Higgs Toppings Workshop - Probing Top-Higgs Interactions at the LHC – Benasque 2018

Flavor tagging at the ILEC

Valerio Dao (CERN) Silvio Donato (UZH)

Introduction

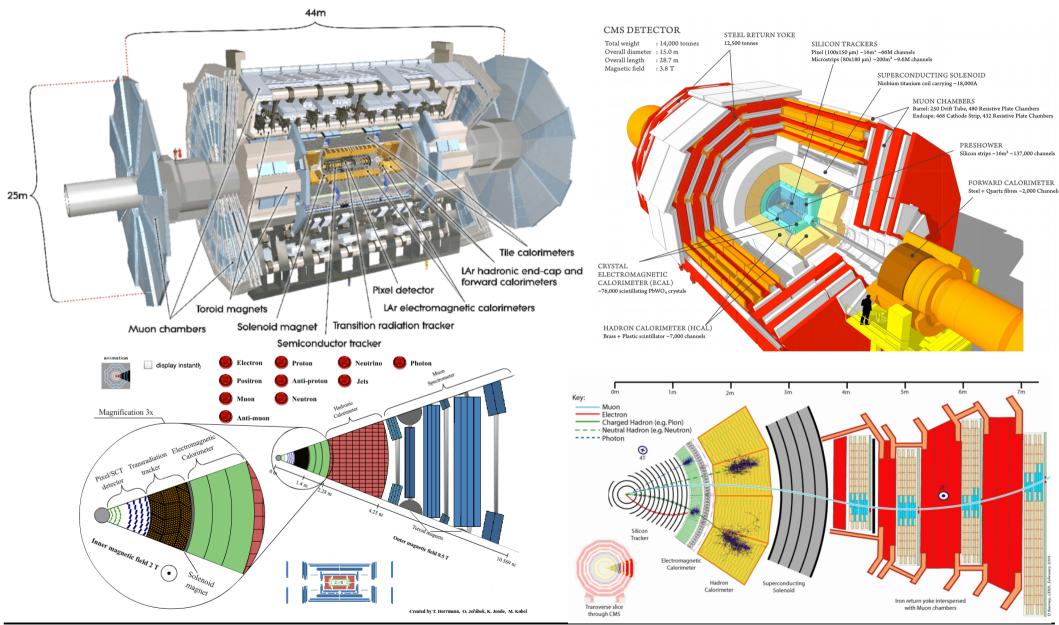
- Flavor tagging is one of the key ingredient of many analysis including ttH.
- **b-tagging** is one of the most discriminating variables of ttH(bb) to reject tt+lights and tt+cc.
- **c-tagger** is currently used in the search for $H \to cc$
 - it might be useful to tag jets from W in ttH (BR(W \rightarrow cX) ~ 50%).
- **boosted** $X \to bb$ tagger is currently used for $gg \to boosted H(bb)$
 - a natural application would be boosted ttH(bb).
- quark/gluon discriminator is currently used to reject QCD in fully hadronic ttH analysis (CMS).

UNIVERSE

MDCCC

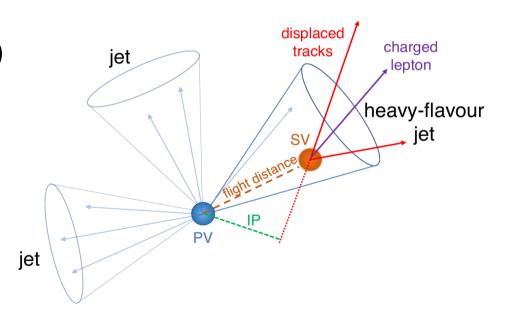
S XXXII

ATLAS and CMS experiments



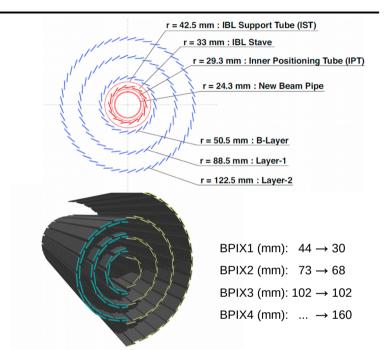
b(c) tagging

- b(c) tagging is based on B(D) hadron decay features:
 - leptonic decay $BR(b \rightarrow \mu \nu X) \sim 11\% + BR(b \rightarrow c \rightarrow \mu \nu X) \sim 10\%;$
 - sizable lifetime (c $\tau \sim 0.45$ mm);
 - charged multiplicity (aver. ~ 5.0) and invariant mass (~ 5 GeV).
- Discriminating variables:
 - soft lepton (e,μ) ;
 - track impact parameter (IP);
 - secondary vertex/vertices (SV).
- Fake: long-lived hadron decay (eg. K_{S^0} or Λ), material interaction.



b/c tagging

- b/c tagging performance strongly depends on the **pixel detector**.
- **ATLAS** inserted a new pixel layer (Inner Barrel Layer) during LS1.
- **CMS** replaced the whole pixel detector (phase-1 upgrade) in 2016-17.



- Jet flavor definition:
 - **ATLAS**: AK4 calo jets $p_T > 20$ GeV, $|\eta| < 2.5$, pile-up jet rejection(JVT) (eff. 92% fake 2%). b jet if B hadron in $\Delta R < 0.3$.
 - CMS: AK4 PF jets $p_T > 20$ GeV, $|\eta| < 2.4$. b jet if generator B hadron is into the AK4 jet (ghost association) and $\Delta R < 0.25$ from a gen jet $p_T > 8$ GeV.

Low level taggers

- Impact parameter:
 - **ATLAS**: log-likelihood ratio (LLR) based on **IP2D** and **IP3D** of jet tracks, Recurrent Neural Network Track-based tagger (**RNNIP**) \rightarrow output p_b, p_u, p_c and p_{τ} .
 - **CMS**: JetProbability (**JP**) \rightarrow LLR of 3D IP significance. **JBP** \rightarrow only 4 tracks considered.
- Secondary vertex:
 - ATLAS: single displaced vertex (SV1) starts from two-track vertices,
 JetFitter: cascade vertex algorithm, it includes single prong vertex with jet axis.
 - CMS: Adaptive Vertex Fitter (Run-1) → Inclusive Vertex Fitter (Run-2): it doesn't use jet direction to find the secondary vertex. Originally developed for g → bb measurement.
- Soft lepton tagger:
 - ATLAS: Soft Muon Tagger. BDT discriminant (Kinematic + track quality)
 - CMS: Soft Muon and Soft Electron tagger. BDT discriminant (Kinematic + elect. ID)

High level taggers

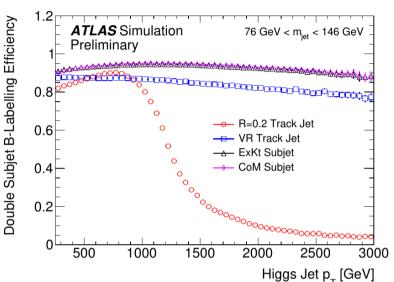
- ATLAS:
 - Training sample: hybrid tt + Z'.
 - BDT tagger: kinematic variables (reweighted to avoid correlation) IP2D and IP3D, sec. vertex (SV1, JetFitter) (MV2)
 - + soft muon tagger $({\bf MV2Mu})$
 - + RNNIP (MV2MuRnn)
 - BDT **c-tagger**: as MV2 trained against b and light, optimized for ctagging (JetFitter with 1 vertex, adding track rapidities)
 - Deep Neural Network (DL1, DL1Mu, DL1MuRnn)
 - Inputs: MV2/MV2Mu/MV2MuRnn inputs + c-tagging variables soft muon tagger replaced by its inputs.
 - Output: p_b, p_u, p_c .
 - Future: Study techniques for systematic and pileup mitigation. RNNIP inputs fully integrated in DL1 training.

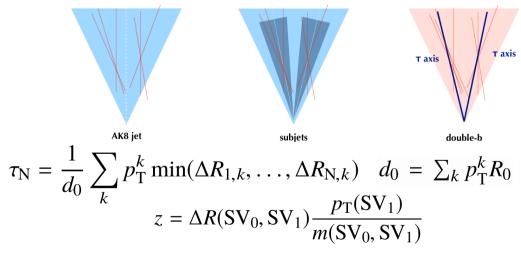
High level taggers

- CMS:
 - Training sample: hybrid tt + multijet.
 - Combined Secondary Vertex (CSVv2)
 - no intermediate tagger. 18 input variables used (based on kinematic and IP and SV).
 - DeepCSV
 - similar input to CSVv2, more layers, more tracks considered, 5 outputs $(p_{bb}, p_b, p_c, p_{cc}, p_{light})$.
 - $\mathbf{CMVAv2}$: \mathbf{CSV} + soft muon + soft electron + JP + JPB tagger.
 - **c-tagger**: CvsL and CvsB tagger (very similar to CSV); DeepCSV c-tagger \rightarrow better performance.
 - Future: **DeepFlavour** uses properties of charged and neutral PF candidates, SV, without any specific preselection (more tracks).

Boosted $X \rightarrow bb$ taggers

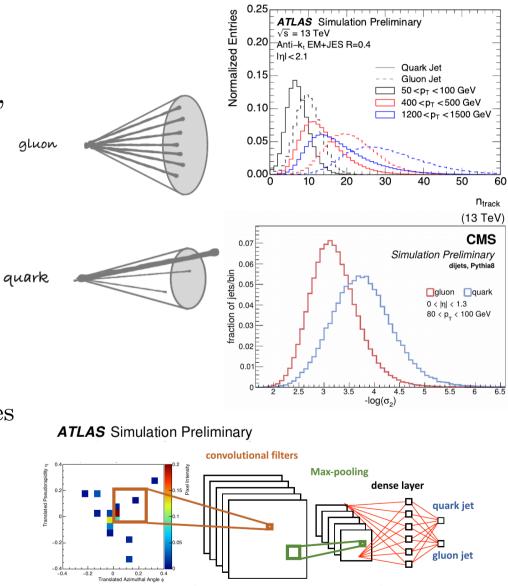
- **ATLAS**: b-tagging on track subjets ($\Delta R=0.2$):
 - several possible tagging (leading subjet pT, highest/lower b-tagging, ...).
 - new subjet definition improves X->bb efficiency (Variable Radius, VR)
- CMS AK8 jet, soft drop algorithm:
 - tagging on subjects (as ATLAS);
 - new double b-tagging exploiting correlation between subjects:
 - τ_{N} algo to define parton direction;
 - track associated minimizing track τ -axis distance;
 - use IP and SV variables, including correlation;
 - z variable to reject $g \rightarrow bb$.





Quark/gluon tagger

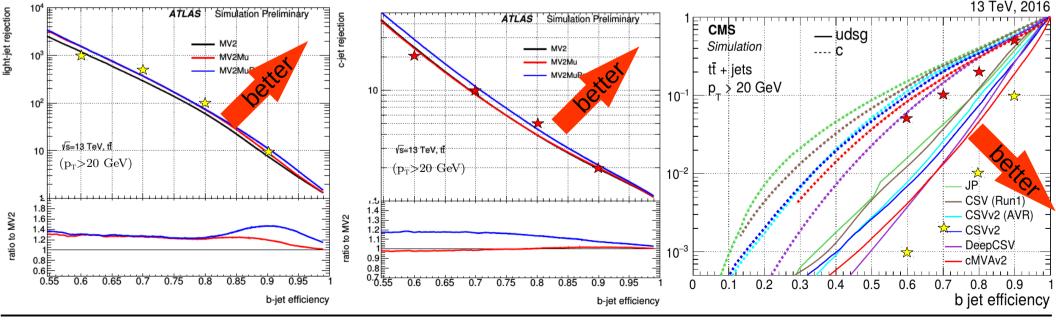
- ATLAS: likelihood ratio using number of track per jet in (p_T,η) bins,
- **CMS**: likelihood ratio of
 - number of tracks,
 - $p_T D = \frac{\sqrt{\sum_i p_{T,i}^2}}{\sum_i p_{T,i}} ,$
 - σ_2 is the ellipse minor axis.
- Future:
 - ATLAS: ECAL towers + tracks images (Convolutional Neural Network tagger);
 - CMS: neutral and charged PF candidates as DNN inputs (DeepJet).



3x

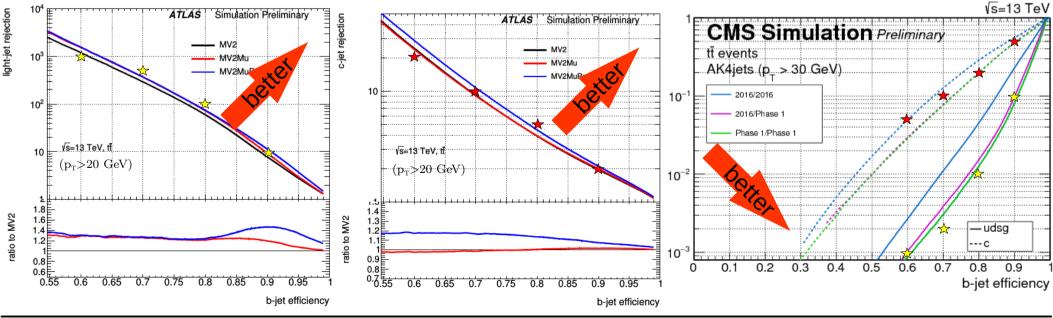
Performance b-tagger

- Plots: b-jet efficiency vs non-b jet rejection (ATLAS) or fake rate (CMS).
- Example b efficiency 80%:
 - light rejection ~ 100; c rejection ~ 5.
- In 2016, ATLAS b-tagging performance was significantly better than CMS.

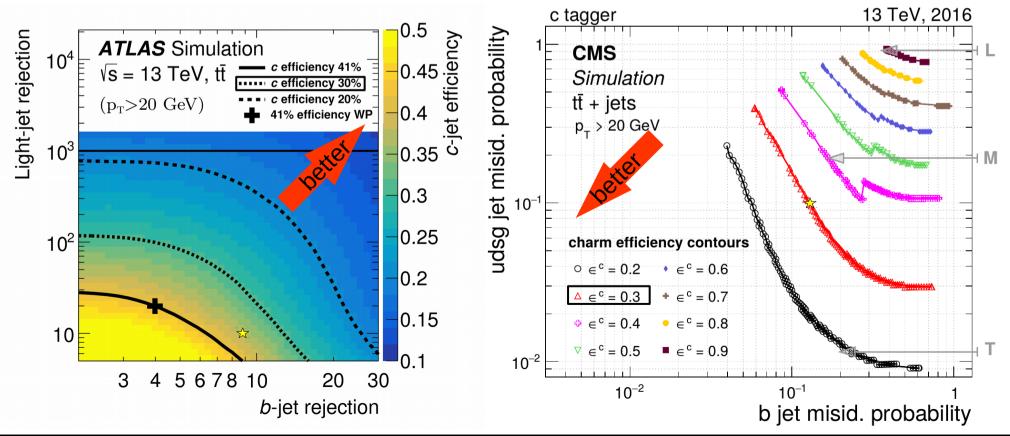


Performance b-tagger

- Plots: b-jet efficiency vs non-b jet rejection (ATLAS) or fake rate (CMS).
- Example b efficiency 80%:
 - light rejection ~ 100; c rejection ~ 5.
- After phase-1 upgrade, the two experiments have a comparable performance similar (in simulation) \rightarrow warning: plot with different p_T range!

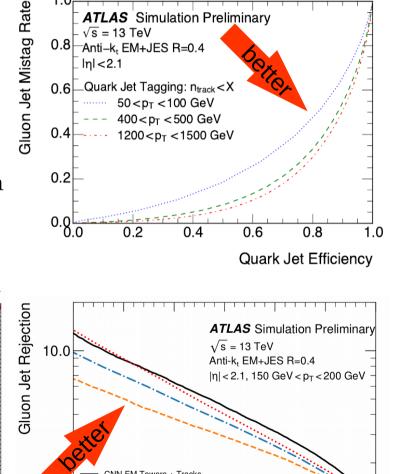


- CMS plot obtained with Phase-0 pixel detector.
- Working point used in $H \rightarrow cc$ analysis (ATLAS)
 - c-efficiency $\sim 41\%$; light rejection ~ 20 ; b rejection ~ 4 .

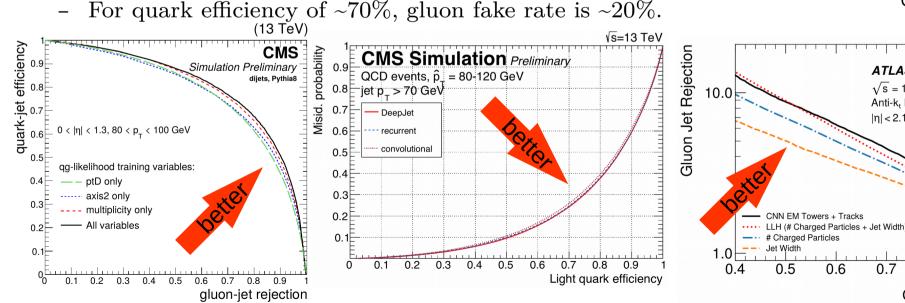


Quark/gluon tagger

- Different jet selection \rightarrow plots cannot be compared.
- Charged multiplicity is the most discriminating variables
 - CMS q/g disciminator shows a slight improvement including other variables.
- CNN and DeepJet improvement is about $\sim 10-20\%$ in gluon rejection.



1.0



1.0

0.8

0.9

Quark Jet Efficiency

Boosted $\mathbf{X} \to \mathbf{b}\mathbf{b}$

- Double subjet b-tag is better than single subjet b-tag in large multijet rejection region.
- As expected double-b outperforms other taggers, especially in high H → bb efficiency region.
 - multijet rejection of ~500 at H(bb) efficiency of ~50%.
- CMS plot shows only tagging efficiency (plot obtained 2016 pixels)
- Warning: different kinematic cuts \rightarrow plots cannot be compared.



Reference - CMS

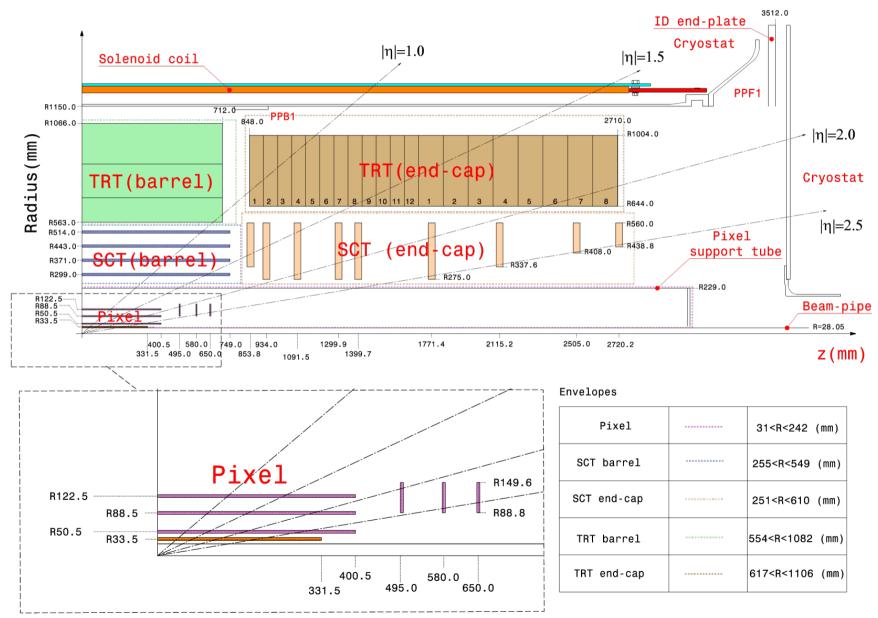
- "Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV", JINST 13 (2018) no.05, P05011
- "CMS Phase 1 heavy flavour identification performance and developments", CMS DP-2017/013
- "Heavy flavor identification at CMS with deep neural networks", CMS DP-2017/005
- "Jet algorithms performance in 13 TeV data", CMS-PAS-JME-16-003
- "New developments for Jet Substructure", CMS DP-2017/027

Reference - ATLAS

- "Optimisation and performance studies of the ATLAS b-tagging algorithms for the 2017-18 LHC run", ATL-PHYS-PUB-2017-013
- "Boosted Higgs (\rightarrow bb) Boson Identification with the ATLAS Detector at s = 13 TeV", ATLAS-CONF-2016-039
- "Variable Radius, Exclusive-kT , and Center-of-Mass Subjet Reconstruction for Higgs(\rightarrow bb) Tagging in ATLAS", ATL-PHYS-PUB-2017-010
- "A new tagger for the charge identification of b-jets", ATL-PHYS-PUB-2015-040
- "Quark versus Gluon Jet Tagging Using Charged-Particle Constituent Multiplicity with the ATLAS Detector", ATL-PHYS-PUB-2017-009
- "Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector", ATL-PHYS-PUB-2017-017.

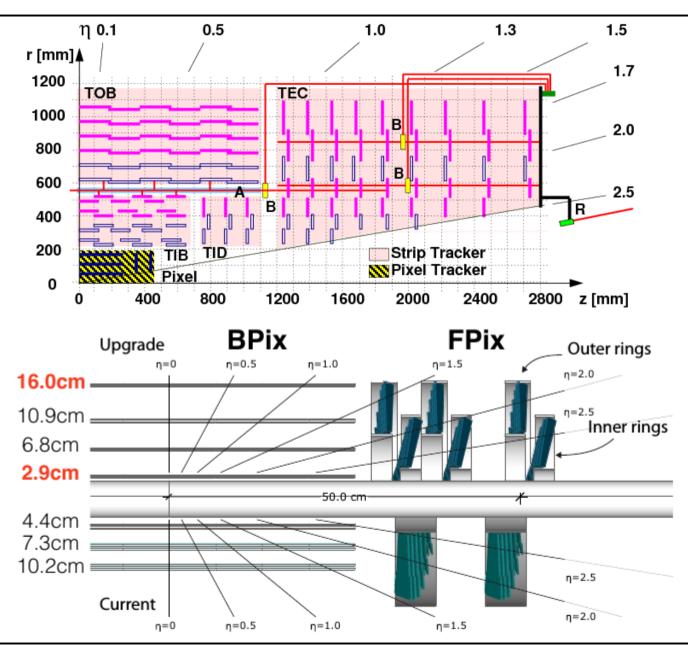
Backup

ATLAS tracker r-z sect.



S. Donato (UZH)

CMS tracker r-z section



S. Donato (UZH)

Working points 2016

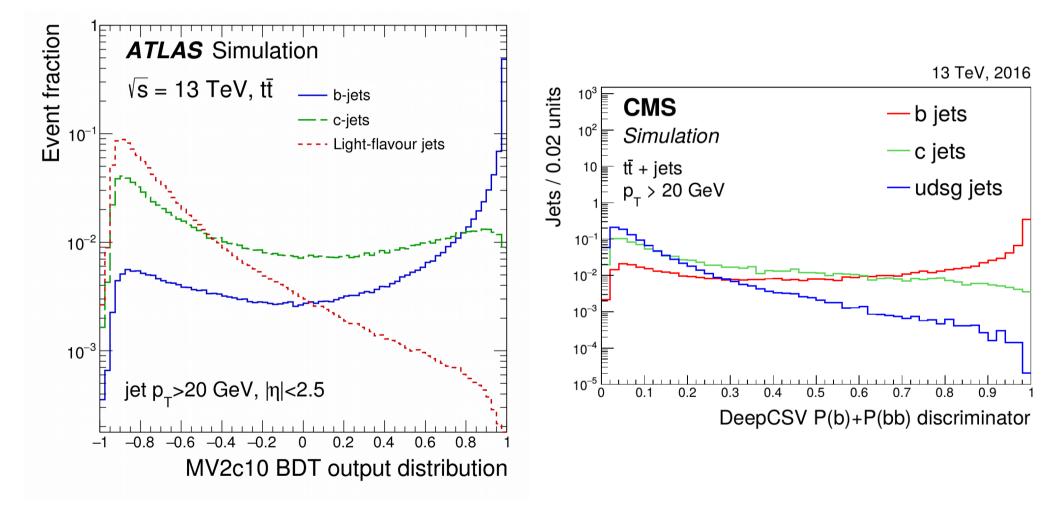
ATLAS (2016)

WP	Cut value X	<i>b</i> -jet efficiency (ε_b)	<i>c</i> -jet mistag rate (ε_c)	LF-jet mistag rate ($\varepsilon_{\rm LF}$)				
85%	0.1758	85%	32%	2.9%				
77%	0.6459	77%	16%	0.77%				
70%	0.8244	70%	8.3%	0.26%				
60%	0.9349	60%	2.9~%	0.065%				
$_{50\%}$	0.9769	50%	0.94~%	0.017%				

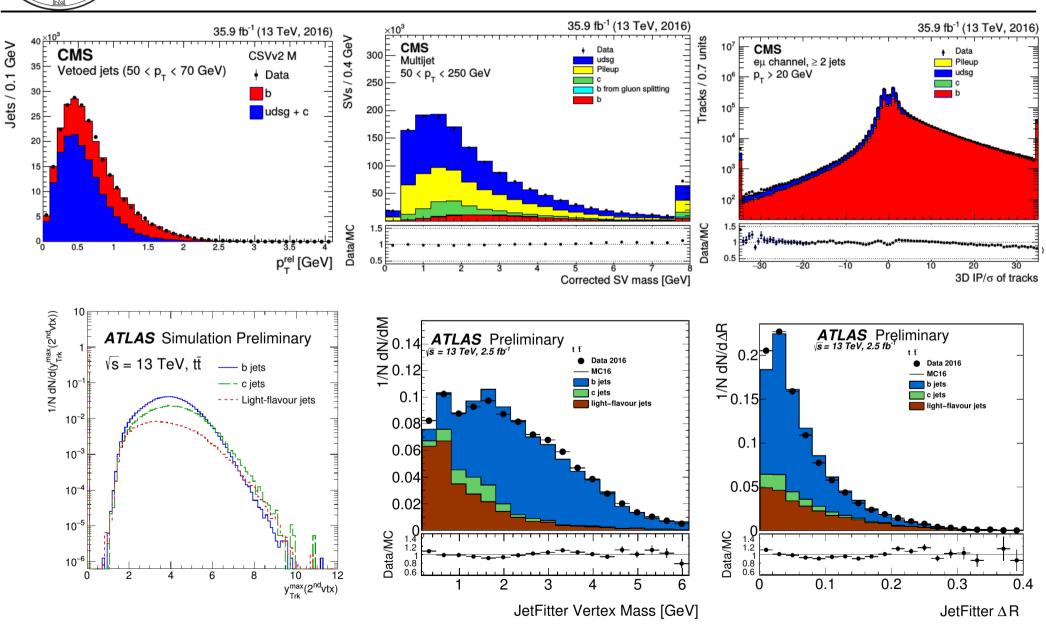
CMS (2016)

Tagger	Working point	$\varepsilon_{\mathrm{b}}~(\%)$	ε _c (%)	$\varepsilon_{ m udsg}$ (%)
	DeepCSV L	84	41	11
Deep combined secondary vertex	DeepCSV M	68	12	1.1
(DeepCSV) $P(b) + P(bb)$	DeepCSV T	50	2.4	0.1

Working points 2016



Input variables



UNIVERSE

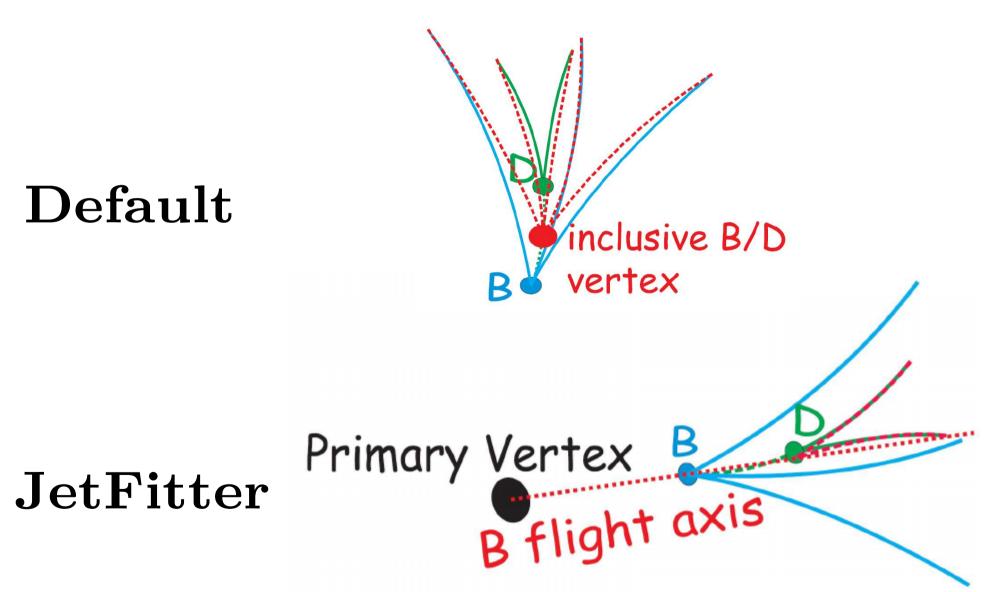
мрссс

RICENSIS

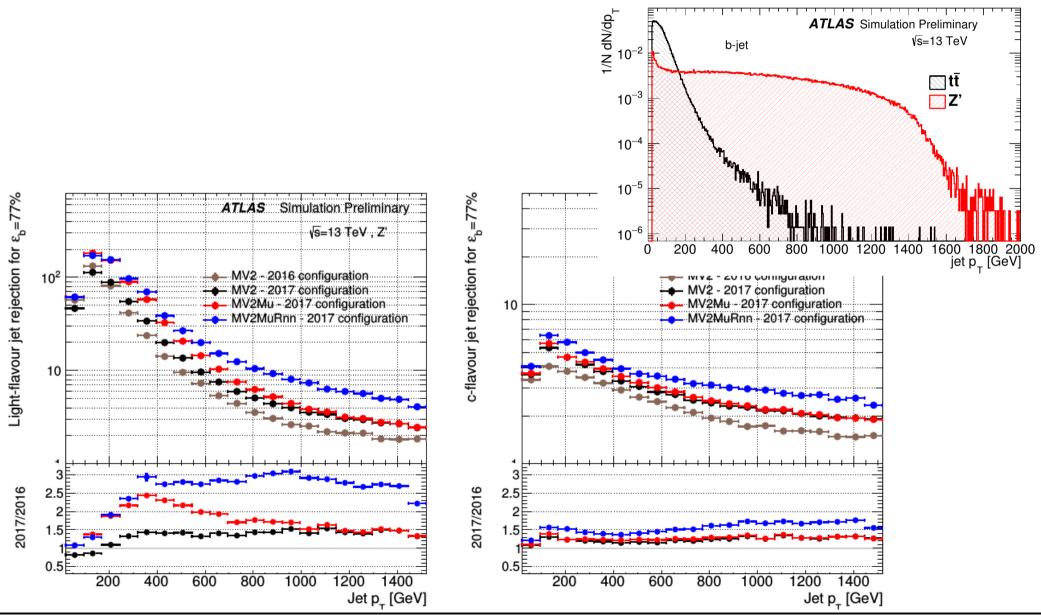
Secondary Vertex Fitter

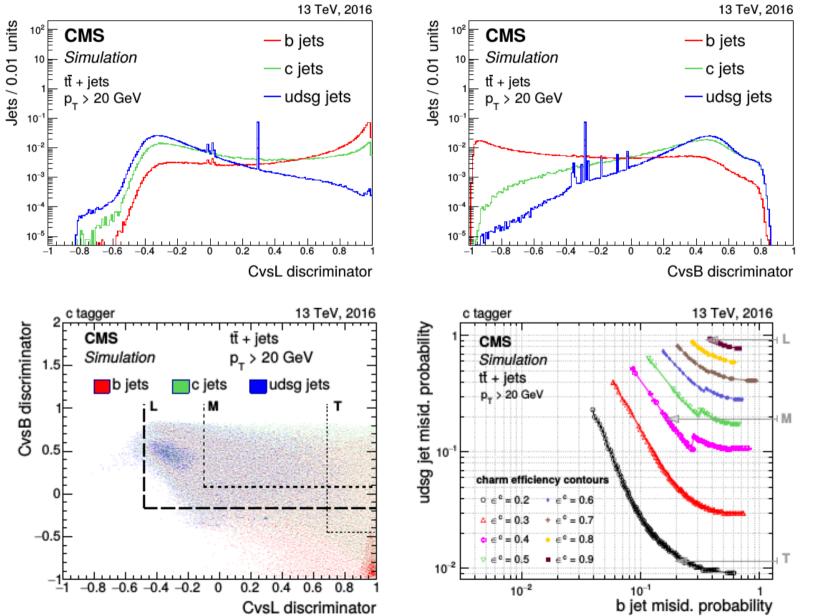


Inclusive Vertex Finder

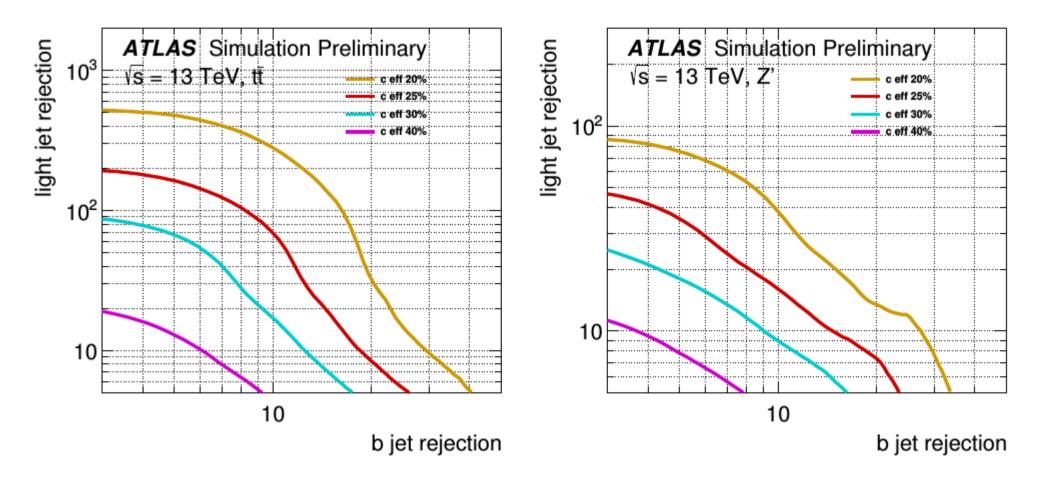


ATLAS 2016 vs 2017



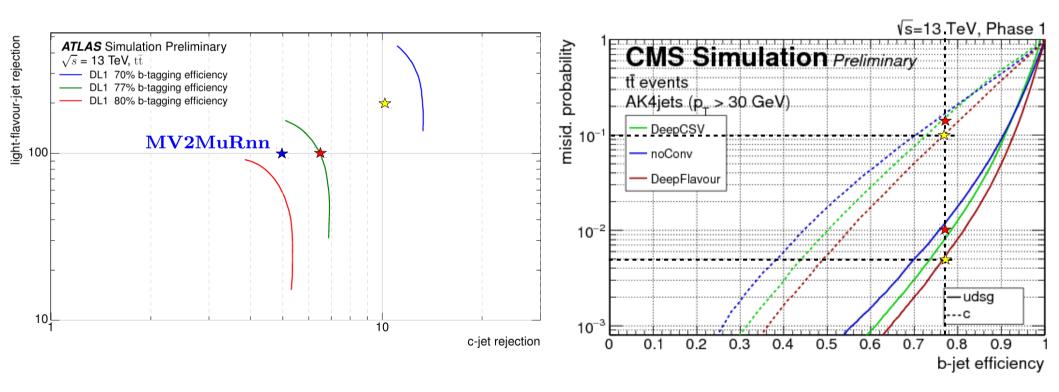


S. Donato (UZH)



Deep Neural Network

• DeepFlavour is more aggressive than DL1 (more input variables) and hence gives better performance.



b-tag vs PU

