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The (very) basics

• Hadronically decaying top/Higgs

• Contained in one (large-R) jet

• How to distinguish from  
light quark/gluon/W/Z/.. jets?
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Figure 1: Distance between reconstructed jet and closest generated top quark (left). Jet recon-
struction efficiency (right) as function of the generated top quark pT. The efficiency is defined as
the fraction of top quarks for which a reconstructed jet with pT > 200 GeV can be found within
DR < 1.2 (DR < 0.6) for CA15 (AK8) jets. Superimposed is the fraction of merged top quarks
as function of pT for the two thresholds used: 0.8 (0.6) at low (high) boost. All distributions are
made using hadronically decaying top quarks with pT > 200 GeV.

object close to the reconstructed jet. The truth-level matching is done using top quarks before
the decay, in the case of signal jets, and partons (u, d, s, c, b and gluon) from the hard scattering,
in the case of background jets.

Matching particles to the generator-level is performed by selecting the closest reconstructed jet
in DR to a truth-level parton or top quark. The maximum distance depends on the jet size and
corresponds to DR < 1.2 (DR < 0.6) for R = 1.5 (R = 0.8) jets. These values approximately
correspond to the minima of the DR distribution between jets and truth-level top quarks, as
shown in Fig. 1 (left).

The jet cone sizes are at typical values used in top quark reconstruction [24]. Fig. 1 (right) shows
the efficiency with which a reconstructed jet with pT > 200 GeV is found within DR < 1.2
(DR < 0.6), for CA15 (AK8) jets, with respect to a hadronically decaying top quark as function
of the quark pT. The efficiency reaches a plateau close to 100% at about 280 GeV (380 GeV) for
jets with R = 1.5 (R = 0.8). In fact, at low pT the larger cone size allows for the collection of all
decay products from the top quark. In contrast, at high pT the top jet is more collimated and
the smaller cone size reduces the amount of additional radiation clustered into the jet.

To evaluate the properties of top-tagging methods in an unbiased way over a large phase space,
taggers are studied in exclusive regions of pT, defined by the transverse momentum of the
matched truth-level parton (top quark, light quark, or gluon). Then, a weight is assigned to
each truth-level object such that the resulting distributions in pT- and h-space are approxi-
mately flat. As the distribution of top-jet candidates becomes more central with higher pT val-
ues, we tighten different selection criteria on |h| as the pT increases. Finally, to avoid the study
of incompletely merged top quarks (i.e. top quarks for which not all decay products are con-
tained in a jet), we restrict our selection to top quarks where the two quarks from the W boson
decay and the b quark have a maximum distance from the top quark direction (max(DR(t, q)))
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Jet Substructure

• Hadronically decaying top/Higgs/W/Z

• Contained in one (large-R) jet

• How to distinguish from light quark/gluon jets 
(and from each other)

• For new physics searches (and SM studies)

Some Classical solutions: 

• Mass 
Calculate after removing pile-up/soft 
radiation (eg mMDT/softdrop or pruning) 

• Centers of hard radiation 
n-subjettiness or energy correlation 
functions

• Flavour 
b tagging of large-R jets or subjets

• Soft substructure 
Color connection

• Inclusive reconstruction 
HEPTopTagger V2, HOTVR

• Other substructure variables 
Shower deconstruction, template tagger, …Towards an Understanding of the Correlations in Jet Substructure  

D Adams et al (BOOST 2013 Participants), Eur.Phys.J. C75
Top Tagging, T Plehn, M Spannowksy, J.Phys. G39 (2012) 083001  
Boosted Top Tagging Method Overview, GK, Proc. Top2017 !4 H(bb) tagging in flavour talk!



Jet Grooming

• Remove

• soft radiation

• underlying event

• pile up

• from jet to access top mass
Jet mass [GeV]
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Figure 2. Single-jet invariant mass distribution for Cambridge–Aachen (C/A) R = 1.2 jets in
simulated events containing highly boosted hadronically decaying Z bosons before and after the
application of a grooming procedure referred to as mass-drop filtering. The technical details of this
figure are explained in section 1.2. The normalization of the groomed distribution includes the
e�ciency of mass-drop filtering with respect to the ungroomed large-R jets for comparison. The
local cluster weighting (LCW) calibration scheme is described in section 3.3.1.

surrounded by soft radiation from the parton shower, hadronization, and underlying event

(UE) remnants [10–12]. Jets containing the decay products of single massive particles, on

the other hand, can be distinguished by hard, wide-angle components representative of

the individual decay products that result in a large reconstructed jet mass mass, as well

as typical kinematic relationships among the hard components of the jet [1, 2, 4, 13–18].

Grooming algorithms are designed to retain the characteristic substructure within such a

jet while reducing the impact of the fluctuations of the parton shower and the UE, thereby

improving the mass resolution and mitigating the influence of pile-up. These features have

only recently begun to be studied experimentally [19–25] and have been exploited heavily

in recent studies of the phenomenological implications of such tools in searches for new

physics [4, 26–36]. A groomed jet can also be a powerful tool to discriminate between

the often dominant multi-jet background and the heavy-particle decay, which increases

signal sensitivity. Figure 2 demonstrates this by comparing the invariant mass distribution

of single jets in events containing highly boosted hadronically decaying Z bosons before

and after the application of a grooming procedure referred to as mass-drop filtering. In

this simulated Z ! qq̄ sample described in section 2.2, pile-up events are also included.

Prior to the application of this procedure, no distinct features are present in the jet mass

distribution, whereas afterwards, a clear mass peak that corresponds to the Z boson is

evident.
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Grooming algorithms are designed to retain the characteristic substructure within such a
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in recent studies of the phenomenological implications of such tools in searches for new

physics [4, 26–36]. A groomed jet can also be a powerful tool to discriminate between

the often dominant multi-jet background and the heavy-particle decay, which increases

signal sensitivity. Figure 2 demonstrates this by comparing the invariant mass distribution

of single jets in events containing highly boosted hadronically decaying Z bosons before

and after the application of a grooming procedure referred to as mass-drop filtering. In

this simulated Z ! qq̄ sample described in section 2.2, pile-up events are also included.

Prior to the application of this procedure, no distinct features are present in the jet mass

distribution, whereas afterwards, a clear mass peak that corresponds to the Z boson is
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mMDT 
Softdrop

• Find hard substructure using step-wise 
unclustering

• No pure soft divergences

• Analytically calculable to high precision

Towards an understanding of jet substructure
M Dasgupta, A Fregoso, S Marzani, G Salam

JHEP 1309 029  
Soft Drop

A Larkoski, S Marzani, G Soyez, J Thaler
JHEP 1405 146  

Factorization for groomed jet substructure beyond the next-to-
leading logarithm 

C Frye, AJ Larkoski, MD Schwartz, K Yan  
JHEP 1607 064
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Figure 1: Phase space for emissions on the (log 1

z , log R0
✓ ) plane. In the strongly-ordered

limit, emissions above the dashed line (Eq. (2.2)) are vetoed by the soft drop condition. For

� > 0, soft emissions are vetoed while much of the soft-collinear region is maintained. For

� = 0 (mMDT), both soft and soft-collinear emissions are vetoed. For � < 0, all (two-prong)

singularities are regulated by the soft drop procedure.

and ✓ behavior:

soft modes: z ! 0, ✓ = constant,

soft-collinear modes: z ! 0, ✓ ! 0,

collinear modes: z = constant, ✓ ! 0.

No relative scaling is assumed between energy fraction z and splitting angle ✓ for soft-collinear

modes. In these logarithmic coordinates, the emission probability is flat in the soft-collinear

limit. In the soft limit, the soft drop criteria reduces to

z > zcut

✓
✓

R0

◆�

) log
1

z
< log

1

zcut
+ � log

R0

✓
. (2.2)

Thus, vetoed emissions lie above a straight line of slope � on the (log 1

z , log R0
✓ ) plane, as

shown in Fig. 1.

For � > 0, collinear radiation always satisfies the soft drop condition, so a soft-drop jet

still contains all of its collinear radiation. The amount of soft-collinear radiation that satisfies

the soft drop condition depends on the relative scaling of the energy fraction z to the angle ✓.

As � ! 0, more of the soft-collinear radiation of the jet is removed, and in the � = 0 (mMDT)

limit, all soft-collinear radiation is removed. Therefore, we expect that the coe�cient of the

double logarithms of observables like groomed jet mass (and C
(↵)
1

) will be proportional to �,
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1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-

phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods—

trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass

distributions, this study showed how their qualitative and quantitative features could be un-

derstood with the help of logarithmic resummation. Armed with this analytic understanding

of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)

which exhibits some surprising features in the resulting groomed jet mass distribution, in-

cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],

and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2

> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).

– 2 –
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Soft drop mass distribution 

Figure: Soft drop jet mass distribution of probe jets 
in a sample enriched with tt for jets with pT > 400 

GeV. The probe jets are anti-kT jets with R = 0.8, 

with soft drop and the PUPPI pile-up corrections 
applied. The tt processes are simulated with 
POWHEG interfaced with PYTHIA8. The “Merged 
QB” tt contribution consists of events in which the 
b-quark from the top decay and just one of the 
quarks from the W decay are clustered into the jet. 
The tt templates have been fit to the data. The 
hatched region shows the total uncertainty on the 
simulation. In the lower panel, the dark and a light 
grey bands show the statistical and the total 
posterior uncertainties, respectively.

CMS DP-2017/26



Trimming

• Recluster constituents with R=0.2

• Remove subjets with less than 5% of jet pT

• ATLAS Default

Jet Trimming
D Krohn, J Thaler, LT Wang

JHEP 1002 084  
In-situ measurements of large-radius jet 

reconstruction performance  
ATLAS-CONF-2017-063

in clusters of calorimeter cells, as opposed to additional energy being added to already

existing clusters produced by particles originating from the hard scattering process, this

allows a relatively simple jet energy o↵set correction for smaller radius jets (R = 0.4, 0.6)

as a function of the number of primary reconstructed vertices [48].

Figure 4. Diagram depicting the jet trimming procedure.

The trimming procedure uses a kt algorithm to create subjets of size Rsub from the

constituents of a jet. Any subjets with pTi/p
jet
T < fcut are removed, where pTi is the

transverse momentum of the i
th subjet, and fcut is a parameter of the method, which is

typically a few percent. The remaining constituents form the trimmed jet. This procedure

is illustrated in figure 4. Low-mass jets (mjet
< 100 GeV) from a light-quark or gluon lose

typically 30–50% of their mass in the trimming procedure, while jets containing the decay

products of a boosted object lose less of their mass, with most of the reduction due to

the removal of pile-up or UE (see, for example, figures 29 and 32). The fraction removed

increases with the number of pp interactions in the event.

Six configurations of trimmed jets are studied here, arising from combinations of

fcut and Rsub, given in table 1. They are based on the optimized parameters in ref. [7]

(fcut = 0.03, Rsub = 0.2) and variations suggested by the authors of the algorithm. This

set represents a wide range of phase space for trimming and is somewhat broader than

considered in ref. [7].

Pruning: The pruning algorithm [6, 49] is similar to trimming in that it removes con-

stituents with a small relative pT, but it additionally applies a veto on wide-angle radiation.

The pruning procedure is invoked at each successive recombination step of the jet algo-

rithm (either C/A or kt). It is based on a decision at each step of the jet reconstruction

whether or not to add the constituent being considered. As such, it does not require the

reconstruction of subjets. For all studies performed for this paper, the kt algorithm is used

in the pruning procedure. This results in definitions of the terms wide-angle or soft that

are not directly related to the original jet but rather to the proto-jets formed in the process

of rebuilding the pruned jet.

The procedure is as follows:

• The C/A or kt recombination jet algorithm is run on the constituents, which were

found by any jet finding algorithm.

– 11 –
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Building Large-R jets with ATLAS
Step 5 – in-situ calibration

Jet mass response in W/top events (forward folding)

Position and shapes of the mass peaks carry information about the 
jet mass scale and jet mass resolution

B-jet veto → W enriched

R
trk

 method

(p
T
 and mass scales)

B-jet tag → top enriched

ATLAS-CONF-2017-063
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Probe jet pT and τ3/τ2

Figure: (left) PT distribution and (right) ungroomed N-subjettiness ratio τ3/τ2 of probe jets in a sample enriched 

with tt for jets with pT > 400 GeV. The probe jets are anti-kT jets with R = 0.8, with soft drop and the PUPPI pile-up 

corrections applied. The tt processes are simulated with POWHEG interfaced with PYTHIA8. The “Merged QB” tt 
contribution consists of events in which the b-quark from the top decay and just one of the quarks from the W 
decay are clustered into the jet. The tt templates have been fit to the data using the soft drop jet mass 
distribution. The hatched region shows the total uncertainty on the simulation. In the lower panel, the dark and a 
light grey bands show the statistical and the total posterior uncertainties, respectively.

n-Subjettiness

• n-subjettiness: Small when compatible with n-prong 
substructure

• Used for top-tagging:  
 
 
 
 
 

• Recent ideas:

• Dichroic n-subjettiness = ratio of n-subjettiness with 
different grooming (JHEP 1703 022)

• Use for jet clustering (XCone: JHEP 1511 07)

Identifying Boosted Objects with N-subjettiness
J Thaler, KV Tilburg,  

JHEP 1103 015  
 

Dichroic subjettiness ratios to distinguish colour flows in 
boosted boson tagging  

G Salam,  L Schunk, G Soyez 
JHEP 1703 022  

calculations and resummation techniques (see, e.g. recent work in Ref. [29, 30]) compared

to algorithmic methods for studying substructure. Finally, N -subjettiness gives favorable

efficiency/rejection curves compared to other jet substructure methods. While a detailed

comparison to other methods is beyond the scope of this work, we are encouraged by these

preliminary results.

The remainder of this paper is organized as follows. In Sec. 2, we define N -subjettiness

and discuss some of its properties. We present tagging efficiency studies in Sec. 3, where we

use N -subjettiness to identify individual hadronic W bosons and top quarks, and compare

our method against the YSplitter technique [2, 3, 4] and the Johns Hopkins Top Tagger [6].

We then apply N -subjettiness in Sec. 4 to reconstruct hypothetical heavy resonances de-

caying to pairs of boosted objects. Our conclusions follow in Sec. 5, and further information

appears in the appendices.

2. Boosted Objects and N-subjettiness

Boosted hadronic objects have a fundamentally different energy pattern than QCD jets

of comparable invariant mass. For concreteness, we will consider the case of a boosted

W boson as shown in Fig. 1, though a similar discussion holds for boosted top quarks or

new physics objects. Since the W decays to two quarks, a single jet containing a boosted

W boson should be composed of two distinct—but not necessarily easily resolved—hard

subjets with a combined invariant mass of around 80 GeV. A boosted QCD jet with an

invariant mass of 80 GeV usually originates from a single hard parton and acquires mass

through large angle soft splittings. We want to exploit this difference in expected energy

flow to differentiate between these two types of jets by “counting” the number of hard lobes

of energy within a jet.

2.1 Introducing N-subjettiness

We start by defining an inclusive jet shape called “N -subjettiness” and denoted by τN .

First, one reconstructs a candidate W jet using some jet algorithm. Then, one identifies

N candidate subjets using a procedure to be specified in Sec. 2.2. With these candidate

subjets in hand, τN is calculated via

τN =
1

d0

∑

k

pT,k min {∆R1,k,∆R2,k, · · · ,∆RN,k} . (2.1)

Here, k runs over the constituent particles in a given jet, pT,k are their transverse momenta,

and ∆RJ,k =
√

(∆η)2 + (∆φ)2 is the distance in the rapidity-azimuth plane between a

candidate subjet J and a constituent particle k. The normalization factor d0 is taken as

d0 =
∑

k

pT,kR0, (2.2)

where R0 is the characteristic jet radius used in the original jet clustering algorithm.

It is straightforward to see that τN quantifies how N -subjetty a particular jet is, or

in other words, to what degree it can be regarded as a jet composed of N subjets. Jets

– 3 –
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Figure 4: Left: Decay sequences in (a) tt and (c) dijet QCD events. Right: Event displays for
(b) top jets and (d) QCD jets with invariant mass near mtop. The labeling is similar to Fig. 1,
though here we take R = 0.8, and the cells are colored according to how the jet is divided into
three candidate subjets. The open square indicates the total jet direction, the open circles indicate
the two subjet directions, and the crosses indicate the three subjet directions. The discriminating
variable τ3/τ2 measures the relative alignment of the jet energy along the crosses compared to the
open circles.

a b jet and a W boson, and if the W boson decays hadronically into two quarks, the top jet

will have three lobes of energy. Thus, instead of τ2/τ1, one expects τ3/τ2 to be an effective

discriminating variable for top jets. This is indeed the case, as sketched in Figs. 4, 5, 6,

and 7.

– 7 –
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Energy Correlation Functions
Energy Correlation Functions for Jet Substructure

A Larkoski, GP Salam, J Thaler
JHEP 1306 108  

 
New Angles on Energy Correlation Functions

I Moult, L Necib, J Thaler  
JHEP 1612 153

the dependence on the energies is fixed by IRC safety, the angular function fN is much

less restricted and can be chosen for specific purposes. The original energy correlators in

Eq. (2.1) are a specific case of Eq. (3.1), where, up to an overall normalization, the angular

weighting function is

e
(�)
N : fN (p̂i1 , p̂i2 , . . . , p̂iN ) =

Y

s<t2{i1,i2,...,in}

✓
�
st . (3.2)

The key observation is that by considering alternative angular weighting functions for n-

point correlators beyond Eq. (3.2), we can define a more flexible basis of observables for

jet substructure studies.

3.2 New Angles on Energy Correlation Functions: ve
(�)
n

There are many known decompositions of the angular function fN—including Fox-Wolfram

moments [126, 127] and orthogonal polynomials on the sphere [128]—but these are not

necessarily optimal for jet substructure. The reason is that jets with well-resolved sub-

jets exhibit a hierarchy of distinct angular scales, so we need to design fN to identify

hierarchical—instead of averaged—features within a jet.

As seen in Eq. (3.2), the original energy correlation functions do capture multiple

angular scales, but they do so all at once; it would be preferable if fN could identify one

angular scale at a time in order to isolate di↵erent physics e↵ects. Furthermore, to make

power-counting arguments more transparent, we want fN to exhibit homogeneous angular

scaling, such that each term in Eq. (3.1) has a well-defined scaling behavior without having

to perform a non-trivial expansion in the soft and collinear limits.

With these criteria in mind, we can now translate the general language of IRC safe

observables into a useful basis for jet substructure studies. The angular function fN has to

be symmetric in its arguments, and the simplest symmetric function that preserves homo-

geneous scaling is the min function.11 This leads us to the generalized energy correlation

functions, which depend on n factors of the particle energies and v factors of their pairwise

angles,

ve
(�)
n =

X

1i1<i2<···<innJ

zi1zi2 . . . zin

vY

m=1

(m)
min

s<t2{i1,i2,...,in}

n
✓
�
st

o
, (3.3)

where min(m) denotes the m-th smallest element in the list. For a jet consisting of fewer

than n particles, ven is defined to be zero. More explicitly, the three arguments of the

generalized energy correlation functions are as follows.

• The subscript n, appearing to the right of the observable, denotes the number of

particles to be correlated. This plays the same role as the n subscript for the standard

en energy correlators in Eq. (2.1).

11The appearance of min can also be viewed as the lowest-order Taylor expansion of a more generic

observable, which should be a good approximation in the case of small radius jets. This can be seen explicitly

in App. A, where di↵erent functional forms are compared that give the same quantitative behavior as the

min version here. Another motivation for the min definition is that it naively behaves more similarly to

thrust [95] or N -jettiness [91], though we emphasize that ven does not rely on external axes.

– 13 –

particles
angles

• Energy correlation functions

• Replacing n-subjettiness  
for heavy-resonance identification

• Wide range of other uses
!9
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HEPTopTagger (V2)
• OptimalR-Algorithm:

• Start with C/A, R=1.5 seed fat-jet

• Perform unclustering to identify small fat-jets with R=0.5 
to R=1.5 (in steps of 0.1) and run HEPTopTagger on 
each of them

• Calculate: Rmin = Smallest cone size for which the mass 
differs by less than 20% from the mass at R=1.5

• Get: Ropt, calc (pT). Result of fitting Ropt as function of pT for 
signal jets

• Output observables:

• Top candidate mass: m(R=Ropt)

• W / top mass ratio: fW(R=Ropt)

• Ropt difference: Ropt - Ropt, calc (pT)

Resonance Searches with an Updated Top Tagger
GK, T Plehn, T Schell, T Strebler, GP. Salam   

JHEP 1506 203  

HEPTopTagger 39

(a) initial fat jet (b) fat jet after first
unclustering step

(c) fat jet after
the last uncluster-
ing step

(d) re-clustered
constituents of the
triplet of jets A,
B and C from the
previous step using
a smaller distance
parameter

(e) the five leading
subjets found in the
previous step

(f) constituents of
the five jets from
the previous step
re-clustered into ex-
actly three jets for
testing mass ratios

Figure 2.23: A pictorial representation of the HEPTopTagger algorithm. The
shapes composed of rectangles represent clusters of calorimeter cells in the
⌘-�-plane. The blue shapes indicate the main contributions from decays of the
three quarks produced in a hadronic decay of a top quark. The red shapes are
additional gluons radiated o↵ by the three initial quarks that were clustered
into separate objects in the calorimeter. The grey shapes represent additional
energy deposits in the calorimeter due to the underlying event and pile-up.
The dashed ellipses represent which objects together form a jet. The steps of
the algorithm are discussed in the main text. In (c) the letters A-D are used
to label the four subjets found by unclustering the initial fat jet. In (d) the
numbers 1-10 label the small subjets found by reclustering the consituents of
the jets A-C from the previous step. The numbers indicate the pT of the subjet
so that jet labelled with 1 has the highest pT.
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BEST

• Boosted Event Shape Tagger (BEST)

• Boost jet constituents individually into each  
reference frame corresponding to particle origin 
hypothesis (t, W, Z,H)

• Calculate angular distributions in boosted frame

• Fox-Wolfram Moments, Sphericity,  Aplanarity, Isotropy, 
Thrust, ..

• Use NN for simultaneous classification

JS Conway, R Bhaskar, RD Erbacher, J Pilot, Identification of High-Momentum 
Top Quarks, Higgs Bosons, and W and Z Bosons Using Boosted Event Shapes, 

PRD 94

2

laboratory frame top quark frame

FIG. 1. Momentum vectors of the final state particles from top quark decay to three jets in the laboratory frame and
in a boosted frame corresponding to a top quark with the original jet laboratory momentum.

this method has the potential to resolve jets which
strongly overlap in the laboratory frame momentum
space, and thus the detector itself.

Within each reference frame we then calculate
event shape parameters and mometum balance es-
timators. These include Fox-Wolfram moments [8],
the eigenvalues of the sphericity tensor [9], and
thrust [10]. We also run the anti-kT jet finding al-
gorithm in the boosted frame, relative to the boost
axis and using a cone size parameter of 0.5. We then
calculate the ET of the four leading jets, the masses
of pairs of the three leading jets, and the invariant
mass of the four leading jets. If we have boosted into
the correct frame, corresponding to the true origin of
the fat jet, then we would expect that the overall mo-
mentum of the boosted constituents should be near
zero, either in terms of the total momentum or the
momentum along the boost direction. Hence we also
calculate the magnitude of the total momentum of
the four leading jets and the ratio of their longitudi-
nal momentum sum to the total. Generically we call
these quantities “boosted event shapes” (BES). This
approach is inspired by earlier work at LEP aimed
at discriminating bb̄ decays of the Z boson using the
“boosted sphericity product” [11]. It di↵ers from
the approach described in [12], and employed by the
ATLAS experiment in their measurement of high-
pT vector boson pair prodiction cross section [13],
in that we do not assume a rest frame based on the
invariant mass of the sum of the observed jet con-
stituents.

To demonstrate the separation that these BES
variables can provide, we generate simulated events
with the PYTHIA Monte Carlo generator [14] in
which we produce a new hypothetical Z

0 particle
which decays to tt̄, W+

W
�, or bb̄. The mass of the

Z
0 is taken to be 3.0 TeV. This results in a distribu-

tion of the transverse energy of the Z 0 decay prodicts
which is relatively uniform up to about 1.5 TeV.

We then simulate the detector response with the
PGS program [15], and find jets reconstructed from

calorimeter energy deposits using the anti-kT algo-
rithm with a cone size of 0.8. A crude simulation
of PF constituents is then achieved by selecting all
generator-level final state particles with pT > 3 GeV
matching a jet, and imposing a uniform 90% e�-
ciency. Note that this results in a list of jet con-
stituents which does not reflect detector resolution
e↵ects or the e↵ect of additional pp (“pileup”) inter-
actions.

We take the list of jet constituent four-momenta
and boost each one into a reference frame with ve-
locity � = p/E, where to calculate E we use the
masses of the top quark, Higgs boson, Z, and W

bosons. In each frame we then calculate the above-
mentioned event shape quantities. Since we use the
four Fox-Wolfram moments, the three sphericity ten-
sor eigenvalues, the thrust, and ten quantities char-
acterizing the jets found in the boosted frame, for a
given jet this results in 4⇥18=72 di↵erent quantities.
Space does not permit displaying the distributions
of all these quantites, but we show two of them in
Figure 2. These distributions are based on fat jets
found in events in which a 3.0 TeV Z

0 is produced
and decays to tt̄, WW , or bb̄, as implemnented in the
PYTHIA Monte Carlo generator. In these figures
the histograms show how the distributions evolve as
one successively increases the mass used to calculate
the boosted frame.

III. NEURAL NETWORK BES
DISCRIMINATOR

With the large number of BES quantities charac-
terizing a given jet, it is natural to deploy a multi-
variate technique such as artificial neural networks
(ANN) or boosted decision trees (BDT) to arrive at
a classification of jets as to their source (t/H/Z/W

or light quark or gluon jet). As an initial test we
created training and test samples using the 3.0 TeV
Z

0 events. From jets matched to generator level t,
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Rise of the (tagging) machines
• Use some representation of a jet (image, list 

of constituents,..) to train a deep neural 
network classifier on MC

• Powerful improvement of tagging 
performance. But will it help ttH/tHq?
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Figure 1. Jet image after pre-processing for the signal (left) and background (right). Each picture is averaged
over 10,000 actual images.

pT,fat = 350 ... 450 GeV, such that all top decay products can be easily captured in the fat jet. For
signal events, we require that the fat jet can be associated with a Monte-Carlo truth top quark
within �R < 1.2.

We can speed up the learning process or illustrate the ConvNet performance by applying a set
of pre-processing steps:

1. Find maxima: before we can align any image we have to identify characteristic points. Using
a filter of size 3 ⇥ 3 pixels, we localize the three leading maxima in the image;

2. Shift: we then shift the image to center the global maximum taking into account the peri-
odicity in the azimuthal angle direction;

3. Rotation: next, we rotate the image such that the second maximum is in the 12 o’clock
position. The interpolation is done linearly;

4. Flip: next we flip the image to ensure the third maximum is in the right half-plane;

5. Crop: finally, we crop the image to 40 ⇥ 40 pixels.

Throughout the paper we will apply two pre-processing setups: for minimal pre-processing we apply
steps 1, 2 and 5 to define a centered jet image of given size. Alternatively, for full pre-processing
we apply all five steps. In Fig. 1 we show averaged signal and background images based on the
transverse energy from 10,000 individual images after full pre-processing. The leading subjet is in
the center of the image, the second subjet is in the 12 o’clock position, and a third subjet from
the top decay is smeared over the right half of the signal images. These images indicate that fully
pre-processed images might lose a small amount of information at the end of the 12 o’clock axis.

A non-trivial pre-processing step is the shift in the ⌘ direction, since the jet energy E is not
invariant under a longitudinal boost. Following Ref. [12] we investigate the e↵ect on the mass
information contained in the images,

m2
img =

"
X

i

Ei

✓
1,

cos�0
i

cosh ⌘0i
,

sin�0
i

cosh ⌘0i
,
sinh ⌘0i
cosh ⌘0i

◆#2

Ei = ET,i cosh ⌘
0
i , (11)

5 Constituent sequence ordering

We hypothesize that the order of the constituent sequence can provide salient information for signal/background
discrimination to the LSTM tagger, and thus develop sorting methods which attempt to represent the
underlying QCD and substructure of the jets, referred to as substructure ordering. In particular, we use
a recursive algorithm which utilizes the history of the initial anti-kT clustering to add constituents to the
input list in an order which reflects the jet substructure. Clustering algorithms e↵ectively produce a binary
tree from the reconstructed particles, as depicted in Fig. 1, where the intermediate jets are referred to as
“PseudoJets” and are constructed by summing the four-momenta of the particles or PseudoJets with the
smallest distance metric 2 at a given clustering step. The jet substructure sorting algorithm starts with
the final jet and is called on each of the parent PseudoJets. Recursion is called on the pseudojet whose
parents have a smaller dij . If one of the parents of the jet or PseudoJet under consideration is the original
jet constituent that constituent is added to the list and recursion is continued on the other parent. If both
parents of a jet or a PseudoJet are original constituents, both are added to the list with the higher pT one
added first and the recursion is terminated. Thus the ordering algorithm performs a depth-first traversal of
the clustering tree.

This method is compared to sequence ordering schemes that were previously tested on the DNN in [23],
namely sorting purely by pT of jet constituents, and “subjet sorting”. In the latter scheme first subjets are
arranged in a descending order by pT , and then constituents of given subjet are added to the list, also in
descending order by pT . Subjet sorting was found to yield the best performance in [23].

6 Network architecture

Figure 1: An example of the binary tree constructed
by jet algorithms during clustering and the resulting
constituent list ordering presented to the LSTM in the
substructure ordering scheme.

The best-performing network design consists of an
LSTM with state width of 128 connected to 64-node
dense layer. Only the output of the LSTM layer at
the last step is connected to the dense layer. This
architecture was found through heuristic search of the
number of LSTM layers, layer widths and presence
or lack of the of the dense layer. Several optimization
methods were tried with Adam [34] providing the
most stable training with highest final performance.
The input data used for network selection was the
trimmed, subjet sorted set with LHC2016 pileup.
The Keras suite [35] with the Theano [36] backend
was used to implement the model.

7 Performance

The primary interest of this study was to evaluate
how an LSTM network would compare to the previ-
ously developed DNN. Fig. 2 (left) shows receiver operating characteristic (ROC) curves for the DNN and
LSTM taggers under their respective best performing architectures and input conditions. The LSTM network
yields better performance than the DNN across all signal e�ciencies, in particular reaching a background
rejection of 100 at 50% signal e�ciency - greater than a factor of two improvement with respect to the DNN.

Table 1 shows the background rejection power of the network when di↵erent pileup level datasets are
analyzed and di↵erent constituent ordering schemes are used. The LSTM with substructure ordering displays a
higher dependence on pileup conditions than the LSTM with subjet ordering, which has the best performance

2The distance metric used is referred to as dij , i and j being indices of particles or PseudoJets in the event list, and is defined

as: dij = min(k2pti , k
2p
ti )

�2
ij

R2 , where kti is the transverse momentum of particle i. Exponent p defines the precise algorithm
used (p = 1 for kT , p = �1 for anti-kT or p = 0 for Cambridge-Aachen), R is the radius parameter of the clustering, and
�2

ij = (yi � yj)2 + (�i � �j)2, y being the rapidity

3

Images Recursive

Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Jet images

Single
W jet

Single
QCD jet

Deep-learning Top Taggers or The End of QCD?  
GK, Tilman Plehn, Michael Russell, Torben Schell
JHEP 05 (2017) 006
Deep learning in color: towards automated quark/gluon jet 
discrimination
PT Komiske, EM Metodiev, MD Schwartz
JHEP 01 (2017) 110
Jet-Images: Computer Vision Inspired Techniques for Jet Tagging
J Cogan, M Kagan, E Strauss, A Schwartzman
arXiv:1407.5675
Jet-Images -- Deep Learning Edition
Ld Oliveira, M Kagan, L Mackey, B Nachman, A Schwartzman
JHEP 1607 069  
Quark and gluon tagging with Jet Images in ATLAS, ATL-PHYS-
PUB-2017-017

Long Short-Term Memory (LSTM) networks with jet 
constituents for boosted top tagging at the LHC
S Egan, W Fedorko, A Lister, J Pearkes, C Gay  
arXiv: 1711.09059  
QCD-Aware Recursive Neural Networks for Jet Physics G 
Louppe, K Cho, C Becot, K Cranmer  
arXiv:1702.00748

Other

Neural Message Passing for Jet Physics  I Henrion et al  
Procs. of the Deep Learning for Physical Sciences Workshop at NIPS (2017)
Deep-learning Top Taggers & No End to QCD A Butter, GK, T Plehn, M Russell
1707.08966 14



Studies by ATLAS & CMS ATLAS-CONF-2017-064
CMS DP 2017-049

(DNN=fully connected)

 15



on the jet pT, which shows some small pT-dependent
e↵ects, but no large features. As an alternative
strategy, we trained a network using an adversar-
ial strategy with respect to log(m/pT), which more
closely mimics the approach used in Ref. [9]; the
training succeeded in finding a network with a flat
response in log(m/pT), but the distortion in jet mass
was much more significant. In principle, it is possi-
ble to use the adversary to enforce a two-dimensional
decorrelation, but since the pT-dependence is not se-
vere here, we leave this for future study.
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FIG. 4. Signal e�ciency and background rejection
(1/e�ciency) for varying thresholds on the outputs of
several jet-tagging discriminants: traditional networks
trained to optimize classification, networks trained with
an adversarial strategy to optimize classification while
minimizing impact on jet mass, the unmodified ⌧21, and
the two DDT-modified variables ⌧ 0

21, and ⌧ 00
21. The signal

samples have mZ0 = 100 GeV for this example. Gener-
alization to other masses is shown in Sec. VII.

V. STATISTICAL INTERPRETATION

The ability to discriminate jets due the hadronic
decay of a boosted object from those due to a quark
or gluon is an important feature of a jet substruc-
ture tagging tool, but as discussed above it is not the
only requirement. Due to the necessity of accurately
modeling the background, it is desirable that the jet
tagger avoid distortion of the background distribu-
tion. Simpler background shapes are especially pre-
ferred because they allow for robust estimates that
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FIG. 5. Top left, relationship between jet mass and neu-
ral network output in background events for a network
trained to optimize classification compared to an adver-
sarial network trained to optimize classification while
minimizing dependence on jet mass. Top right, rela-
tionship between jet mass and jet substructure variable
⌧21 and the DDT-modified ⌧ 0

21 and ⌧ 00
21 which attempt

to minimize dependence on jet mass. Bottom left, pro-
file of neural network output versus jet mass for the ad-
versarial trained network with varying jet pT thresholds.
Bottom right, contour plot of neural network output ver-
sus jet mass in background events for the adversarially-
trained network. The signal sample used in training has
mZ0 = 100 GeV; generalization to other masses is shown
in Sec. VII.

are constrained by the sidebands; backgrounds that
can be modeled with fewer parameters and inflec-
tions avoid degeneracy with signal features, such as
a peak.

Fig. 5 shows qualitatively that the adversarial net-
work’s response is not strongly dependent on jet
mass. But a quantitative assessment is more dif-
ficult. Mass-independence is not in itself the goal;
instead, we seek reduced dependence on knowledge
of the background shape and reduced sensitivity to
the systematic uncertainties that tend to dilute the
statistical significance of a discovery.

However, our lack of knowledge of the true back-
ground model in general also makes it non-trivial to
rigorously define and estimate the background un-
certainty. In practice, experimentalists use an as-
sumed functional form, with parameters constrained
by background-dominated sidebands to predict the

5

Removing Correlations

• Classifier:

• Distinguish Z’ from QCD

• Adversary:

• Infer jet mass

• Trade-off discrimination power and stability

Decorrelated Jet Substructure Tagging using 
Adversarial Neural Networks

C Shimmin, P Sadowski, P Baldi, E Weik, D 
Whiteson, E Goul, A Søgaard 1703.03507

be optimized like any other.
The classifier network in this experiment consisted

of eleven input features, three fully-connected hid-
den layers each with 300 nodes having hyperbolic
tangent activation functions, and a single logistic
output node with the binomial cross-entropy clas-
sification objective. The adversarial network con-
sisted of a single input, 50 nodes with hyperbolic
tangent activation functions, and a softmax output
layer with 10 classes corresponding to binned val-
ues of the jet invariant mass (each bin representing
one decile of the background), and the multi-class
cross-entropy classification objective.

Because the adversary is challenged with adapt-
ing to an ever-changing input as the classifier is
trained, and also because its task is relatively easy,
two strategies were used to train the adversary faster
than the classifier. First, the adversary was given
a head start at the beginning of training with 100
updates while the classifier was fixed. Second, the
adversary was trained with a larger learning rate of
1.0 compared to 10�3 for the tagger objective.

The data set used for experiments was divided into
training (80%), validation (10%, used for hyperpa-
rameter tuning), and testing (10%) subsets. Each
classifier input feature was log-scaled if the empirical
skew estimate was greater than 1.0, then standard-
ized to zero mean and unit variance. Model param-
eters were initialized from a scaled normal distribu-
tion [27].

Training was performed using stochastic gradient
descent, applied to mini-batches of 100 examples
from each class. During training, the event weights
were scaled so that the average weight for each class
was 1.0. However, in the adversarial loss function
Ladversary, the signal events were given zero weight,
rendering them invisible to the adversary.

Updates were made using a training momentum
term of 0.5; the learning rate decayed by a factor of
10�5 after each update. Training was stopped after
100 epochs, where an epoch was defined as a single
pass through the background samples (⇡ 400k train-
ing events). Models were implemented inKeras [28]
and Theano [29], and hyperparameters were opti-
mized on a cluster of Nvidia Titan Black processors.

IV. PERFORMANCE

We compare the discrimination power of five can-
didate classifiers: the NN trained without an ad-
versary, the adversarially-trained NN, the unmodi-
fied ⌧21, and the two DDT-modified variables ⌧ 021,
and ⌧ 0021. The performance can be characterized by

... ...X
fc(X)

fa(fc(X))

Lclassification Ladversary

Classifier Adversary

FIG. 3. Architecture of the neural networks in the ad-
versarial training strategy. The classifying network dis-
tinguishes signal from background using the eleven vari-
ables (X) described in the text. The adversarial network
attempts to predict the invariant mass using only the
output of the classifier, fc(X); note that the adversary
has multiple binary classification outputs, correspond-
ing to bins in jet invariant mass, rather than a single
regression output.

measuring the signal e�ciency and background re-
jection of various thresholds on these discriminators
(Fig. 4).

The variable ⌧ 021, which is modified to reduce cor-
relation with the mass, results in a modest decrease
in its classification power relative to the unmodified
⌧21 at mZ0 = 100 GeV, though note that these ef-
fects are mass-dependent for both ⌧ 021 and ⌧ 0021. Sim-
ilarly, the adversarial network does not match the
discrimination power of the traditional classification
network, due to the additional constraint imposed in
its optimization. However, both NNs are clearly able
to take advantage of the combined power of the sub-
structure variables, and o↵er a large improvement
in background rejection for similar signal e�ciencies
compared to classification based on ⌧21 alone.

The focus of this study, however, is to look be-
yond the pure discriminatory power of these tools
and study their e↵ect on the jet mass spectrum. In
Fig. 5, it can be seen that the adversarial network
output for background events has a profile which
is largely independent of jet mass, while the clas-
sifying network is strongly dependent on jet mass.
Similarly, ⌧ 021 and ⌧ 0021 have a lessened dependence
on jet mass, compared to ⌧21. Figure 6 shows the
e↵ect on the jet mass distribution of successively
stricter requirements on these variables. Note that
the adversarial network’s dependence on jet mass is
diminished, but not eliminated, as can be seen in
the contour plot of Fig. 5. This is a reflection of the
trade-o↵ inherent in balancing classification power
with jet mass dependence.

In Fig. 5, we also show the profile of the neural net-
work output versus jet mass, for various thresholds
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No Labels

Weakly Supervised Classification in High Energy Physics
LM Dery, B Nachman, F Rubbo, A Schwartzman, 1702.00414  
Learning to Classify from Impure Samples
PT Komiske, EM Metodiev, B Nachman, MD Schwartz, 1801.10158  
Classification without labels: Learning from mixed samples in high energy 
physics, EM Metodiev, B Nachman, J Thaler, 1708.02949
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.

on the number of training events and the signal fraction f1. The full supervision does not

depend on the signal composition of M1 and M2 as it is trained directly on labeled signal and

background examples. As expected, the performance is poor when the number of training
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Distinguishing mixed samples is 
equivalent to signal/background 
classification!

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ������ �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ������ �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

 17



Application

 18



ttH - Fully Hadronic

• per-jet quark/gluon 
discrimination

• Track multiplicity

• pT distribution of 
constituents

• Spatial profile

CMS-HIG-17-022  
(last ATLAS result for ttH(bb) all hadronic was JHEP 1605 160 
wo/ substructure)
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Figure 3: Comparison of the distributions in the quark-gluon likelihood ratio in data (black
points) and in simulation (stacked histograms), after preselection, excluding the first 3 b-tagged
jets. The simulated backgrounds are first scaled to the integrated luminosity of the data, and
then the simulated multijet background is rescaled to match the yield in data. The contribution
from signal (blue line) is scaled to the total background yield (equivalent to the yield in data) to
enhance readability. The hatched bands reflect the total statistical and systematic uncertainties
in the background prediction, prior to the fit to data, which are dominated by the systematic
uncertainties in the simulated multijet background. The ratio of data to background is given
below the main panel.

5 Background estimation
The main backgrounds stem from multijet and tt production associated with additional gluons,
light-flavour, charm, or bottom quarks (tt+jets). The background from tt+jets as well as other
minor backgrounds (single t, V+jets, tt+V, and diboson events) are estimated from MC sim-
ulation, while the background from multijet events is obtained from control regions in data,
as described below. The approach uses a control region (CR) with low b tag multiplicity to
estimate the contribution from multijet events in the SR. The CR is enriched in multijet events,
and the remaining contribution from other backgrounds (mainly tt+jets) is subtracted using
simulation.

The CR is defined by events with two CSVM jets and at least three CSVL jets. We define a
validation region (VR) using events with QGLR < 0.5. This definition provides four orthogonal
regions, summarized in Table 1, from which we can obtain and check the multijet background
estimate. The use of the VR relies on the fact that the QGLR and the number of additional
CSVL jets are uncorrelated by construction.

Table 1: Definition and description of the four orthogonal regions in the analysis.

NCSVM = 2
NCSVM � 3

NCSVL � 3

QGLR > 0.5 CR SR
(to extract distribution) (final analysis)

QGLR < 0.5 Validation CR VR
(to validate distribution) (comparison with data)

6

combined in a likelihood ratio (LR) defined as:

qLR(N1,N2) =
L(N1, 0)

L(N1, 0) + L(N2, N1 � N2)
, (1)

where N1 is the number of jets as well as the number of quarks in the all-quark hypothesis,
and N2 is the number of quarks in the quark+gluon hypothesis. The individual likelihoods are
defined by:

L(Nq, Ng) = Â
perm

0

@
iNq

’
k=i1

fq(zk)
iNq+Ng

’
m=iNq+1

fg(zm)

1

A , (2)

where zi is the QGL discriminant for the i
th jet, and fq and fg are the probability density func-

tions for zi when the i
th jet originates from a quark or gluon, respectively. The former include

u, d, s, and c quarks. The sum in Eq. (2) runs over all unique permutations in assigning Nq jets
to quarks and Ng jets to gluons. We use qLR(N,0) to compare the likelihood of N reconstructed
light-flavour jets that arise from N quarks, to the likelihood of N reconstructed light-flavour
jets that arise from N gluons. After excluding either the first 3 or 4 CSVM jets in an event
(based on the highest CSVv2 value), up to N light-flavour jets, with N = 3, 4, or 5 are used to
calculate the LR, with a requirement of qLR(N,0) > 0.5 set for the SR. To correct the modelling of
the QGL distribution in simulation, a reweighting based on a control sample of µ+µ�+ jet and
dijet events is applied to each event according to the type (quark or gluon) and QGL value of all
jets in the event. The distribution in the quark gluon LR (QGLR), calculated excluding the first
3 b-tagged jets, is shown in Fig. 3 for data and simulation for events passing the preselection.
Good agreement is observed between prediction and data.
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Figure 2: Distribution in HT (left) and jet multiplicity (right) in data (black points) and in sim-
ulation (stacked histograms), after implementing the preselection. The simulated backgrounds
are first scaled to the integrated luminosity of the data, and then the simulated QCD multijet
background is rescaled to match the yield in data. The contribution from ttH signal (blue line)
is scaled to the total background yield (equivalent to the yield in data) to enhance readability.
The hatched bands reflect the total statistical and systematic uncertainties in the background
prediction, prior to the fit to data, which are dominated by the systematic uncertainties in the
simulated multijet background. The last bin includes event overflows. The ratios of data to
background are given below the main panels.

Event based likelihood

Signal Region: At least 
three bs + high QG 
likelihood
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ttH - with Leptons (ATLAS)
arXiv: 1712.08895  • Start with standard jets:

• topoclusters, R=0.4

• pT > 25 GeV, |eta| < 2.5, jet vertex tag (JVT)

• b-tag using MV2c10 

• Boosted reconstruction:

• Re-cluster jets with Anti-Kt R=1.0

• Remove if mass < 50 GeV

• Look for Higgs candidates

• pT > 200 GeV, at least 2 two b-jets

• Tie breaker:  
Choose highest sum of b-tag scores

• Look for top candidates in remaining jets

• pT > 250 GeV, exactly one b-tagged 
jet, at least one non-tagged

• Tie breaker: Choose highest mass

• Boosted category:

• Single lepton

• (at least) one Higgs & one Top

• one additional b (outside Higgs/Top)Boosted
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Classification  
BDT
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ttH - with Leptons (CMS)
HIG-16-004
(2.7 fb-1, 2015 data)

• Independent clustering (CA, R=1.5)

• HEPTopTagger for top tagging

• Subjet-filtering for Higgs

16 7 Results and Statistical Interpretation
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Figure 6: Final discriminant shapes in the different analysis categories in the lepton+jets chan-
nel after the fit to data. The expected background contributions (filled histograms) are stacked,
and the expected signal distribution (line) for a Higgs-boson mass of mH = 125 GeV is superim-
posed. Each contribution is normalized to an integrated luminosity of 2.7 fb�1, and the signal
contribution is additionally scaled by a factor of 15 for better readability. The distributions in
data (markers) are also shown. In the top row the 5 jets 4 b-tag with low BDT output, the 5 jets
4 b-tag category with high BDT output, and the 6 jet category with low BDT output is shown.
Below are the 6 jets 4 b-tag category with high BDT output, and the boosted category.

20 A Lepton+Jets Additional Material

Table 7: continued from Table 6.
Event variable Description
MEM discriminator
MEM discriminator MEM discriminator
Boosted object and event reconstruction
t2/t1 Higgs cand. 2-subjettiness to 1-subjettiness ratio of Higgs candidate fat jet [75]
m(Higgs, di-filterjet) Invariant mass of boosted Higgs candidate reconstructed from filtered

subjets B1 and B2
Dh(top,Higgs) Pseudo rapidity difference between boosted top candidate and boosted

Higgs candidate
MEM discriminator (using subjets) MEM discriminator using the subjets from the boosted top candidate

Table 8: BDT input variable assignment per category in the lepton+jets channel.
� 4 jets,� 2 b-tags boosted 4 jets, 3 b-tags 4 jets,� 4 b-tags

avg DR(tag,tag) H1 closest tagged dijet mass
t2/t1 of Higgs cand. b-tagging likelihood ratio b-tagging likelihood ratio

third-highest CSV Â pT(jets,leptons,MET) Â pT(jets,lepton,MET)
fourth-highest CSV MEM discriminator avg DR(tag,tag)

Dh(top,Higgs) avg CSV (tags) H3
aplanarity avg CSV (all) jet 1 pT

m(Higgs, di-filterjet) jet 2 pT
min DR(tag,tag) jet 4 pT

avg CSV (all)
MEM discriminator (using subjets)

b-tagging likelihood ratio
5 jets, 3 b-tags 5 jets,� 4 b-tags

MEM discriminator b-tagging likelihood ratio
avg DR(tag,tag) jet 3 pT

min DR(lepton,jet) tagged dijet mass closest to 125
b-tagging likelihood ratio avg Dh(jet,jet)

fourth-highest CSV avg DR(tag,tag)
H1 H1

dev from avg CSV (tags) fifth-highest CSV
avg Dh(jet,jet) (S jet pT)/(S jet E)
avg CSV (tags)
avg CSV (all)

max D|h| (tag, avg jet |h|)
� 6 jets, 2 b-tags � 6 jets, 3 b-tags � 6 jets,� 4 b-tags
avg Dh(tag,tag) b-tagging likelihood ratio Â pT(jets,leptons,MET)

avg DR(tag,tag)
q

Dh(tlep, bb)⇥ Dh(thad, bb) H3

DR(jet1, jet2) HT best Higgs mass
b-tagging likelihood ratio MEM discriminator b-tagging likelihood ratio

max D|h| (tag, avg tags |h|) Â pT(jets,lepton,MET) tagged dijet mass closest to 125
third-highest CSV H1 fifth-highest CSV

sphericity fourth-highest CSV (S jet pT)/(S jet E)
fourth-highest CSV avg CSV (tags) jet 4 pT

max D|h| (tag, avg jet |h|) max D|h| (tag, avg jet |h|) sphericity
min DR(tag,tag) max D|h| (tag, avg tag |h|)

second-highest CSV
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CMS/ATLAS contrast
• ATLAS:

• Building AK10 Top/Higgs candidates out of AK4 jets

• CMS

• separate clustering into CA15

• Reclustering allows re-cycling jet energy corrections, simplify 
analysis

• Potentially higher reach of separate clustering for very boosted 
events
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Summary and 
Conclusions

• Boosted jet substructure methods have 
become a default analysis tool

• Also used (sparingly) in Higgs/Top analyses

• Will become more important for 
differential boosted measurements

• Interplay with deep learning progress

Thank you!
 24


