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The samples
• All samples are made of Nb3Sn 11 T dipole Rutherford cable.
• Cube samples with approximate edge lengths of 15 mm and with parallel surfaces

enable compression tests in axial, transverse and radial directions.
• Ten-stack samples reacted in a dedicated mould with three different levels of

compaction, due to a clearance variation.
• 11 T dipole coil block machined out of the coil after magnet cold test, containing

adjacent coil wedges to compensate the keystone angle.
• The samples are impregnated with an epoxy resin system, so-called CTD-101K from

Composite Technology Development, Inc.
• Transverse compression experiments have also been performed with a non-

impregnated 11 T dipole ten stack sample.
• All samples have a Mica and S2 glass insulation.
• For comparison uniaxial tensile test results of a RRP type wire are presented as well.
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(a) Metallographic cross section of 11 T dipole coil CR107 with six conductor blocks. Courtesy M. Meyer, CERN. (b)
Extracted conductor block sample used for compression tests. Courtesy CERN central workshop team.

11 T dipole conductor block segment
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Stress-strain measurements in tension and in compression

Comparison of tensile and compressive stress-
strain curves of Ti-6Al-4V and DISCUP up to 0.5 % 
strain [1].

Tensile tests:

• Flat tensile test samples DIN 50125-E 3mm ×
8mm × 30mm

• Clip on extensometer with 25 mm gauge 
length

Compression tests

• Cylinder sample  10 mm, height 15 mm 
(small ratio height to diameter in order to 
sample buckling)

• Use lubricant between contact surfaces to limit 
friction artefacts

• Clip on extensometer with 8 mm gauge length

• The direct strain measurement using 
extensometers is crucial in order to avoid an 
influence of the load frame compliance.

• For metals differences between tensile and 
compression stress-strain curves are usually 
small.

[1] IEEE Trans. Appl. Supercond., 27(4), (2017), 4003007 
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Determination of elastic moduli from stress-strain curves

Comparison of stainless-steel 316LN and Ti-6Al-
4V stress-strain curves. For 316LN a precise
measurement of elastic modulus from the initial
loading curve is not possible [1].

Comparison of hard-drawn and annealed Cu
wire stress-strain curves with unloading slopes
for determination of the elastic modulus [1].

• In favourable cases the elastic modulus can be determined from the initial linear slope of 
the stress-strain curve (e.g. for Ti-6Al-4V).

• Many metals like Cu or stainless don’t exhibit linear elastic behaviour. For these metals 
the elastic modulus can be estimated from unloading stress-strain curves.

[1] IEEE Trans. Appl. Supercond., 27(4), (2017), 4003007 



Test parameters for ten-stack sample compression tests

• Two different set-ups have been used for compressive stress-strain measurements.

• The sample strain in load direction was directly measured with calibrated clip-on 
extensometers (either 12 mm gauge length or 6 mm gauge length), eliminating the 
effect of load frame compliance on the strain results.

• Load plateaus were kept constant for one hour

• Load rate between plateaus was 50 N/s

• Stiffness is defined as the initial linear slope of the unloading engineering stress-
strain curves

• Validation tests were performed with known materials (Ti-6Al-4V and Al 7075)

• Good agreement of stress-strain results achieved with both compressive stress-
strain measurement set-ups.
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Two set-ups used for stress-strain measurements in compression
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Sample holder 

Sample Extensometer

Ten-stack sample with clip-on extensometer with
6 mm gauge length.

Reference measurement Ti-6Al-4V

• Set-up at CERN
• Load measured with calibrated load 

cells (Burster type 8526)
• Strain measured with clip on 

extensometer (Epsilon 3442-006M-
010-LT Class B-1)  

• Validation measurement:
• Cubic Ti-6Al-4V sample 
• Determined E modulus: 117.4 GPa
• Literature E modulus: 115 GPa [1]

[1] IEEE Trans. Appl. Supercond., 27(4), (2017), 4003007 
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Two set-ups used for stress-strain measurements in compression

9

Sample with clip-on extensometer with 12 mm
gauge length installed in the load frame at
StressSpec.

Extensometer

Sample 

Sample holder 

Reference measurement Al7075

• Set-up at MLZ StressSpec beam line

• Load measured with calibrated load cells 
(HBM Typ 03, 50 kN)

• Strain measured with clip on extensometer 
(Instron 2620-602) 

• Validation measurement:
• Cubic Al7075 sample 
• Determined E modulus: 72.7 GPa
• Lit:  71.7 GPa [2]

[2] Metals Handbook, Vol.2 ASM International 10th Ed. 1990.
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Elastic modulus of RRP type Nb3Sn wire

• Test performed with a tensile test 
machine  “Inspekt table BLUE 05” from 
Hegwald & Peschke

• Load measured with AST KPA-S load 
cell with a maximum load of 1 kN

• Strain measured with a MTS clip-on 
extensometer 632.27F-21 with 25 mm 
gauge length

• E is defined as the initial linear slope 
of the unloading curve.

• Determined elastic modulus of the 
reacted RRP wire: 126 GPa

Reversible 
elastic strain

Irreversible 
plastic strain

Stress-strain curves measured at room temperature
on a reacted RRP wire and its extracted filaments. [3]

[3] IEEE Trans. Appl. Supercond., 25(6), (2015), 8400605 
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Estimation of the ten stack stiffness in axial direction from the wire 
and epoxy properties according to the Rule of Mixtures (ROM) 

𝐸composite = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 [4]
𝑉𝑖 = 𝐴𝑖/𝐴

𝐸𝑓… Young’s modulus fibre (strand)
𝑉𝑓… Volume fraction fibre 
𝐸𝑚… Young’s modulus matrix (epoxy impregnation)
𝑉𝑚… Volume fraction matrix 

𝐸𝑓 = 𝐸strand = 126 GPa [3]
𝐸𝑚 = 𝐸CDT 101𝐾 = 3. 8 GPa

Sample Astrand* 
(mm2)

𝐴total** 
(mm2)

𝑉strand
(%) 

𝐸composite

(GPa)

1 175.7 236.6±0.33 74.3 94.3

2 175.7 241.3±0.24 72.8 92.6

3 175.7 252.4±0.18 69.6 88.7

* Determined with image analysis with a Zeiss Axio Imager 
optical microscope. Courtesy M. Crouvizier, EN-MME
** Determined with contact measurement Metallographic cross section of ten stack samples for

the determination of the epoxy volume fraction by
digital image analysis. Courtesy M. Crouvizier, EN-
MME

Axial

Definition of axial sample orientation

[3] IEEE Trans. Appl. Supercond., 25(6), (2015), 8400605 
[4] Mechanics of composite materials, Taylor and Francis, 1999
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Comparison between stiffness in axial direction in 
tension (wire, Vstrand=100%) and compression (ten-stack)  

12

Comparison of stress-strain curves of Nb3Sn wire (axial tension) and ten-stack samples (axial compression).

Wire (Vstrand=100%), E=126 GPa

Ten-stack Vstrand=69.6%, E= 94.1 GPa
(ROM estimate EComposite = 88.7 GPa)

Ten-stack Vstrand=74.3%, E= 99.5 GPa
(ROM estimate EComposite = 94.3 GPa)



Effect of unloading stress on ten-stack stiffness in 
transverse direction– first loading 
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• The ten-stack stiffness increases with increasing unloading stress.
• A creep behaviour is observed when the transversal load exceeds about 125 MPa.
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Transverse compressive stress-strain curve of
the ten-stack sample (Vstrand=69.6%).

Transverse compressive stiffness at different
unloading stress levels of a ten stack.
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Indications for creep behaviour of a free standing ten-stack
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Curve changes in unloading - loading 
transition after 135 MPa applied load  
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Increased displacement at constant load
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Transverse compressive stress-strain curve of the
ten-stack sample (Vstrand=69.6%).



Effect of epoxy volume fraction on transverse 
ten-stack stiffness  (first loading cycle)

Compaction
level

HT clearance
(mm)

𝑉strand
(%) 

High 14.6 74.3

Medium 14.8 72.8

Low 15.0 69.6

• Samples with three different compaction levels 
during RHT have been investigated.

• The stiffness increases with increasing unloading 
stress.

• The stiffness in transverse direction increases with 
increasing compaction level during RHT and varies 
between 40 - 60 GPa
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Transverse stiffness of ten-stack samples with 
different epoxy volume fraction at different 

unloading levels
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Effect of load direction on the ten-stack stiffness 
(first loading cycle) 
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Transversal

Axial
Radial

Stiffness in different load directions of a ten stack 
(Vstrand=72.8%)

• Stiffness is strongly dependent to the load 
direction

• Axial stiffness is 2 × transverse stiffness
• Radial stiffness is 1.3 × transverse stiffness

Sample orientation
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Comparison of ten-stack and 11 T coil segment 
stiffness (second loading cycle)
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• Stiffness is dependent from the loading level
• Strong creep behaviour starting at 125 MPa
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11T coil conductor block

Transverse compressive stress strain 
measurement of 11 T dipole coil segment 

Stiffness comparison of impregnated 
and non impregnated samples

• Stiffness is depended to the unloading stress
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Conclusion I
• Good agreement of the stiffness results for identical Nb3Sn Rutherford cable ten-

stack samples measured with two independent test set-ups.

• Uncertainties caused by the compliance of the test set-ups are avoided by using 
extensometers for direct strain measurements.

• In axial load direction the ten-stack stiffness can be predicted by the rule of mixtures 
assuming iso-strain conditions.

• In the 11 T coil block and in the ten-stack samples made of the same conductor and 
with similar epoxy volume fraction, the macroscopic stiffness and creep behaviour 
under compressive loading are similar, suggesting that the ten-stack samples can 
represent well the 11 T dipole conductor block.

• It remains to be studied if the test configuration of free-standing samples can 
represent the conductor loading in a magnet coil, where the conductor is 
constrained in axial and radial directions.

• Macroscopic stress-strain results can be compared with neutron diffraction 
measurements to determine the strain and stress state in the Nb3Sn filaments and 
the Cu matrix.
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Conclusion II
The ten stack stiffness depends on:

• Epoxy volume fraction (depending on the sample compression during the RHT) 

• The unloading stress level  

• The load history  

• The load direction (axial stiffness is 2 × transverse stiffness, radial stiffness is 1.3 ×
transverse stiffness). 

• The transverse stiffness of 11 T dipole coil block corresponds with that of the ten 
stack samples with similar epoxy volume fraction.

• A strong creep behaviour is observed when the transversal load exceeds about 
125 MPa.
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Some open questions and outlook
• How is the load case of free standing ten-stack samples related to the loading  of 

constraint coils in a magnet?

• What is the conductor block stiffness at 4.2 K?

• How are stiffness (“elastic” properties) and plastic properties best taken into account 
in FE models?

• What is the effect of the load rate?

• What is the effect of creep?
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