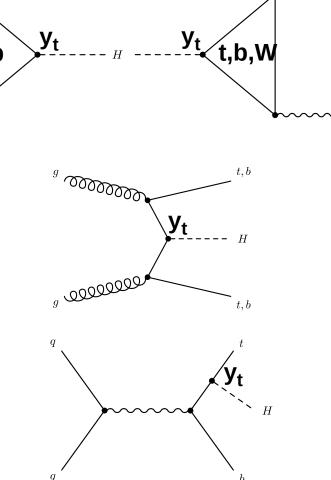
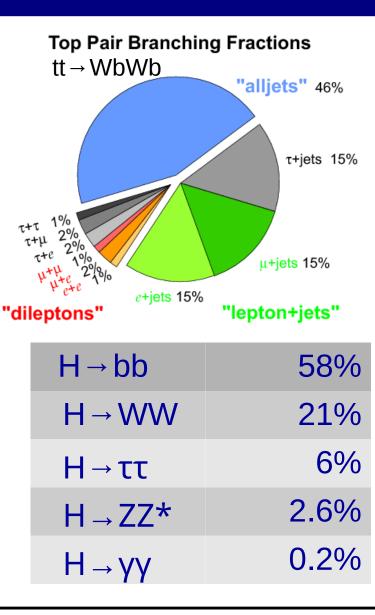

Recent ttH (tH) results from ATLAS



Why look for ttH (tH)?

Why look for ttH (tH)?



How to look for ttH?

- Signature depends on:
 - → ttbar system decay: 0, 1, or 2 leptons
 - \rightarrow Higgs decay: bb, WW, ττ, ZZ*, γγ

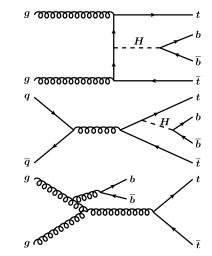
Four very different analyses:

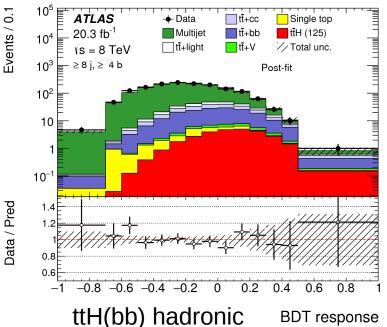
- ttH with $H \rightarrow bb$ (0, 1, or 2 e/µ)
- ttH to multilepton targets mostly $H \rightarrow WW$ and $H \rightarrow \tau\tau$
- ttH with H \rightarrow yy (0 or 1 e/µ)
- ttH with H \rightarrow ZZ* \rightarrow 4 leptons (e/µ) (all based on 36 fb⁻¹)

ttH, H→bb

Phys. Rev. D 97, 072016 (2018)

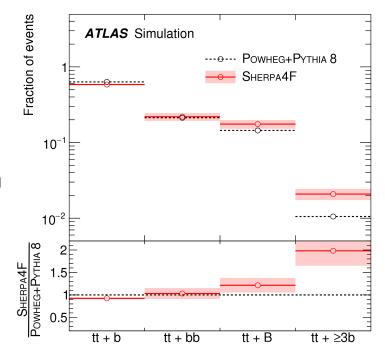
ttH, $H \rightarrow bb$

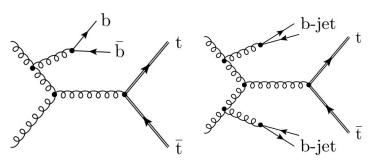

- → ttbb background large and difficult to model
- → Complex final state with large jet and b-jet multiplicity → challenging object (btagging) and event reconstruction


Signature:

- → 1 (or 2) e/μ + 4 (2) jets from W's
- \rightarrow 4 b-jets (2 from ttbar, 2 from Higgs)

All-hadronic channel also studied:


- → Run 1 result: JHEP 05 (2016) 160
- → Additional large multijet background

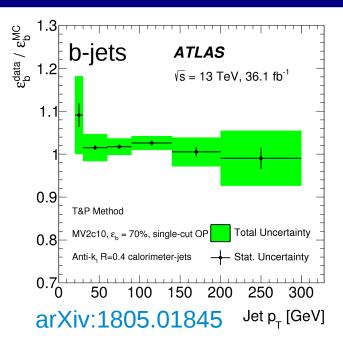


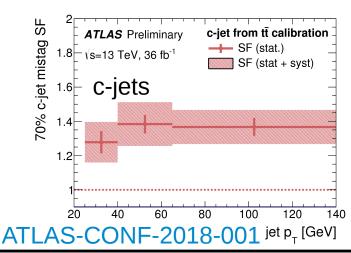
ttH, $H \rightarrow bb$: ttbb modelling

- ttbar inclusive MC: Powheg+Pythia8 normalized to NNLO+NNLL crosssection
 - → tt+≥1b and tt+≥1c also from Powheg+Pythia8 but left free-floating in the fit
- Split into tt+HF categories depending on HF jets at particle level:
 - → tt+b : 1 additional b-jet
 - → tt+bb : 2 additional b-jet
 - → tt+B : only one b-jet containing 2 B hadrons
 - → tt+≥3b : other
 - → Rescale fractions of categories to Sherpa+OpenLoops 4F scheme (massive b-quarks, first g → bb from ME)

ttH, $H \rightarrow bb$: strategy

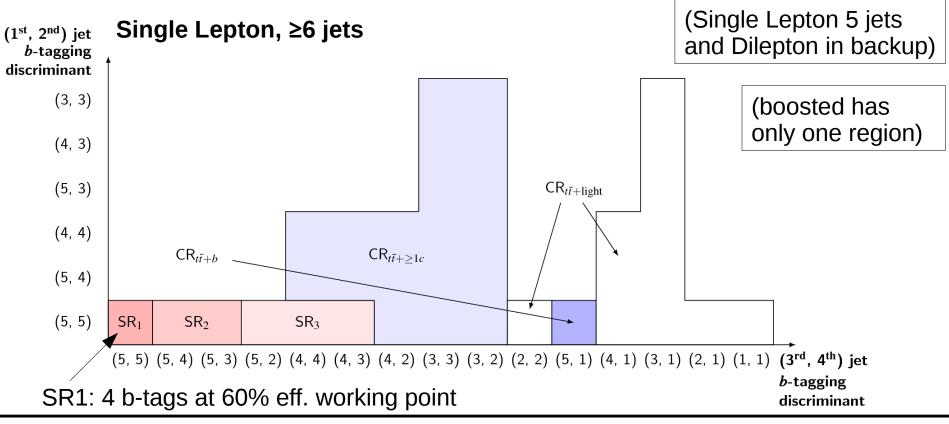
Preselection:


- → Dilepton: two opposite sign e/μ , 3 jets, 2 medium b-tags
- → Single Lepton: one e/ μ , 5 jets, 2 very-tight or 3 medium b-tags
- → Single Lepton Boosted: one e/µ, large-R jets from R=0.4 reclustered jets, Higgs candidate (pT>200 GeV) and top candidate (pT>250 GeV) (takes precedence over resolved channel)
- → Single lepton trigger \rightarrow leading lepton pT > 27 GeV
- Split into Signal and Control Regions based on jet and b-tag multiplicity/quality
- Multivariate analysis to separate tt+jets from ttH in each Signal Region
- Combined fit of all regions (fitting the MVA discriminant in the Signal Regions)

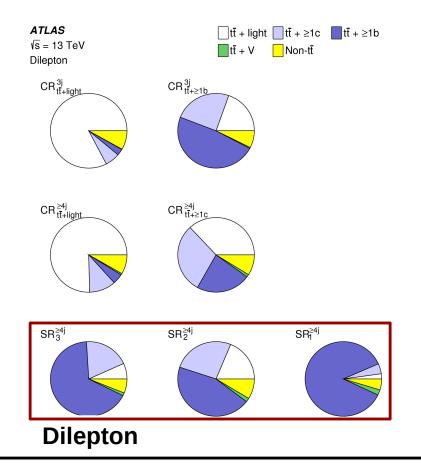

Semi-continuous b-tagging

- Four b-tagging working points calibrated on data:
 - → Loose Medium Tight Very Tight corresponding to:

85% - 77% - 70% - 60% eff. to tag a b-jet

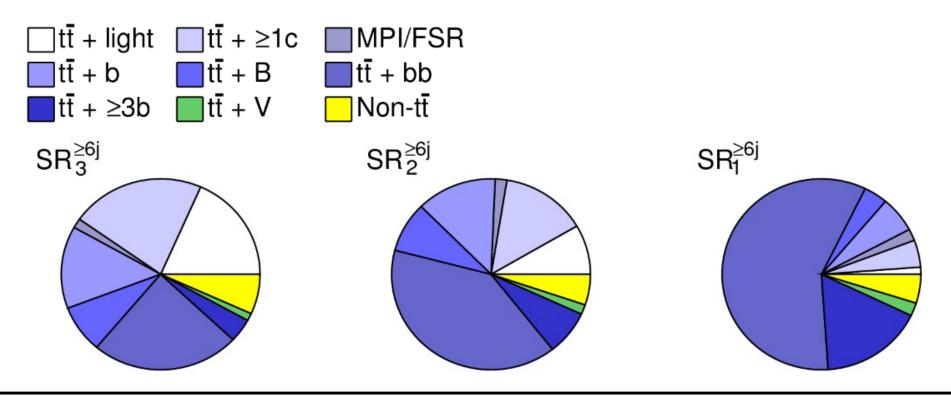

- → Assign a b-tagging score from 1 to 5 (from not-tagged to 60%)
- b-jets calibrated with ttbar events (2-10% uncertainty, dominated by ttbar modelling)
- c-jets calibrated with ttbar events (W→cs) and W+c events (5-20% uncertainty)
- light-jets calibrated with dijets events (10-50% uncertainty)

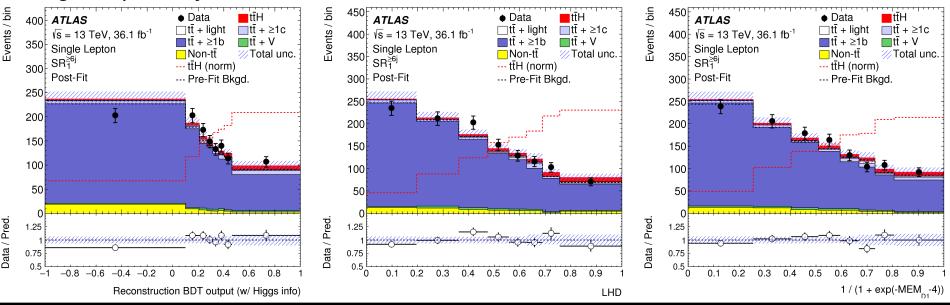
ttH, $H \rightarrow bb$: Signal and Control Regions


- Split into jet and b-jet multiplicity/quality, merge regions with similar background content
 - → SR = Signal Region ("large" S/B); CR = Control Region (low S/B)

Higgs Toppings, Benasque

ttH(bb) (1 and 2 leptons) Background composition


9 Signal Regions10 Control Regions

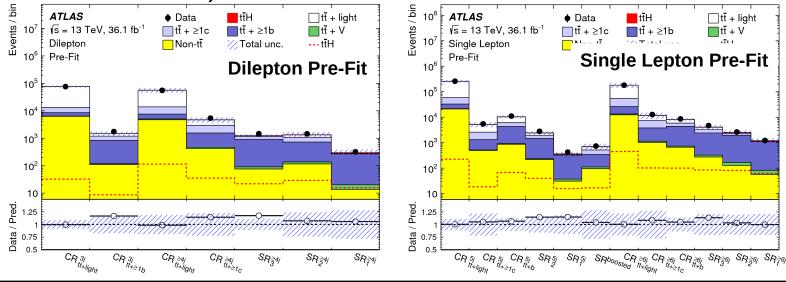

ttH(bb) (1 and 2 leptons) Background composition

- Zooming in on most sensitive regions (Single Lepton 6 jets) and splitting ttb into categories:
 - \rightarrow tt+>1b ~ only relevant background in SR1 (four Very Tight b-tags)
 - → Within tt+≥1b: tt+bb dominant, tt+≥3b also important (two $g \rightarrow bb$)

ttH(bb) Multi-Variate Analysis

- Several MVA ingredients:
 - → Recontruction BDT to attempt to reconstruct top quarks and $H \rightarrow bb$
 - → Likelihood (LHD) for ttH signal vs tt+≥1b background using product of 1D pdf's of kinematic variables
 - → Matrix Element Method (MEM)

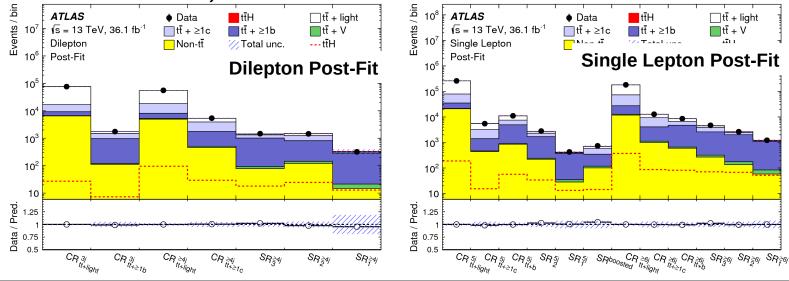
Single Lepton 6-jet SR1:

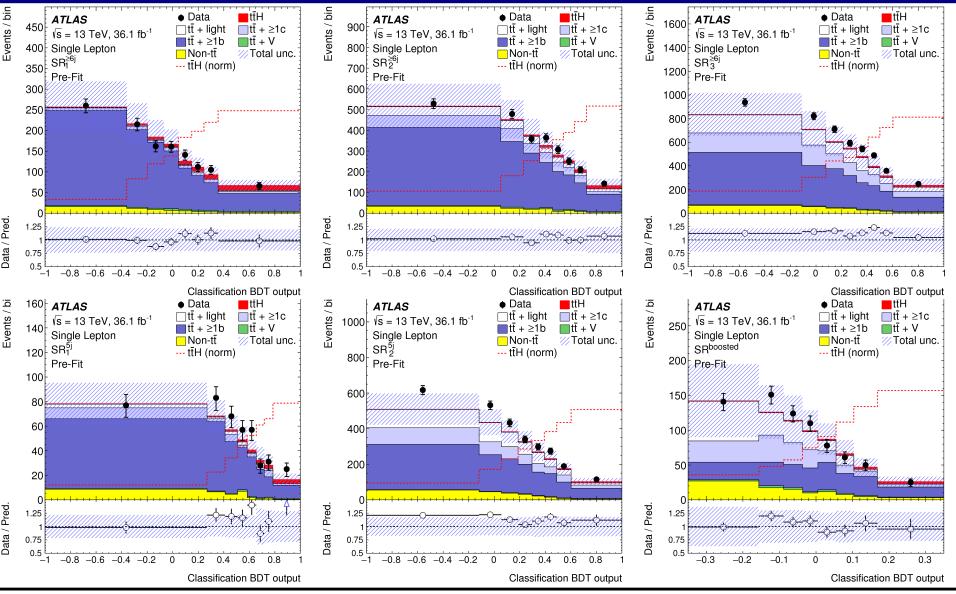

2018/05/28

Higgs Toppings, Benasque

ttH(bb) Multi-Variate Analysis

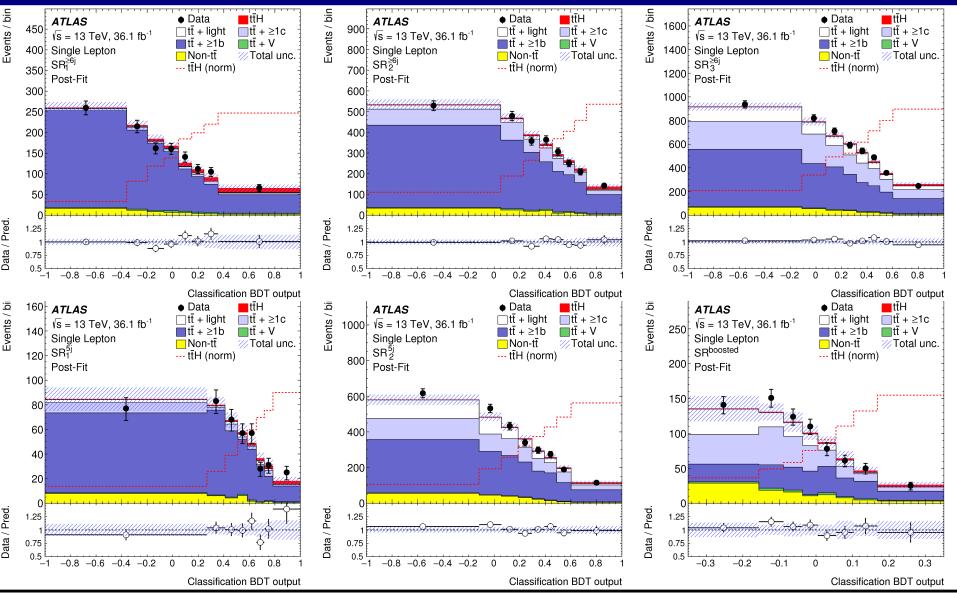
Final discriminant: classification BDT. Input variables:


- → Reconstruction BDT, LHD, MEM
- → Kinematic variables
- Combined fit of all 9 SRs and 10 CRs:
 - → Signal Regions: fit the classification BDT output
 - → Control Regions: fit the event yield (except in tt+≥1c 1l CRs: fit H_T to constrain tt+≥1c)


ttH(bb) Multi-Variate Analysis

Final discriminant: classification BDT. Input variables:

- → Reconstruction BDT, LHD, MEM
- → Kinematic variables
- Combined fit of all 9 SRs and 10 CRs:
 - → Signal Regions: fit the classification BDT output
 - → Control Regions: fit the event yield (except in tt+≥1c 1l CRs: fit H_T to constrain tt+≥1c)

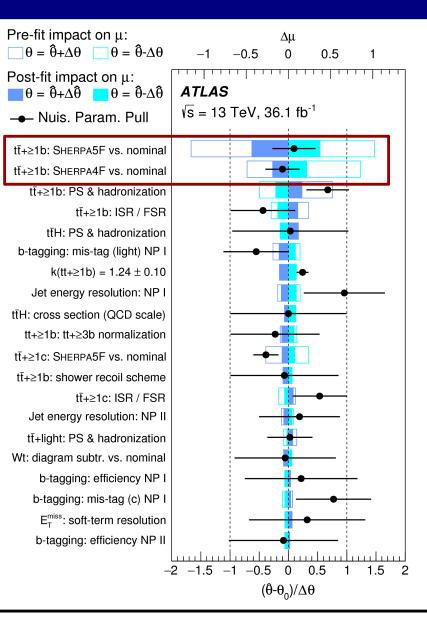

ttH(bb) Single Lepton Signal Regions: Pre-fit

2018/05/28

Higgs Toppings, Benasque

ttH(bb) Single Lepton Signal Regions: Post-fit

2018/05/28

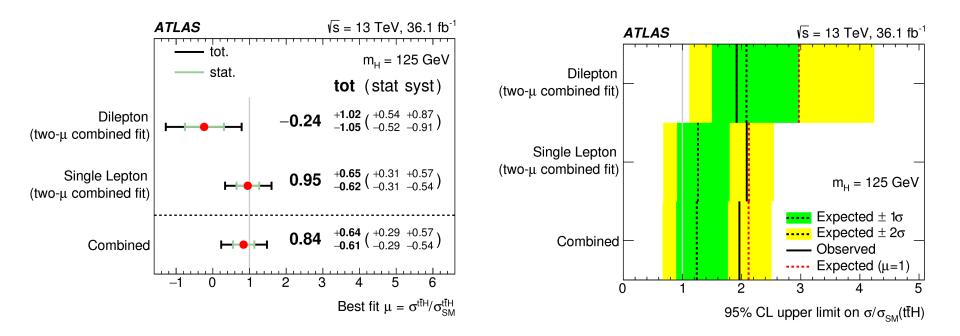

Higgs Toppings, Benasque

ttH(bb) systematics

 Also important: MC stat. 		
Uncertainty source	Δ	
$t\bar{t} + \geq 1b$ modeling	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H ext{ modeling}$	+0.22	-0.05
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t} + \text{light modeling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

By far dominant: tt+≥1b modelling

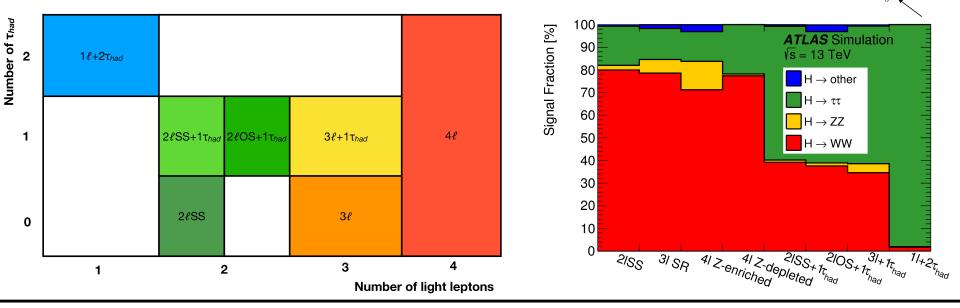
 \rightarrow Esp. Sherpa vs PP8



2018/05/28

Higgs Toppings, Benasque

ttH, $H \rightarrow bb$: result


- Significance wrt bgd-only hypothesis: 1.4σ (1.6σ expected)
- Signal strength $\mu = \sigma^{ttH}/\sigma^{ttH}(SM)$
 - μ < 2.0 at 95% CL
 - μ = 0.84 +0.64 0.61

ttH, multilepton Phys. Rev. D 97, 072003 (2018)

ttH multilepton

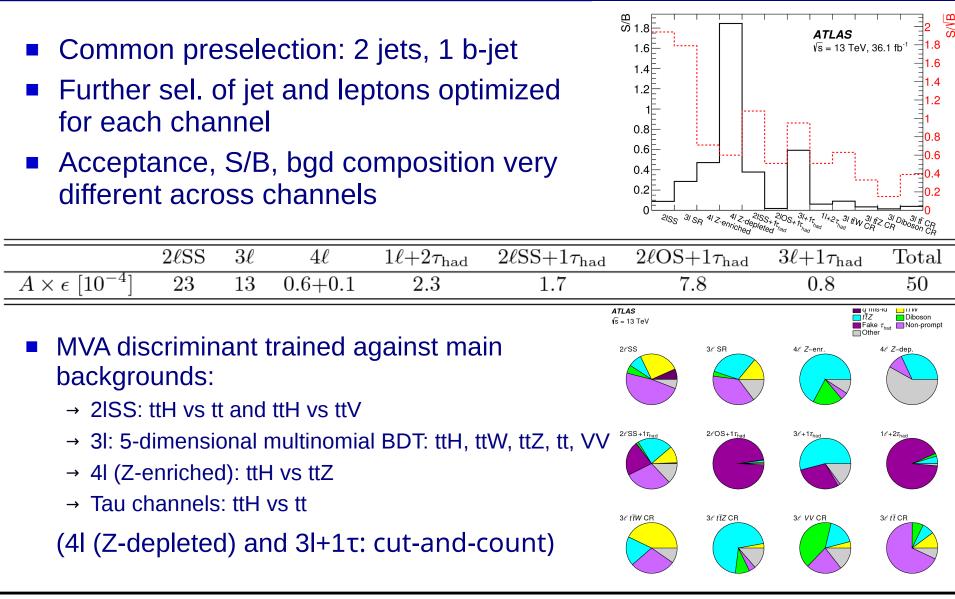
- Channels w/o hadronic- τ target H \rightarrow WW (and H \rightarrow ZZ*):
 - 2ISS = 2 light leptons (e or μ) of same sign
 - 3I = 3 light leptons
 - 4I = 4 light leptons (veto $H \rightarrow ZZ^* \rightarrow 4I$, treated by dedicated analysis)
- Channels w/ 1 or 2 hadronic- τ target H → $\tau\tau$ and H → WW: 2ISS+1 τ , 2IOS+1 τ , 3I+1 τ , 1I+2 τ

a goodoge

0000CC

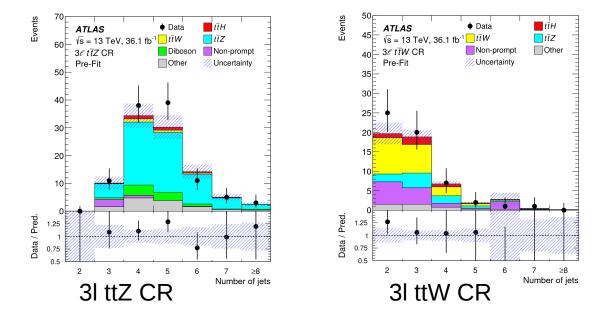
200000 ,

 W^+


H

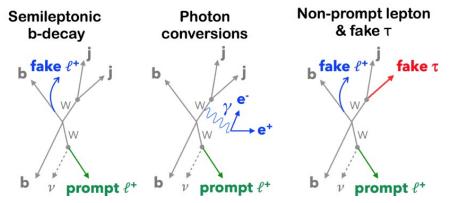
 W^{-}

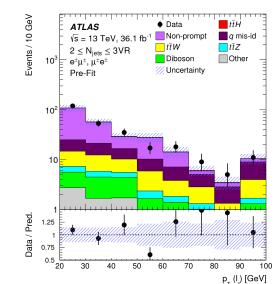
 W^{-}


 $W^- \land \uparrow$

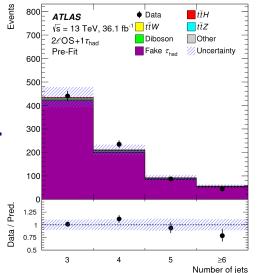
ttH multilepton: strategy

ttH multilepton: prompt lepton backgrounds

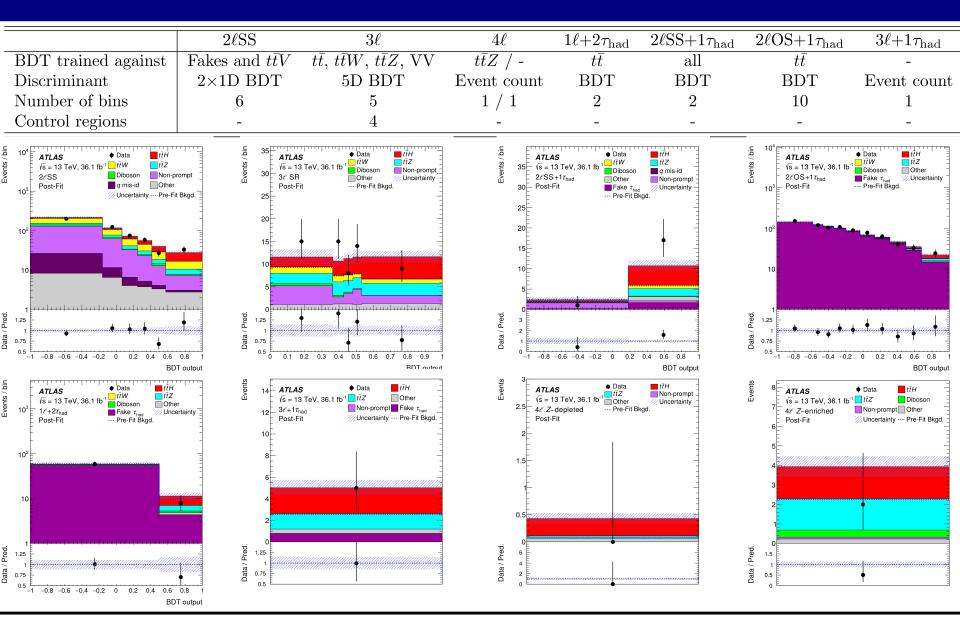

- Irreducible background from ttZ, ttW, diboson, from MC
- Also rare processes: tttt, ttt, tZ, tWZ, ttWW, tty*
- CRs for ttZ and ttW show good agreement with SM prediction:



Electron charge mis-ID (for 2ISS0τ and 2ISS1τ):


- → reduced by dedicated MVA
- → Data-driven estimate: rate from SS Z → ee applied to OS CRs

ttH multilepton: fake/non-prompt lepton backgrounds



- BDT to reduce light lepton fake/non-prompt
 - → Isolation and b-tagging of track-jet near lepton
 - Bgd estimate (mostly) data-driven
 - → 2ISS0τ/3I0τ: Matrix Method. Real and fake eff. from CRs, applied to loose-not-tight events
 - MC-based correction for HF vs conversion comp.
 - → Fake τ : fake SF from 2IOS1 τ CR, applied to simulation in all τ channels
 - 2ISS1τ: must also consider fake light+fake τ

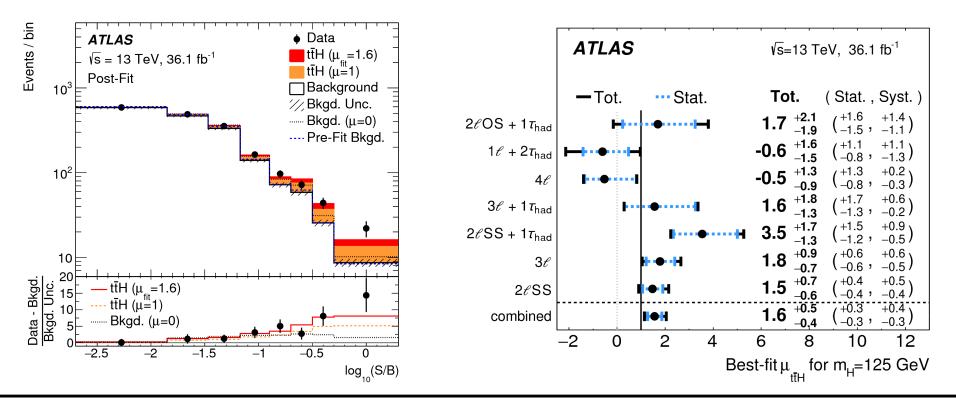
ttH multilepton: fit of eight channels

2018/05/28

Higgs Toppings, Benasque

ttH multilepton: systematics

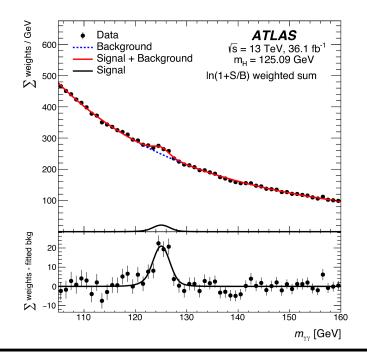
- Systematic uncertainties already important for some multilepton channels
- JES:
 - → Largest experimental uncertainty
 - → Flavor composition: can be improved by taking into account predicted flavor composition
- Fake estimates
- Can constrain ttW and ttZ backgrounds with more data

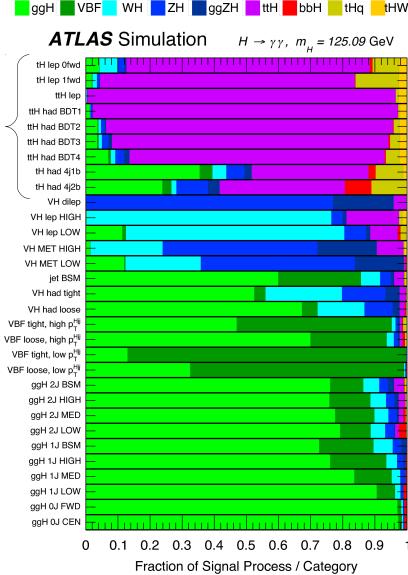

			Pre-fit impact on μ : $\theta = \theta + \Delta \theta$ $\theta = \theta - \Delta \theta$	Δμ -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Uncertainty Source	Δ	μ	⁼ Post-fit impact on μ: θ=θ+Δθθ=Φ-Δθ	••••••••••••••••••••••••••••••••••••••
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09		√s = 13 TeV, 36.1 fb ⁻¹
Jet energy scale and resolution	+0.18	-0.15		
Non-prompt light-lepton estimates	+0.15	-0.13	ttH cross section (scale variations) Jet energy scale (pileup subtraction)	
Jet flavor tagging and τ_{had} identification	+0.11	-0.09	Luminosity	
$t\bar{t}W$ modeling	+0.10	-0.09	Jet energy scale (flavor comp. 2ℓ SS)	
$t\bar{t}Z$ modeling	+0.08	-0.07	Jet energy scale variation 1	• • • • • • • • • • • • • • • • • • •
Other background modeling	+0.08	-0.07	ttW cross section (scale variations)	
Luminosity	+0.08	-0.06	ttZ cross section (scale variations)	
$t\bar{t}H \text{ modeling (acceptance)}$	+0.08	-0.04	ttH cross section (PDF)	
Fake $\tau_{\rm had}$ estimates	+0.07	-0.07	ttH modeling (shower tune)	
Other experimental uncertainties	+0.05	-0.04	Flavor tagging c-jet/Thad	
Simulation sample size	+0.04	-0.04	rare top decay cross section	
Charge misassignment	+0.01	-0.01	3ℓ Non-prompt closure ttW modeling (generator)	
Total systematic uncertainty	+0.39	-0.30	- Non-prompt stat. in 4th bin of 3ℓ SR	
	10.03	0.00	-	2 –1.5 –1 –0.5 0 0.5 1 1.5 2

Higgs Toppings, Benasque

 $(\hat{\theta} - \theta_0) / \Delta \theta$

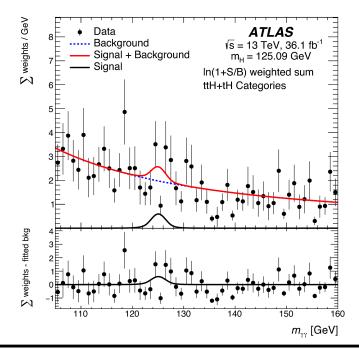
ttH multilepton result with 36 /fb

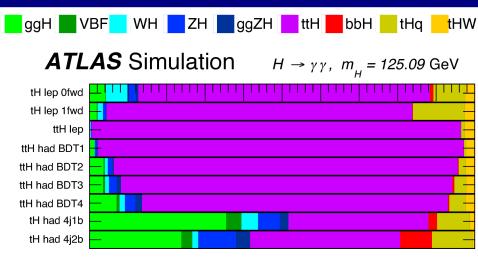

- Observed significance over background-only hypothesis: 4.1σ (exp. 2.8σ)
- Signal strength μ = 1.6 +-0.3 (stat) +0.4-0.3 (syst)



ttH, $H \rightarrow \gamma\gamma$ arXiv:1802.04146 [hep-ex]

ttH, $H \rightarrow \gamma \gamma$

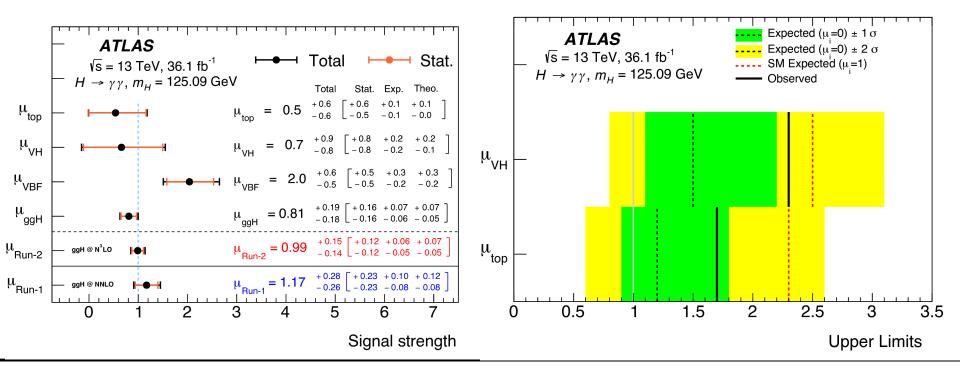




Higgs Toppings, Benasque

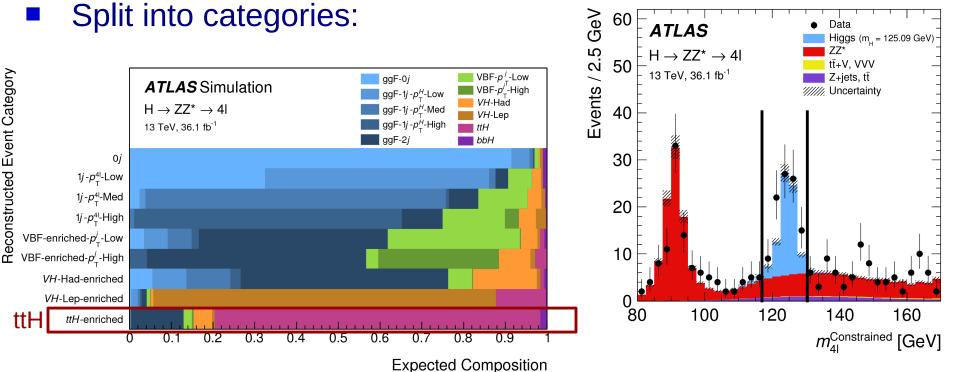
ttH, $H \rightarrow \gamma \gamma$

- One ttH leptonic category
 Four ttH hadronic category
 → Four bins of BDT output
- Four tH categories (in fact dominated by ttH)

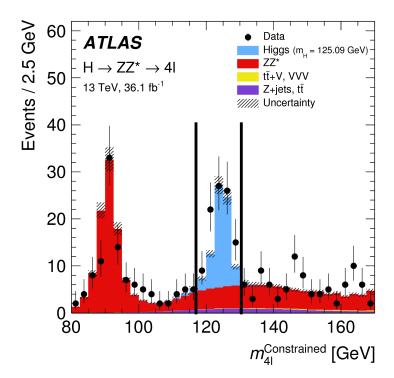


- ttH leptonic: 1 e/µ, 2 central jets, 1 b-jets
- ttH hadronic: 0 e/µ, 3 jets, 1
 b-jet. BDT trained to separate
 ttH vs ggH+multijet
- Combined fit of each category m(γγ) distribution

ttH, H → γγ: result

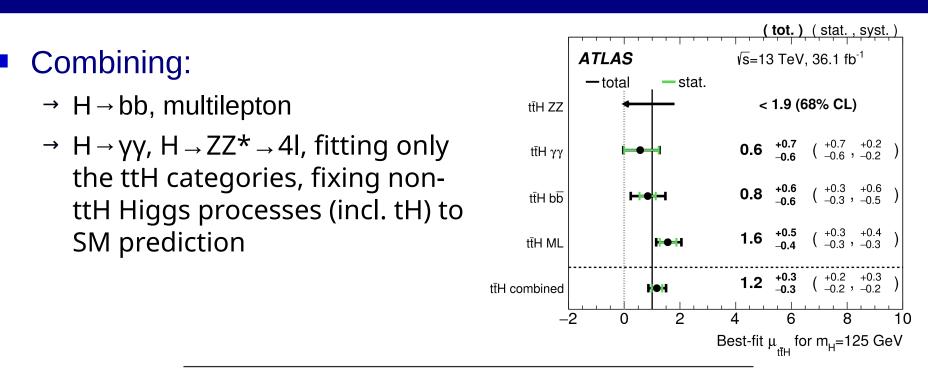

- Considers both ttH and tH categories, signal strength also applying to both ttH and tH processes: $\mu_{top} = 0.5 + 0.6_{-0.6}^{+0.6} = 0.5 + 0.6_{-0.5}^{+0.6} (stat.) + 0.1_{-0.1}^{+0.1} (exp.) + 0.1_{-0.0}^{+0.1} (theo.)$
- Completely stat-limited!

ttH, $H \rightarrow ZZ^* \rightarrow 4$ light leptons JHEP 03 (2018) 095


ttH, $H \rightarrow ZZ^* \rightarrow 4$ light leptons

Select Higgs candidates with mass 118 < m(4l) < 129 GeV</p>

ttH, $H \rightarrow ZZ^* \rightarrow 4$ light leptons


- Select Higgs candidates with mass 118 < m(4l) < 129 GeV</p>
- ttH-enriched category:
 - → ≥1 b-tagged jet
 - → ≥4 jets (hadronic ttbar) or
 1l+≥2 jets (semi-leptonic ttbar)
- Expect <0.1 background event!</p>
- Observe zero event

Reconstructed	Signal	ZZ^*	Other	Total	Observed
category			backgrounds	expected	
ttH-enriched	0.39 ± 0.04	0.014 ± 0.006	0.07 ± 0.04	0.47 ± 0.05	0

ttH, combination of all channels Phys. Rev. D 97, 072003 (2018)

ttH, combination of all channels

Channel	Best-fit μ		Significance		
	Observed	Expected	Observed	Expected	
Multilepton	$1.6 \ ^{+0.5}_{-0.4}$	$1.0 \ ^{+0.4}_{-0.4}$	4.1σ	2.8σ	
$H \to b \bar{b}$	$0.8 \ ^{+0.6}_{-0.6}$	$1.0 \ ^{+0.6}_{-0.6}$	1.4σ	1.6σ	
$H\to\gamma\gamma$	$0.6 \ ^{+0.7}_{-0.6}$	$1.0 \ ^{+0.8}_{-0.6}$	0.9σ	1.7σ	
$H\to 4\ell$	< 1.9	$1.0 \ ^{+3.2}_{-1.0}$		0.6σ	
Combined	$1.2 \ ^{+0.3}_{-0.3}$	$1.0 \ ^{+0.3}_{-0.3}$	4.2σ	3.8σ	

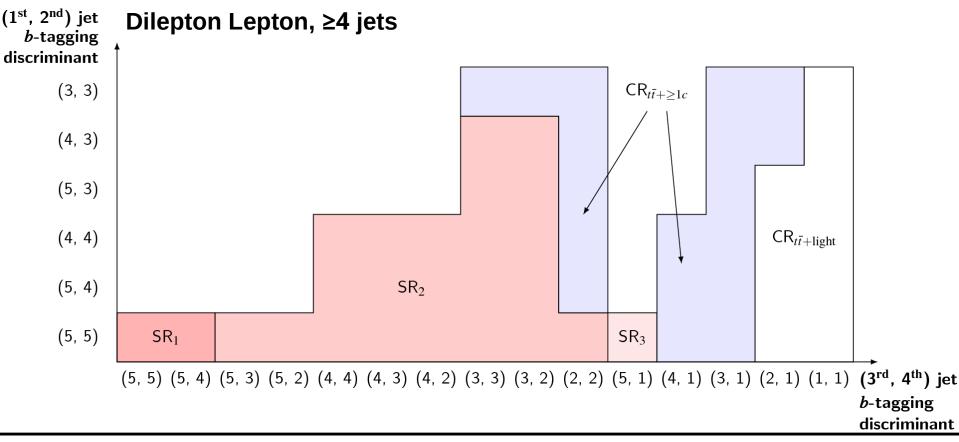
ttH, combination of all channels

	٨	
Uncertainty Source	Δ	$.\mu$
$t\bar{t} \mod H \to bb$ analysis	+0.15	-0.14
$t\bar{t}H$ modeling (cross section)	+0.13	-0.06
Non-prompt light-lepton and fake τ_{had} estimates	+0.09	-0.09
Simulation statistics	+0.08	-0.08
Jet energy scale and resolution	+0.08	-0.07
$t\bar{t}V ext{ modeling}$	+0.07	-0.07
$t\bar{t}H$ modeling (acceptance)	+0.07	-0.04
Other non-Higgs boson backgrounds	+0.06	-0.05
Other experimental uncertainties	+0.05	-0.05
Luminosity	+0.05	-0.04
Jet flavor tagging	+0.03	-0.02
Modeling of other Higgs boson production modes	+0.01	-0.01
Total systematic uncertainty	+0.27	-0.23
Statistical uncertainty	+0.19	-0.19
Total uncertainty	+0.34	-0.30

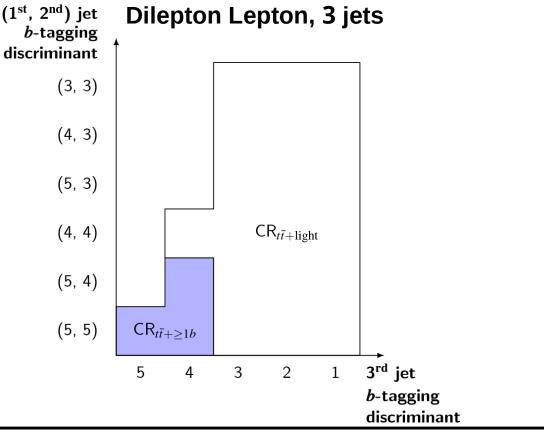

Conclusion

- Latest ATLAS results using 36/fb recorded in '15-'16 show evidence for ttH with significance of 4.2 σ (3.8 σ expected): $\mu = 1.17 \pm 0.19$ (stat.) $^{+0.27}_{-0.23}$ (syst.)
- Cross-section measurement: $\sigma(t\bar{t}H) = 590^{+160}_{-150}$ fb in agreement with SM prediction: 507^{+35}_{-50} fb
- ttH(bb) already systematics-limited. Requires some breakthrough to make significant progress from here.
- ttH multilepton currently most sensitive analysis and still mostly stat-limited.
- With the additional data, ttH(yy) will become the single most sensitive channel.
- Already close to 100 fb⁻¹ now on tape!

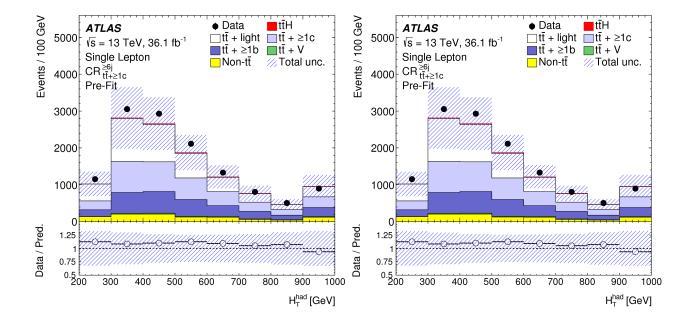
Backup


ttH(bb) (1 and 2 leptons)

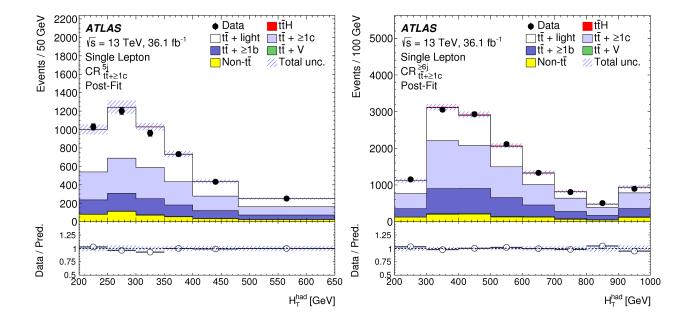
- Split into jet and b-jet multiplicity, merge regions with similar background content
 - → SR = Signal Region ("large" S/B); CR = Control Region (low S/B)

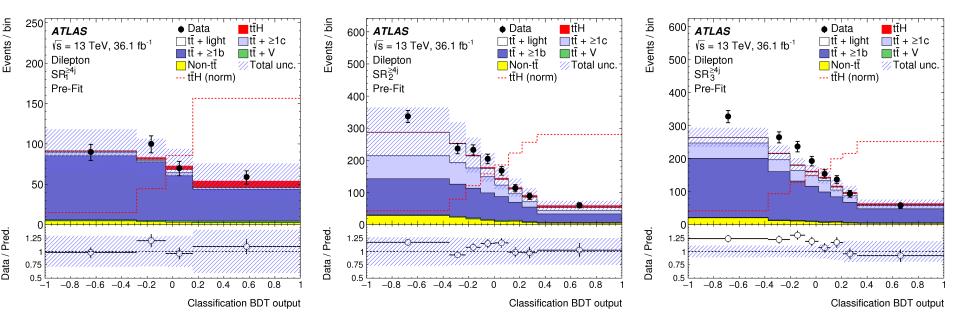

ttH(bb) (1 and 2 leptons)

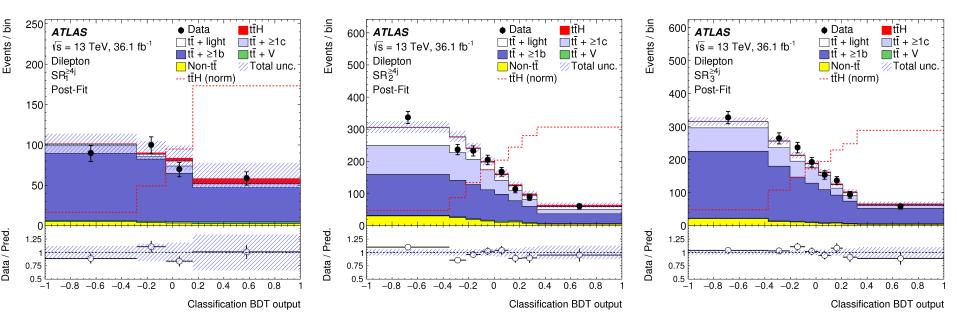
- Split into jet and b-jet multiplicity, merge regions with similar background content
 - → SR = Signal Region ("large" S/B); CR = Control Region (low S/B)



ttH(bb) (1 and 2 leptons)


- Split into jet and b-jet multiplicity, merge regions with similar background content
 - → SR = Signal Region ("large" S/B); CR = Control Region (low S/B)


ttH(bb) Single Lepton Control Regions: Pre-fit


ttH(bb) Single Lepton Control Regions: Post-fit

ttH(bb) Dilepton Signal Regions: Pre-fit

ttH(bb) Dilepton Signal Regions: Post-fit

ttH(bb) systematics

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t}+\geq 1c)$	Free-floating $t\bar{t} + \geq 1c$ normalization	$t\bar{t} + \geq 1c$
$k(t\bar{t}+\geq 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalization	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of NLO event generator	All, uncorrelated
PS & hadronization	Powheg+Herwig 7 vs. Powheg+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	$MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)$	$t\bar{t} + \geq 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. POWHEG+PYTHIA 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ global scales	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (MSTW)$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{NNPDF})$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ UE	Alternative set of tuned parameters for the underlying event	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 3b$ normalization	Up or down by 50%	$t\bar{t} + \ge 1b$

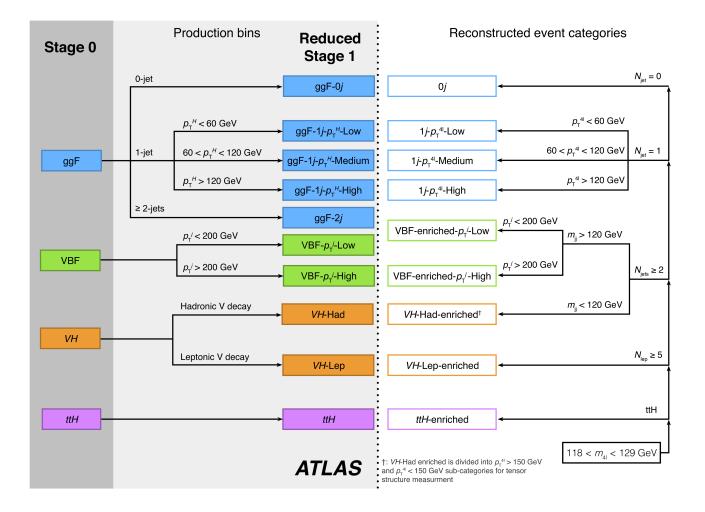
Channel	Selection criteria
Common	$N_{\text{jets}} \ge 2 \text{ and } N_{b\text{-jets}} \ge 1$
$2\ell SS$	Two very tight light leptons with $p_{\rm T} > 20 \text{ GeV}$
	Same-charge light leptons
	Zero medium $\tau_{\rm had}$ candidates
	$N_{\text{jets}} \ge 4 \text{ and } N_{b\text{-jets}} < 3$
3ℓ	Three light leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges ± 1
	Two same-charge leptons must be very tight and have $p_{\rm T} > 15 {\rm ~GeV}$
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT
	Zero medium $\tau_{\rm had}$ candidates
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
4ℓ	Four light leptons; sum of light-lepton charges 0
	Third and fourth leading leptons must be tight
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)
$1\ell + 2\tau_{had}$	One tight light lepton with $p_{\rm T} > 27 {\rm ~GeV}$
	Two medium τ_{had} candidates of opposite charge, at least one being tight
	$N_{ m jets} \geq 3$
$2\ell SS + 1\tau_{had}$	Two very tight light leptons with $p_{\rm T} > 15 {\rm ~GeV}$
	Same-charge light leptons
	One medium τ_{had} candidate, with charge opposite to that of the light leptons
	$N_{ m jets} \ge 4$
	m(ee) - 91.2 GeV > 10 GeV for ee events
$2\ell OS + 1\tau_{had}$	Two loose and isolated light leptons with $p_{\rm T} > 25$, 15 GeV
	One medium $\tau_{\rm had}$ candidate
	Opposite-charge light leptons
	One medium $\tau_{\rm had}$ candidate
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for the SFOC pair
	$N_{\rm jets} \ge 3$
$3\ell + 1\tau_{had}$	3ℓ selection, except:
	One medium τ_{had} candidate, with charge opposite to the total charge of the light leptons
	The two same-charge light leptons must be tight and have $p_{\rm T} > 10 \text{ GeV}$
	The opposite-charge light lepton must be loose and isolated

Process	Cross section [pb]	QCD scale $[\%]$	PDF+ α_S [%]	Order
$t\bar{t}H$	0.51	$^{+5.8}_{-9.2}$	± 3.6	NLO QCD+EWK
tHqb	0.074	$^{+6.5}_{-15}$	± 3.7	NLO QCD
tHW	0.015	$^{+4.9}_{-6.7}$	± 6.3	NLO QCD
$t\bar{t}W$	0.60	+13	± 3.4	NLO QCD+EWK
$t\bar{t}(Z/\gamma^* \to ll)$	0.12	-12 + 9.6 - 11	± 4.0	NLO QCD+EWK
$t\bar{t}t\bar{t}$	0.0092	$-11 \\ +31 \\ -26$	$^{+5.5}_{-5.9}$	NLO QCD
$t\bar{t}W^+W^-$	0.0099	-26 +11 -12 +2.4 -3.5	± 2.1	NLO QCD
$tar{t}$	832	$+2.4 \\ -3.5$	± 4.2	NNLO $QCD + NNLL$
$tar{t}\gamma$	5.7	± 5	0	NLO QCD
tZ	0.61	± 5	0	LO QCD
tWZ	0.16	± 5	0	NLO QCD
Single t (s-channel)	10	<u>+</u>	4	NLO QCD
Single t (t -channel)	217	<u>+</u> 2	4	NLO QCD
Single t (Wt)	72	\pm	5	NLO QCD + NNLL
$VV(\rightarrow llXX)$	37	± 5	0	NLO QCD
$Z \rightarrow l^+ l^-$	2070	土;	5	NNLO QCD

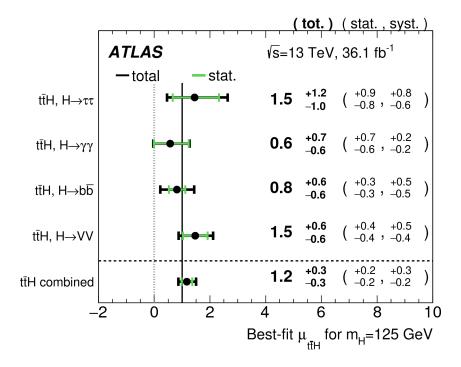
V	/ariable	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{hac}$
L	leading lepton $p_{\rm T}$		Х				
S	Second leading lepton $p_{\rm T}$	×	×			×	
Т	Third lepton $p_{\rm T}$		×				
a D	Dilepton invariant mass (all combinations)	\times	$\times *$				×
ΤË	Three-lepton invariant mass		×				
ğ F	Four-lepton invariant mass			×			
Lepton properties S S D H A L D S D	Best Z -candidate dilepton invariant mass			×			
g C	Other Z -candidate dilepton invariant mass			×			
b bř	Scalar sum of all leptons $p_{\rm T}$			×			×
j s	second leading lepton track isolation					×	
N	Maximum $ \eta $ (lepton 0, lepton 1)	×				$\times *$	
	Lepton flavor	$\times *$	$\times *$				
\mathbf{L}	Lepton charge		×				
	Number of jets	×*	×*		×	×	×
	Number of b-tagged jets	$\times *$	×*		×	×	×
	Leading jet $p_{\rm T}$						×
G	Second leading jet $p_{\rm T}$		×			×*	
0	Leading b-tagged jet $p_{\rm T}$		×			,	
Ser 1	Scalar sum of all jets $p_{\rm T}$		×		×	×	×
dol s	Scalar sum of all <i>b</i> -tagged jets $p_{\rm T}$		~		~	~	×
й н	Has leading jet highest b-tagging weight?		×				~
таран Г. – Г.	-tagging weight of leading jet		×				
	-tagging weight of second leading jet		×			×	
	-tagging weight of third leading jet		~			×	
	Pseudorapidity of fourth leading jet					×	
	Eading $\tau_{had} p_T$				×	~	×
C	Second leading $\tau_{had} p_T$				×		~
6	Di- τ_{had} invariant mass				×		
	$\tau_{\rm had}$ invariant mass $\tau_{\rm had}$ -furthest lepton				^	×	
	ΔR (lepton 0, lepton 1)		×			^	
	$\Delta R(\text{lepton 0, lepton 1})$		×				
	$\Delta R(\text{lepton 0, lepton 2})$	×					
	$\Delta R(\text{lepton 0, closest jet})$	×	×				
es A			×			×	
	$\Delta R(\text{lepton } 0, \text{ closest } b\text{-jet})$		×				
÷-	$\Delta R(\text{lepton 1, closest jet})$	×	×				
ə 4	$\Delta R(\text{lepton 2, closest jet})$		×				
α lar	Smallest ΔR (lepton, jet)		×				×
ng Su	Smallest $\Delta R(\text{lepton}, b\text{-tagged jet})$						×
an an	$\Delta R(\text{non-tagged jet}, b\text{-tagged jet})$						×
4	$\Delta R(\text{lepton } 0, \tau_{\text{had}})$						×
	$\Delta R(\text{lepton } 1, \tau_{\text{had}})$						×
	$\operatorname{Ainimum} \Delta R \text{ between all jets}$				×		
	ΔR between two leading jets					×	
g N	Missing transverse momentum $E_{\rm T}^{\rm miss}$	×		×			
∧ A A D⊥ D⊥ D1	Azimuthal separation $\Delta \phi$ (leading jet, $\overrightarrow{p_{\mathrm{T}}}^{\mathrm{miss}}$)		×				
	Transverse mass leptons $(H/Z \text{ decay}) - \overrightarrow{p_{\mathrm{T}}}^{\mathrm{miss}}$			×			
	Pseudo-Matrix-Element			×			

Higgs Toppings, Benasque

Systematic uncertainty	Type	Component
Luminosity	Ν	
Pileup reweighting	$_{\rm SN}$	
Physics Objects		
Electron	$_{\rm SN}$	
Muon	$_{\rm SN}$	1
$ au_{ m had}$	$_{\rm SN}$	1
Jet energy scale and resolution	$_{\rm SN}$	2
Jet vertex fraction	$_{\rm SN}$	
Jet flavor tagging	$_{\rm SN}$	12
$E_{\mathrm{T}}^{\mathrm{miss}}$	SN	
Total (Experimental)	_	19
Data-driven non-prompt/fake leptons and charge misassign	ment	
Control region statistics	$_{\rm SN}$	3
Light-lepton efficiencies	$_{\rm SN}$	2
Non-prompt light-lepton estimates: non-closure	Ν	
γ -conversion fraction	Ν	
Fake $\tau_{\rm had}$ estimates	N/SN	1
Electron charge misassignment	ŚN	
Total (Data-driven reducible background)	_	8
$t\bar{t}H$ modeling		
Cross section	Ν	
Renormalization and factorization scales	\mathbf{S}	
Parton shower and hadronization model	SN	
Higgs boson branching fraction	Ν	
Shower tune	SN	
$t\bar{t}W {f modeling}$		
Cross section	Ν	
Renormalization and factorization scales	S	
Matrix-element MC event generator	$_{\rm SN}$	
Shower tune	SN	
$t\bar{t}Z$ modeling		
Cross section	Ν	
Renormalization and factorization scales	S	
Matrix-element MC event generator	SN	
Shower tune	SN	
Other background modeling	211	
Cross section	Ν	1
Shower tune	SN	1
Total (Signal and background modeling)	_	4
Total (Overall)		31


Higgs Toppings, Benasque

ttH, multilepton and combination


Channel	Best-fit μ			Significance	
	Observed	Expected	Observed	Expected	
$2\ell OS + 1\tau_{had}$	$1.7 \stackrel{+1.6}{_{-1.5}}$ (stat.) $\stackrel{+1.4}{_{-1.1}}$ (syst.)	$1.0^{+1.5}_{-1.4}$ (stat.) $^{+1.2}_{-1.1}$ (syst.)	0.9σ	0.5σ	
$1\ell + 2\tau_{had}$	$-0.6 \stackrel{+1.1}{_{-0.8}}$ (stat.) $\stackrel{+1.1}{_{-1.3}}$ (syst.)	$1.0 {}^{+1.1}_{-0.9}$ (stat.) ${}^{+1.2}_{-1.1}$ (syst.)	—	0.6σ	
4ℓ	$-0.5 \begin{array}{c} +1.3 \\ -0.8 \end{array}$ (stat.) $\begin{array}{c} +0.2 \\ -0.3 \end{array}$ (syst.)	$1.0 {}^{+1.7}_{-1.2}$ (stat.) ${}^{+0.4}_{-0.2}$ (syst.)	—	0.8σ	
$3\ell + 1\tau_{had}$	$1.6 \ ^{+1.7}_{-1.3}$ (stat.) $\ ^{+0.6}_{-0.2}$ (syst.)	$1.0 {}^{+1.5}_{-1.1}$ (stat.) ${}^{+0.4}_{-0.2}$ (syst.)	1.3σ	0.9σ	
$2\ell SS+1\tau_{had}$	$3.5 \ ^{+1.5}_{-1.2}$ (stat.) $\ ^{+0.9}_{-0.5}$ (syst.)	$1.0 {}^{+1.1}_{-0.8}$ (stat.) ${}^{+0.5}_{-0.3}$ (syst.)	3.4σ	1.1σ	
3ℓ	$1.8 \begin{array}{c} +0.6 \\ -0.6 \end{array}$ (stat.) $\begin{array}{c} +0.6 \\ -0.5 \end{array}$ (syst.)	$1.0 {}^{+0.6}_{-0.5}$ (stat.) ${}^{+0.5}_{-0.4}$ (syst.)	2.4σ	1.5σ	
$2\ell SS$	$1.5 {+0.4 \atop -0.4}$ (stat.) ${+0.5 \atop -0.4}$ (syst.)	$1.0 {}^{+0.4}_{-0.4}$ (stat.) $ {}^{+0.4}_{-0.4}$ (syst.)	2.7σ	1.9σ	
Combined	$1.6 {}^{+0.3}_{-0.3}$ (stat.) ${}^{+0.4}_{-0.3}$ (syst.)	$1.0 \ ^{+0.3}_{-0.3}$ (stat.) $\ ^{+0.3}_{-0.3}$ (syst.)	4.1σ	2.8σ	

Channel	Best-fit μ		Significance		
	Observed	Expected	Observed	Expected	
Multilepton	$1.6 \ ^{+0.5}_{-0.4}$	$1.0 \ ^{+0.4}_{-0.4}$	4.1σ	2.8σ	
$H \to b \bar{b}$	$0.8 \ ^{+0.6}_{-0.6}$	$1.0 \ ^{+0.6}_{-0.6}$	1.4σ	1.6σ	
$H\to\gamma\gamma$	$0.6 \ ^{+0.7}_{-0.6}$	$1.0 \ ^{+0.8}_{-0.6}$	0.9σ	1.7σ	
$H \to 4\ell$	< 1.9	$1.0 \ ^{+3.2}_{-1.0}$		0.6σ	
Combined	$1.2 \ ^{+0.3}_{-0.3}$	$1.0 \ ^{+0.3}_{-0.3}$	4.2σ	3.8σ	

ttH, $H \rightarrow ZZ^* \rightarrow 4$ light leptons

ttH, combination of all channels

