform mechanical properties
 - **Properties** were measured in the past on **impregnated coil stacks**
 - Orthotropic in 2D, isotropic in 3D
- This consistent way of modelling also allowed to define an empirical limit on the **coil equivalent stress** (150:200 MPa H. Felice et al., IEEE TAS, 2011)
- New modelling strategies are currently under development

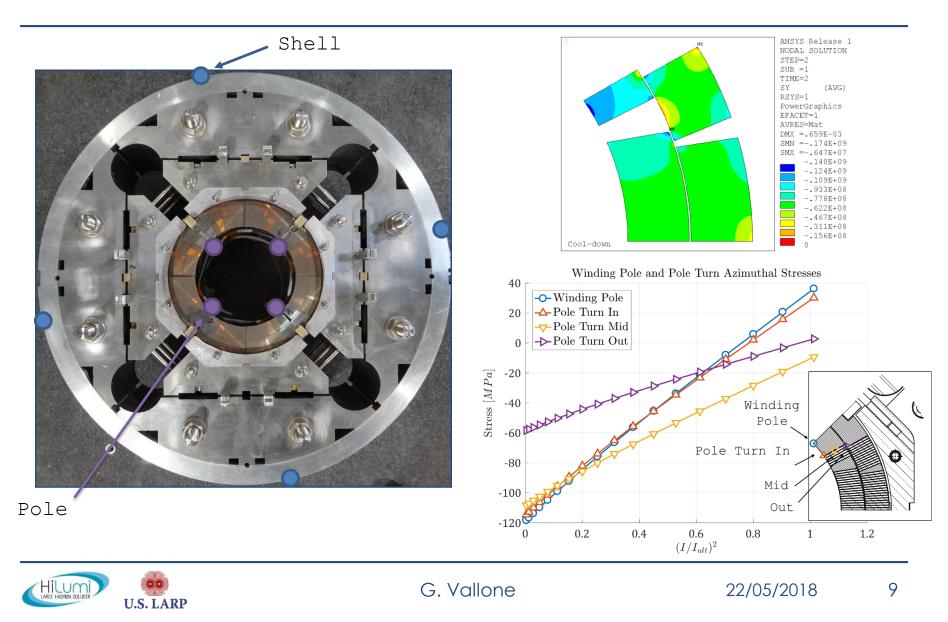


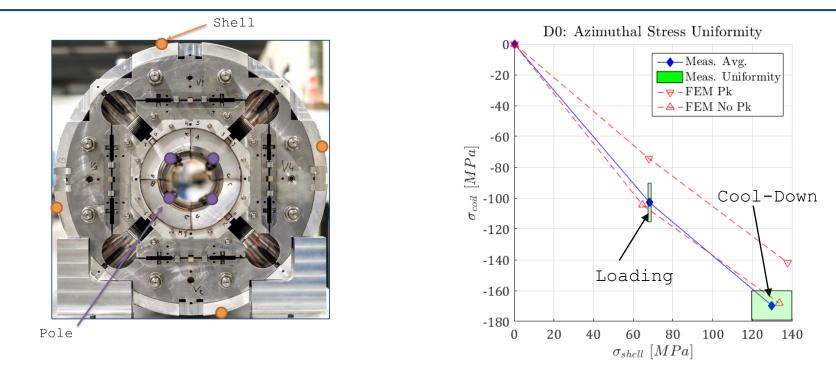
Outline

- Introduction
- MQXF 'block coil' model
- Cable stacks 'strand' model
- MQXF 'strand' model
- 11T 'block coil' model
- Conclusion


MQXF – Mechanical Structure

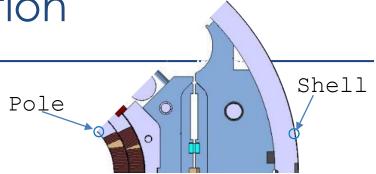
- Azimuthal preload at R.T. applied with **bladders & keys**
 - Al shell compresses the coils. Part of the force is absorbed by the pole key
- Longitudinal preload at r.t. applied pre-tensioning the **rods**
- Both increased by the differential **thermal contraction** during cool-down

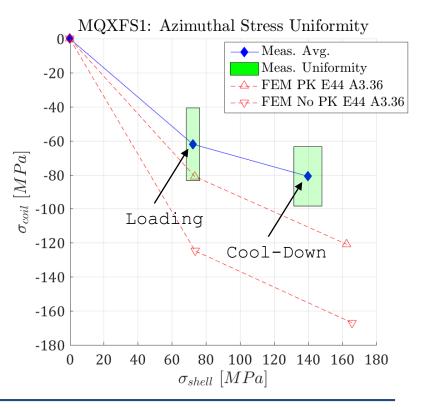

MQXF – Block Coil Model


- Coil modelled as a **block**. Simulations in **2D** and **3D**.
- Coil **properties** from **LARP** experience:
 - Elastic modulus (linear elastic): 44 GPa (azimuthal), 52 GPa (radial)
 - Orthotropic in 2D, isotropic in 3D
 - Thermal contraction: 3.35 mm/m

Short Model - Strain Gauge Locations

Mechanical Model – MQXFSD0

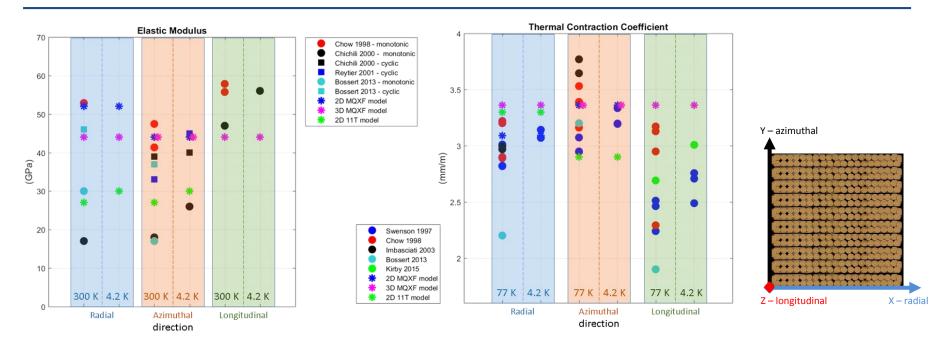

- Mechanical structure was tested with aluminium **dummy** coils
- Transfer Function: force provided by the structure vs coil prestress
 - Very good agreement with the numerical model results
 - No calibration was performed



MQXFS1 – Transfer Function

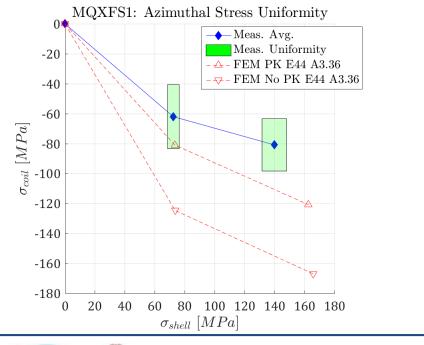
Prestress analysis:

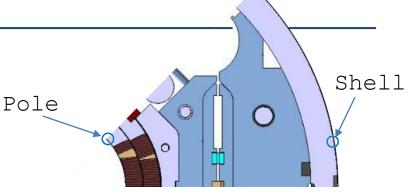
- Prestress variation: ±17 MPa
 - Does this set a threshold on expected model precision?
- Model result is out of the meas. uniformity
 - Pole stress at warm lower
 - Lower prestress increase during CD
 - Stress after CD lower than expected on both shell and coil
- The **mechanical models** experience suggests that the distance between model and measurements is due to the **coil** properties used.

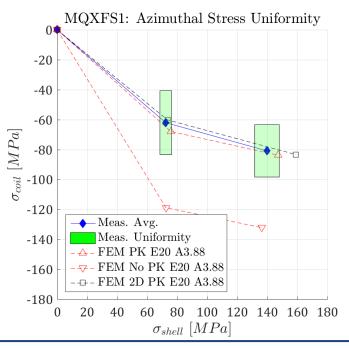


G. Vallone

Coil Properties – Available Data

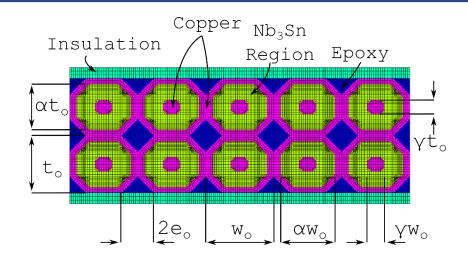



- Available coil properties measures highly dispersed
- Measured **Young** modulus: 15-60 GPa. Also depends upon cyclic/monotonic loading phase
- Measured thermal contraction: 2-4 mm/m

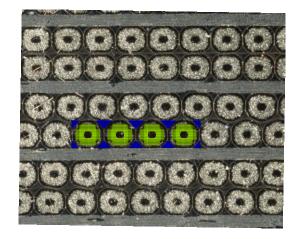


Azimuthal Pre-stress

- **Parametric** analysis, fixed shell strain at warm:
 - RT \rightarrow E: 44 GPa \rightarrow 20 GPa
 - CD \rightarrow a: 3.36 mm/m \rightarrow 3.88 mm/m
- One could repeat the same process for other magnets. But not in the design phase!

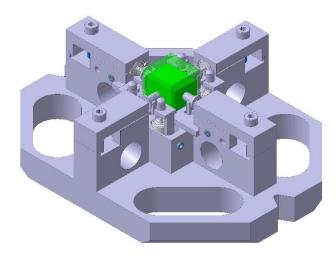

G. Vallone

Outline


- Introduction
- MQXF 'block coil' model
- Cable stacks 'strand' model
- MQXF 'strand' model
- 11T 'block coil' model
- Conclusion

Cable Stacks – FE Model (1)

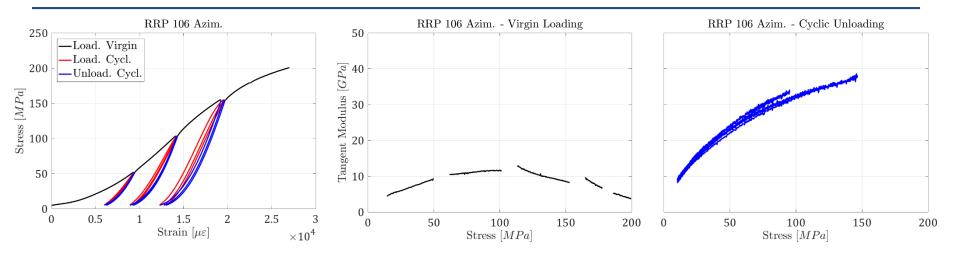
- 2D FE model of the cable stack
- Material properties from literature
- Geometry from a mix of **image analysis** and simple geometric formulas to match the filling factor, copper-non copper etc.


$$e_o = \sqrt{\frac{h_o w_o - A_c \eta_f / N_s}{2}}$$

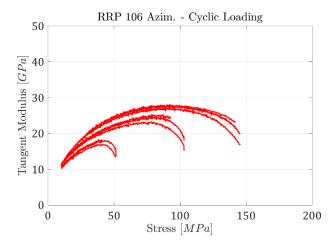
$$\eta_f = \frac{N_s \pi (d_s/2)^2}{A_c \cos \beta_t}$$

$$\alpha = \sqrt{\frac{1 + \gamma^2 (1 + \eta_{cu})}{1 + \eta_{cu}}}$$

Cable Stacks – Transversal Pressure (1)

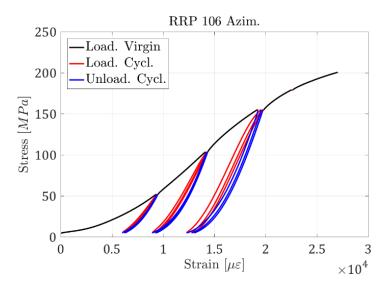


- Measurements on **stacks** of impregnated cables have always been used as a reference for coil elastic modulus measurements
- There is a significant **spread** (15-50 GPa, azimuthal direction) in the values available in literature
 - The modulus seems sensible to the particular cable tested/testing procedure
- As a consequence, an extensive **campaign** was launched almost 2 years ago


Work to be published by C. Fichera et al.

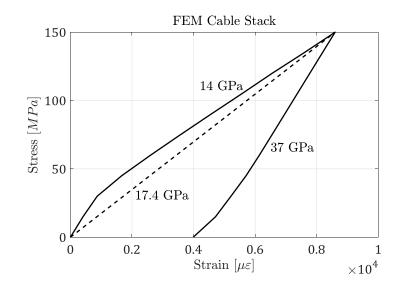
Cable Stacks – Transversal Pressure (2)

- Very different behaviour in the three phases
- The chord and tangent modulus[†] vary continuously during the test
- Probably difficult to condensate the coil elastic properties in a **single number** (elastic modulus)

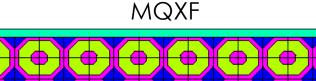


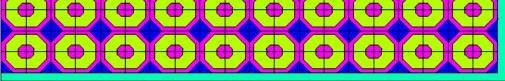
† ASTM - E111 - 04

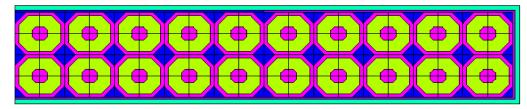
G. Vallone



Cable Stacks – FE Model (2)

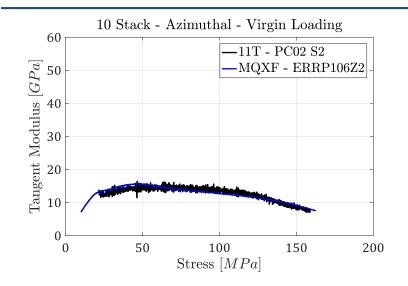

- FE slope reasonably good especially considering that no model calibration was necessary
- Initial phase may be due to compaction



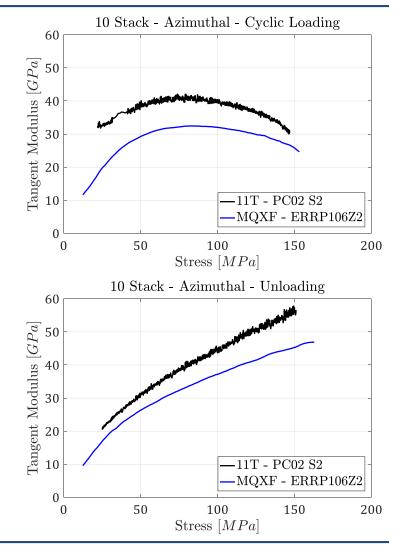

Parameter	Unit	Value
Copper Elastic Modulus (R.T.)	GPa	110
Copper Elastic Modulus (4.3 K)	GPa	120
Copper Yield Strength	MPa	40
Copper Tangent Modulus	GPa	5
Non-Cu Elastic Modulus (R.T.)	GPa	100
Non-Cu Elastic Modulus (4.3 K)	GPa	70
Epoxy Resin Elastic Modulus	GPa	5
Impregnated Insulation Elastic Modulus (R.T.)	GPa	13
Impregnated Insulation Elastic Modulus (4.3 K)	GPa	20

Comparison with 1T Cable

11T

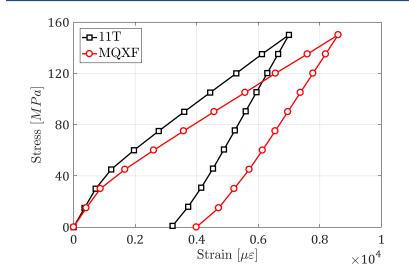


- How the modelling strategy performs on a different cable?
- We measured with the same procedure also 11T cable stacks
- MQXF and 11T Cable comparison
- Mica assumed to be elastic, 170 GPa

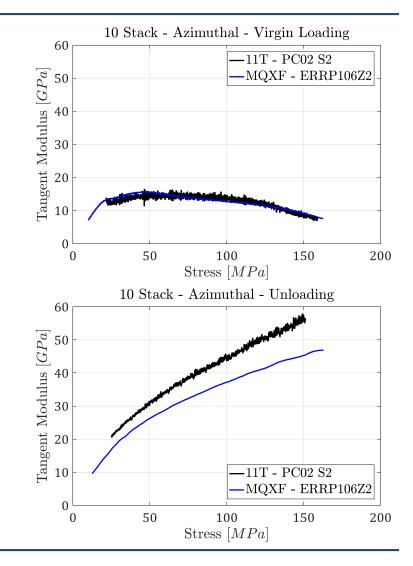


11T/MQXF - Meas. Comparison

- Very similar results for virgin loading
 - Explained by Cu hardening/compaction?
- Cycling behaviour:
 - The 'shape' is very similar
 - The 11T specimen are slightly stiffer ~5-10 GPa



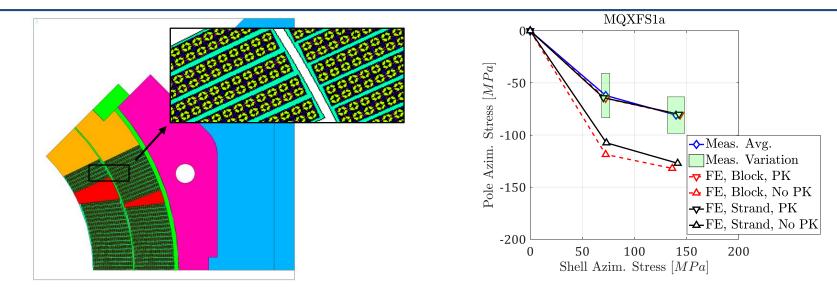
11T Data: M. Daly et al., IEEE TAS, 2017



G. Vallone

Mechanical Model – Results (1)

- 11 T Stack Modulus Model:
 - Virgin Loading 17 GPa
 - Unloading 42 GPa
- MQXF Stack Modulus Model:
 - Virgin Loading 14 GPa
 - Unloading 37 GPa

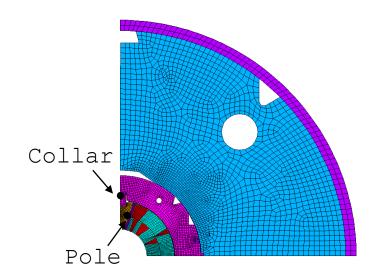

G. Vallone

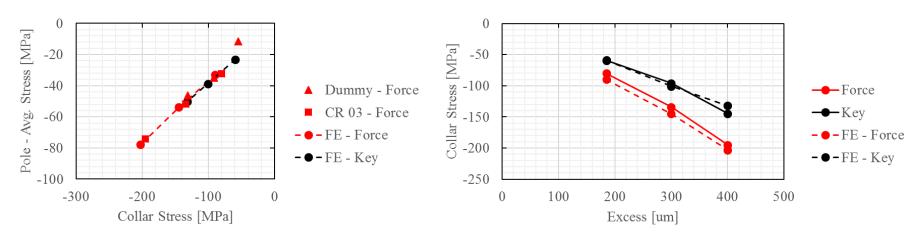
Outline

- Introduction
- MQXF 'block coil' model
- Cable stacks 'strand' model
- MQXF 'strand' model
- 11T 'block coil' model
- Conclusion

MQXF – Strand Model

- Strand MQXF magnet model. Same approach as before // work in progress!
 - Pros:
 - Useful to verify the strain inside the strand
 - We are not relying on properties measured on the stacks
 - Cons:
 - We have extensive experience with **block** models
 - Even a 2D model can become computationally heavy
- Strand model results at R.T. in **agreement** with measurements/block model
- No calibration done!


Outline

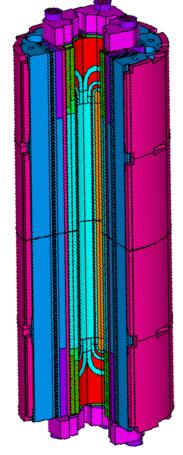

- Introduction
- MQXF 'block coil' model
- Cable stacks 'strand' model
- MQXF 'strand' model
- 11T 'block coil' model
- Conclusion

11T - Block Coil Model

- Coil block model
- Most of the prestress applied during collaring
- Coil 'plasticity' (spring-back)accounted for using a bilinear curve
- Material properties currently used:
 - 10/30 GPa (loading, unloading)

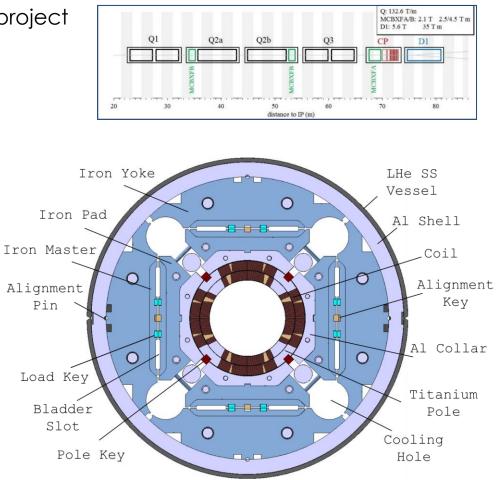
G. Vallone

Outline


- Introduction
- MQXF FE 'block coil' model
- Cable stacks 'strand' model
- 'Strand' model applications
- Conclusion

Conclusion

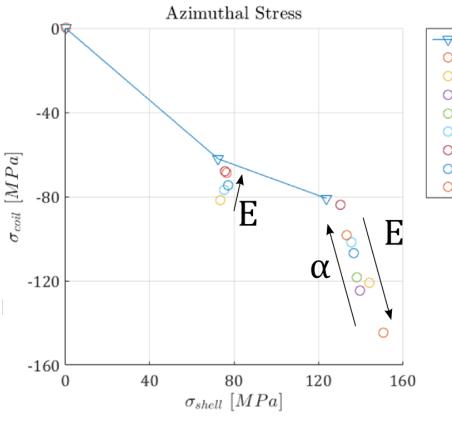
- MQXF FE model calibration:
 - Good agreement at the macroscopic level
 - The same approach could be used on other magnets (different cable, resin, etc.). Not feasible at the design stage!
- Impregnated cable stacks:
 - Strongly non-linear behaviour
 - Part of this behaviour can be explained by the **copper plasticization** (and **compaction**)
 - Cable components properties available in literature
 - Stack strand model looks reasonably close to reality
- **FE** Model at the **strand** level allows to match the RT transfer function
- The cable stack model seems to be able to predict the critical current degradation in the reversible region
- Mat. properties currently used:
 - MQXF: 20 GPa, elastic
 - 11T: 10/30 GPa, **bilinear**



Extra

MQXF Design

- LHC IR upgraded as a part of HiLumi project
 - Quadrupoles: NbTi \rightarrow Nb₃Sn
- Target: 132.6 T/m
 - 150 mm coil aperture, 11.4 T B_{peak}
- Q1/Q3 (by US-AUP Project)
 - 2 magnets MQXFA with 4.2 m
- Q2a/Q2b (by CERN)
 - 1 magnet **MQXFB** with 7.15 m
- Different lengths, same design
- Short Models (MQXFS)
 - 3 models tested up to now
 - Magnetic length 1.2 m



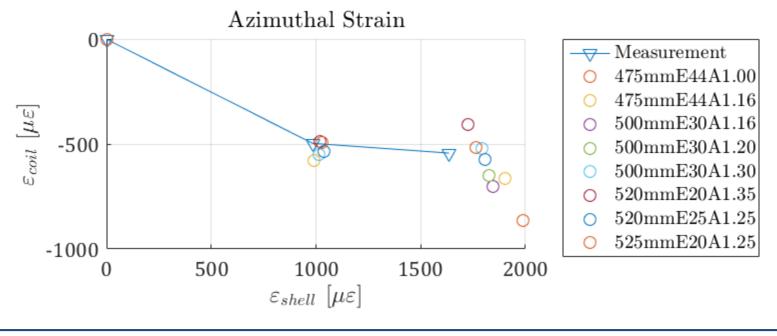
MQXFS1 – Material Calibration

G. Vallone

- Parametric analysis:
 - Coil Young Modulus
 - Coil Thermal Expansion
- Current Parameters:
 - E = 44 GPa
 - $\alpha = 1.16 * 10^{-5} mm/K$
- The shell strain at warm is imposed
- It is possible to match the overal behaviour. Best parameters:
 - E = 20 GPa
 - $\alpha = 1.35 * 10^{-5} mm/K$
 - 3.34 mm/m → 3.88 mm/m

Measurement

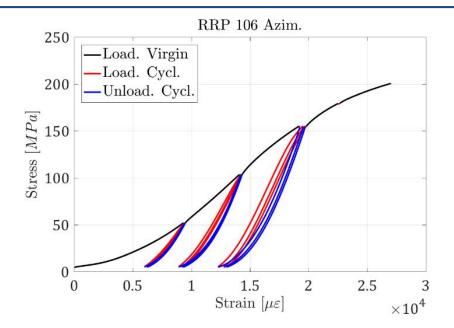
475mmE44A1.00 475mmE44A1.16 500mmE30A1.16


500mmE30A1.20 500mmE30A1.30 520mmE20A1.35

520mmE25A1.25

525mmE20A1.25

MQXFS1 – Material Calibration

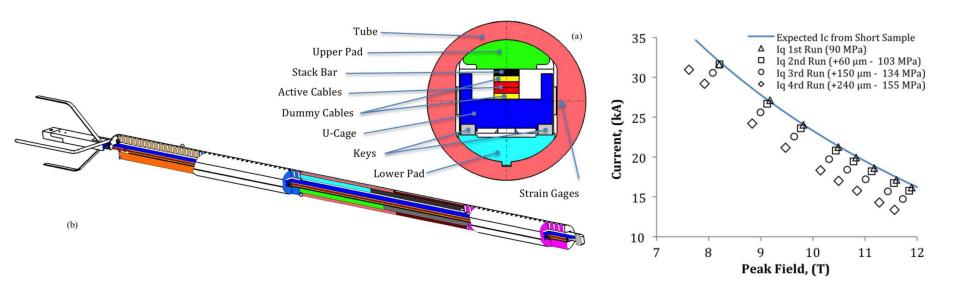

- Best stress calibration parameters does not coincide with strain ones.
- Possible improvement:
 - Orthotropic Coil behaviour
 - Friction parametric study

G. Vallone

Cable Stacks – Transversal Pressure (2)

- The specimen (MQXF RRP cable) shows a clear division in **three zones**:
 - Virgin loading (black)
 - Unloading (red)
 - Cyclic loading (blue)
- How to extract a number representative of the modulus from such a result?

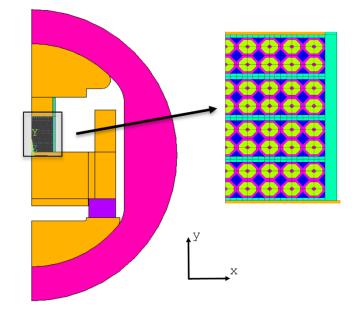
$10\ Stack$ - Chord and Tangent Modulus


	Unit		Value	
Stress Range	MPa	[10, 50]	[50, 100]	[100, 150]
Loading A [†] Chord	GPa	6.9	11.1	10.1
Loading A Tangent	GPa	[4.4, 9.2]	[10.4, 11.6]	[8.1,12.9]
Unloading Chord	GPa	16.8	29.1	34.2
Unloading Tangent	GPa	[9.2, 22.5]	[23.0, 34.2]	[31.7, 38.6]
Loading B [‡] Chord	GPa	15.2	22.9	24.7
Loading B Tangent	GPa	[10.4, 17.7]	[15.1, 25.2]	[16.7, 27.6]

[†] Loading with a new level of maximum stress.

[‡] Cyclic loading.

FRESCA Sample Holder (1)

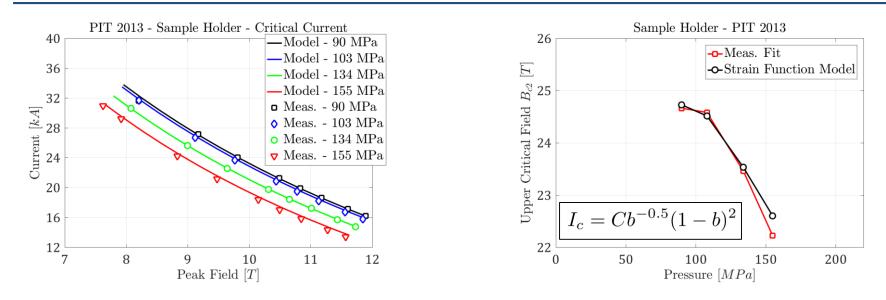


- A novel FRESCA sample holder was built and used at CERN. This tool allows to measure the critical current of stacks of impregnated cables under transversal pressure.
- First results (2014) show how the reversible degradation on a PIT cable can change the critical current between **90 and 155 MPa**

B. Bordini et al., IEEE TAS, 2014

FRESCA Sample Holder (2)

Parameter	Unit	Value - A [†]	Value - B [‡]
Strand	/	RRP 108/127	PIT 192
Strand diameter	mm	0.85	1.0
Number of strands in cable	/	40	18
Copper to non-copper	/	1.2	1.22
Twist Pitch	mm	14	63
Cable Bare Width	mm	18.15	10
Mid Thickness	mm	1.525	1.81
Keystone Angle	degrees	0.40	0


[†] 10-stack cable (MQXF [13]) - E measurements.

[‡] Sample holder cable [3] - Critical current measurements.

- 2D mechanical and electro-magnetic model of the sample holder
- Cable stack represented with the mechanical approach validated from 10stack measurements
 - Same methodology but different strand/cable parameters

Stack Degradation – Results

- Quench **currents** are matched *reasonably* well. Notice that:
 - On the last loading there was a small **irreversible** degradation
 - The quenches at 90 MPa were at **short sample limit**. The model correctly predicts the same strain function at 0 MPa
 - Only **one fitting** parameter (scaling the strain from the strand to the filament)
- The **upper critical field** as computed fitting the critical currents is also well captured by the model

