Trigger Discussion

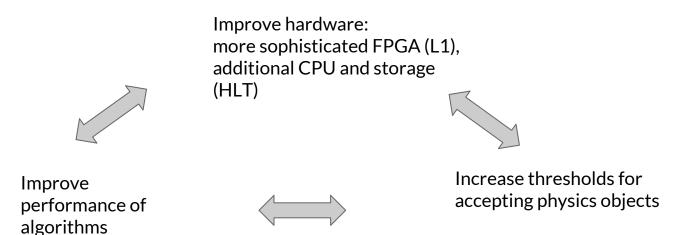
Higgs Tasting Workshop

2016-05-18

Benasque

Davide Gerbaudo

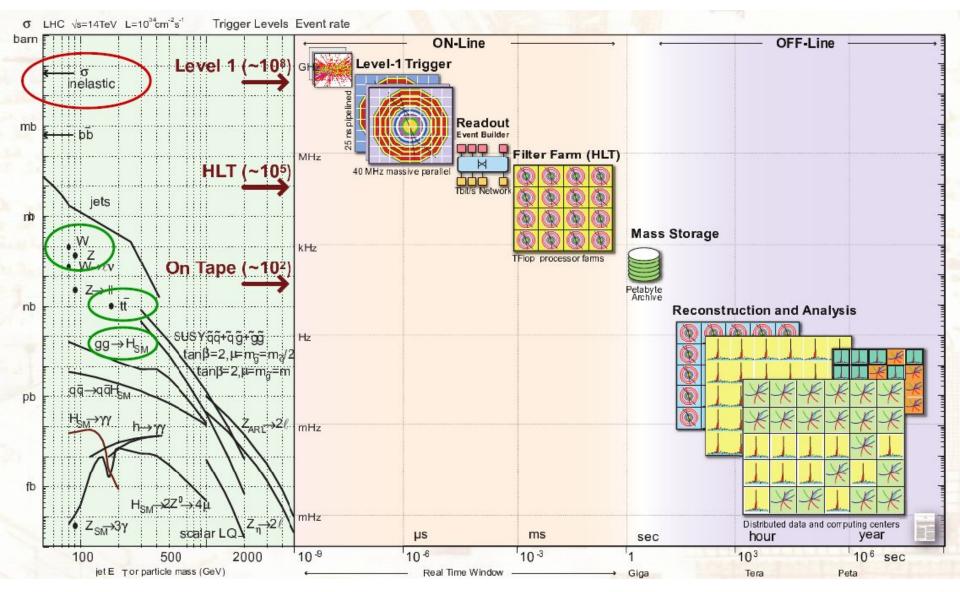
IFAE Barcelona


Trigger Challenges for Run2

Energy: 8 TeV \rightarrow 13 TeV Cross section increase for all processes.

Bunch spacing:

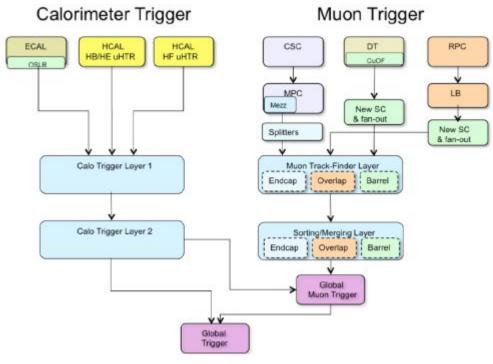
 $50ns \rightarrow 25ns$ Increased out-of-time pileup Luminosity: $8e33 \rightarrow 1.4e34 \text{ cm-}2s-1$ Higher rate from higher peak luminosity.

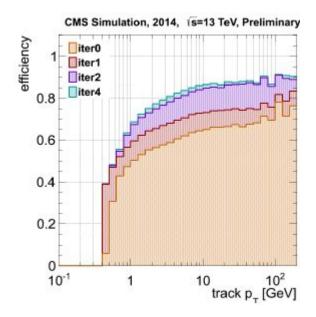

Overall, trigger rates expected to increase by at least a factor of ~5 More severe for triggers involving multiple objects (combinatorics)

Two years of hard work on all these fronts.

Benasque 2016-05-18

CMS Trigger Overview

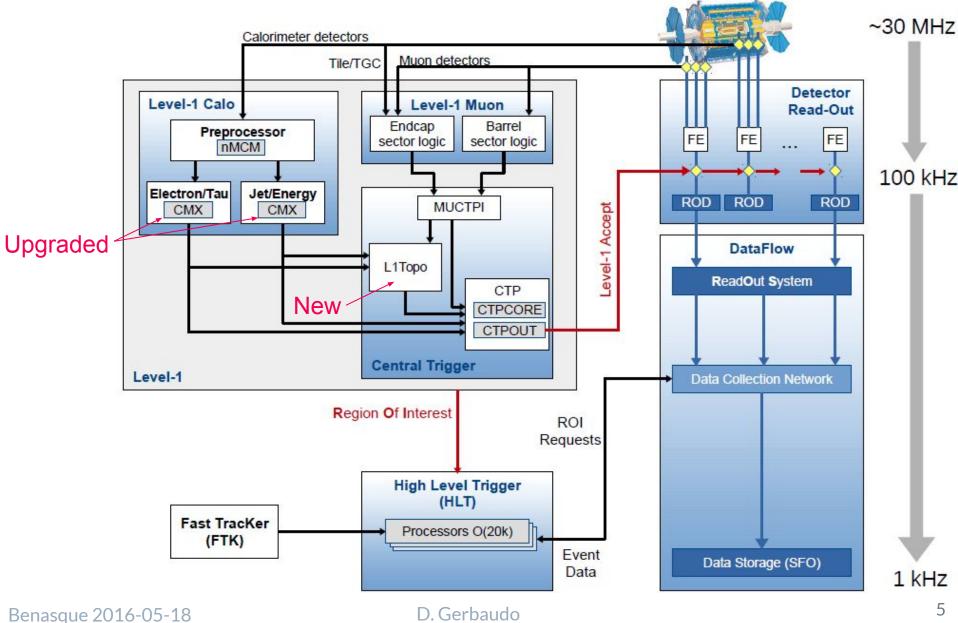



Benasque 2016-05-18

CMS: Trigger Improvements

L1

- Two-level L1Calo: improved pileup subtraction
- Additional endcap muon chambers
- Improved muon track-finder (larger FPGA, more hits, iso)

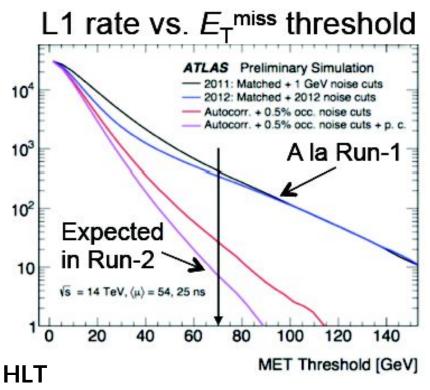


HLT

- All algorithms use Particle Flow object reconstruction
- Iterative track reconstruction
- Improved primary vertex finding
- Improved b-tagging

Benasque 2016-05-18

ATLAS Trigger Overview



5

Improvements

L1

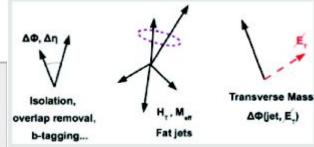
- L1Calo: dynamic pedestal subtraction → reduction in ETmiss rates and more flexible signal processing
- Muons in forward region: require coincidence with inner detectors
- L1 topological processor

- merge L2 and EF in a unique HLT farm \rightarrow dynamic sharing of resources
- jet area pileup suppression and jet finding on merged regions of interest
- multi-step tracking
- multivariate b-taggers online (JetFitter, MV1, MV2)

Benasque 2016-05-18

ATLAS New L1Topo Module

L1 hardware receiving and combining inputs from L1Calo and L1Muon \rightarrow trigger decisions based on event topology

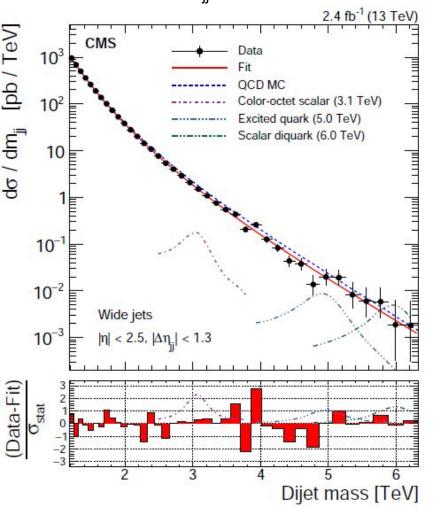

Angular Requirements $\Delta\eta, \Delta\varphi, \Delta R^2, \Delta\eta + \Delta\varphi$

Mass Requirements $M^2 = 2E_T^1 E_T^2 (\cosh \Delta \eta - \cos \Delta \varphi)$ $M_T^2 = 2E_T^1 E_T^{miss} (1 - \cos \Delta \varphi)$

$$H_{T} = \sum p_{T}(jets)$$
$$H_{CT} = \sum p_{T}(central jets)$$
$$L1Topo MET$$

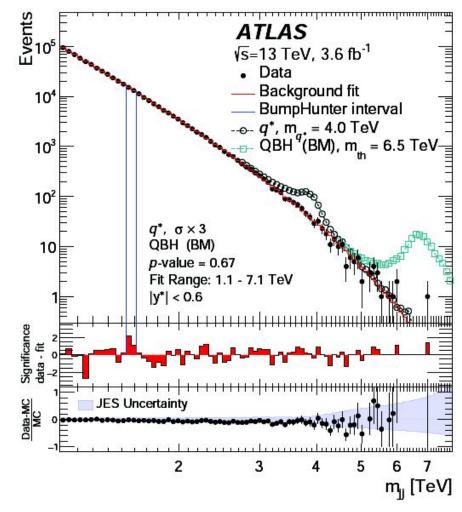
Dedicated Algorithms Calorimeter Ratio Delayed Particles

Constraints:


- up to 128 bits
- only fixed latency FPGA algorithms (max latency: 3bx)
- input collections limited to N(~10) objects
- Currently being commissioned

Examples:

- "b-tag"
- VBF
- di-jet (and 4-jet) with mass requirements

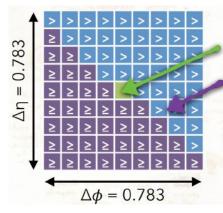

Dijet searches and triggers

CMS <u>1512.01224 [hep-ex]</u> Trigger: H_T >800GeV or $p_{T,jet}$ >500GeV Fully efficient at m_{ii} >1.2 TeV

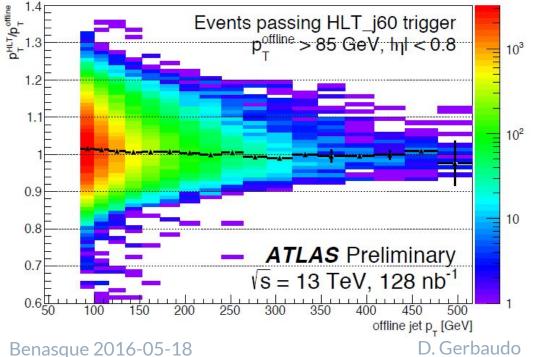
ATLAS <u>1512.01530 [hep-ex]</u>

Trigger: at least one jet with $p_T > 360$ GeV.

Benasque 2016-05-18



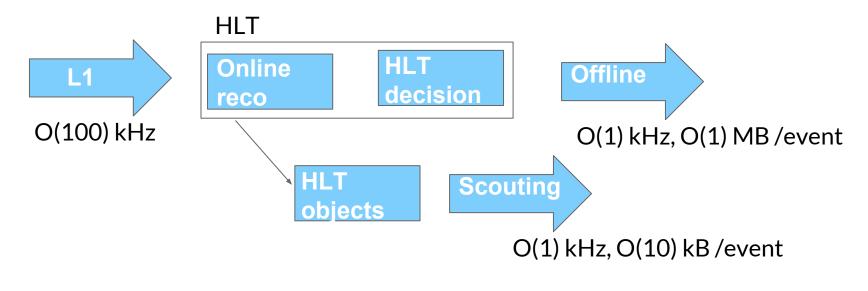
8


Trigger Jets are not Offline Jets

L1 jets are "rectangular jets" \rightarrow trigger bias when

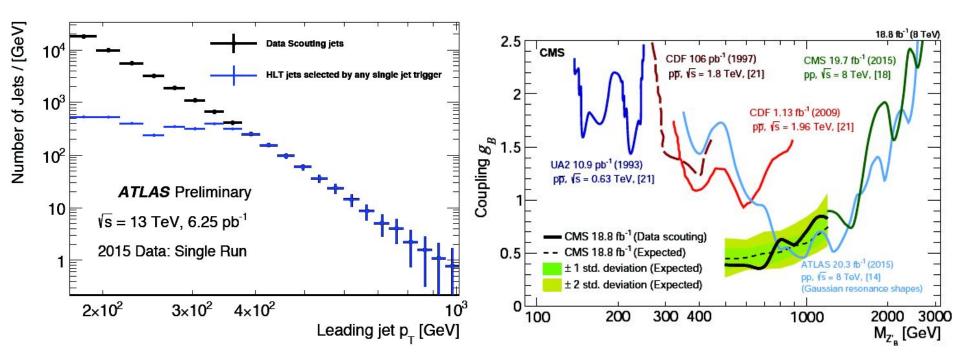
they are closeby

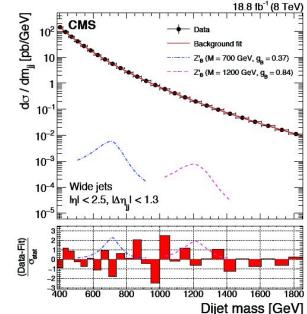
- 1. Look for local maximum above jet seed threshold
- 2. Apply mask to surrounding tower (antisymmetric to avoid double-counting of overlapping jets)
- 3. Jet $E_T = \sum TT$ in 9 × 9, jet centre = highest energy TT


HLT jets have small remaining differences wrt. offline jets:

- calibrations
- pileup removal

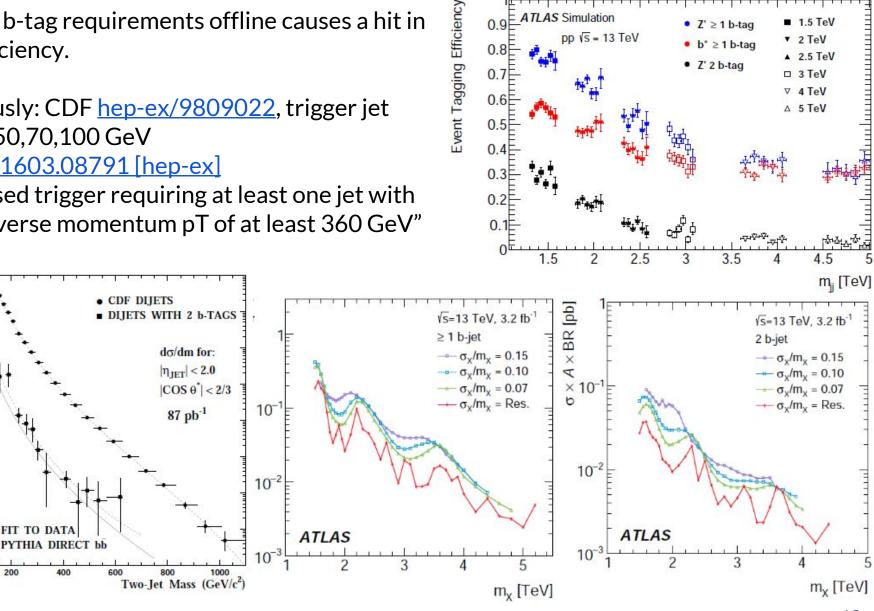
 Although experiments try hard to get as close as possible to their offline algorithms


Data scouting


- Motivation: the dijet trigger rate is very large \rightarrow cannot look for light resonances with small cross sections
- Some low-mass regions of the xsec vs. m plane have not been explored since UA1 and CDF
- The bottleneck is in MB/s, not in event/s → write only what is needed: jet 4-momenta and cleaning information
- Introduced by CMS in Run1 and by ATLAS in Run2

Data scouting

- Reconstruct at HLT all physics objects needed for an offline analysis
- Apply a loose trigger selection, then save the HLT objects
- Some low-mass regions of the xsec vs. m plane have not been explored since UA1 and CDF
- Example ATLAS: scouting stream triggered by unprescaled L1_J75



Dijet with b-tag

Adding b-tag requirements offline causes a hit in the efficiency.

Previously: CDF hep-ex/9809022, trigger jet p_T>20,50,70,100 GeV ATLAS 1603.08791 [hep-ex]

"jet-based trigger requiring at least one jet with a transverse momentum pT of at least 360 GeV"

Benasque 2016-05-18

200

FIT TO DATA

dơ/dm [pb/(GeV/c²)] c c c c

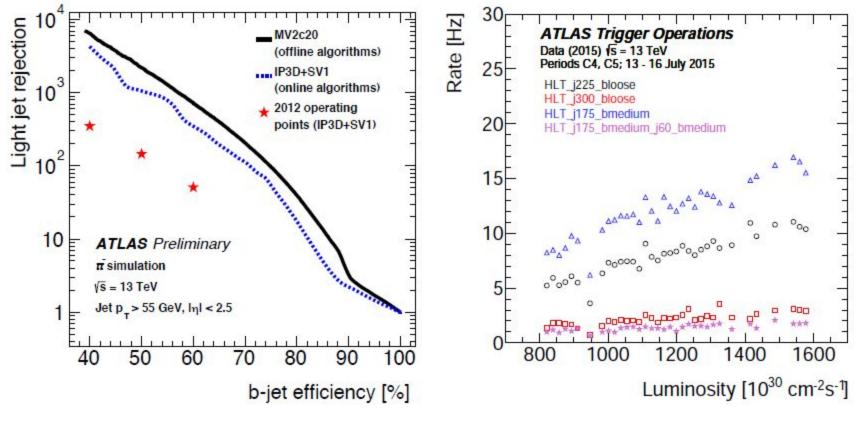
10

10

10

10

10


D. Gerbaudo

ATLAS Trigger: b-tag

Run2: improved b-tagging efficiency thanks to the insertion of a 4th innermost pixel layer (IBL)

Use offline tagger (MV2): first fast tracking for PV ($\Delta R < 0.2$), then precision tracking for secondary vertex and b-tag ($\Delta R < 0.4$)

The operating points: efficiencies are 79% (bloose) and 72% (bmedium)

Conclusion / Discussion

- If the 750 GeV bump remains, the trigger capabilities (and its limitations) will play an important role in what can be studied
- $\gamma \gamma$ not limited by trigger \rightarrow not discussed here
- Rich and complex trigger menu for both ATLAS and CMS
- Limitations (prescales or approximations) are mostly at L1, where the rates are higher and the algorithms more primitive
- di-jet: data scouting a useful resource to probe low-mass resonances
- di-b-jet: allows for significantly lower pT thresholds than simple di-jet
- L1Topo: topological constraints can help deal with large multi-jet production

References

CMS

- Performance of the CMS High Level Trigger, A. Perrotta, CHEP 2015
- The Trigger of the CMS experiment, A. Bocci, KSETA 2016
- Performance of Tracking, b-tagging, and Jet/MET at the CMS High Level Trigger, M. Tosi, CHEP 2015

ATLAS

- The Run-2 ATLAS Trigger System, A. Ruiz-Martinez, ACAT 2016
- 2015 start-up trigger menu and initial performance assessment of the ATLAS trigger using Run-2 data, ATL-DAQ-PUB-2016-001, in preparation
- The ATLAS Trigger System: Ready for Run-2, Y.Nakahama, CHEP 2015

ATLAS Trigger Menu Summary

Trigger	Typical offline selection	Trigger Selection		Level-1 Peak	HLT Peak
		Level-1 (GeV)	HLT (GeV)	Rate (kHz) $L = 5 \times 10^{33}$	$\frac{\text{Rate (Hz)}}{\text{cm}^{-2}\text{s}^{-1}}$
C! 1 1 .	Single iso μ , $p_{\rm T} > 21 \text{ GeV}$	15	$\begin{array}{c} 20\\ 24\\ 40\\ 80\\ \hline 2 \times 10\\ 18, 8\\ 2 \times 12\\ \hline 7, 24\\ 17, 14\\ 35, 25\\ \hline 25, 14\\ \end{array}$	7	130
Single leptons	Single $e, p_{\rm T} > 25 \text{ GeV}$	20	24	18	139
	Single μ , $p_{\rm T} > 42 \text{ GeV}$	20	40	5	33
	Single τ , $p_{\rm T} > 90$ GeV	60	80	2	41
	Two μ 's, each $p_{\rm T} > 11 \text{ GeV}$	2×10	2×10	0.8	19
	Two μ 's, $p_{\rm T} > 19, 10 \text{ GeV}$	15	18, 8	7	18
Two leptons	Two loose e 's, each $p_{\rm T} > 15 \text{ GeV}$	2×10		10	5
	One <i>e</i> & one μ , $p_{\rm T} > 10, 26 \text{ GeV}$	$20 \ (\mu)$	7, 24	5	1
	One loose e & one μ , $p_{\rm T} > 19, 15$ GeV	15, 10	17, 14	0.4	2
	Two τ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	20, 12	35, 25	2	22
	One τ , one μ , $p_{\rm T} > 30, 15 \text{ GeV}$	12, 10 (+jets)	25, 14	0.5	10
	One τ , one $e, p_{\rm T} > 30, 19 \text{ GeV}$	12, 15 (+jets)	25, 17	1	3.9
	Three loose e 's, $p_{\rm T} > 19, 11, 11 \text{ GeV}$	$15, 2 \times 7$	$17, 2 \times 9$	3	< 0.1
	Three μ 's, each $p_{\rm T} > 8 \text{ GeV}$	3×6	3×6	< 0.1	4
Three leptons	Three μ 's, $p_{\rm T} > 19, 2 \times 6$ GeV	15	$18, 2 \times 4$	7	2
	Two μ 's & one $e, p_T > 2 \times 11, 14 \text{ GeV}$	$2 \times 10 \ (\mu's)$	$2 \times 10, 12$	0.8	0.2
	Two loose e 's & one μ , $p_{\rm T} > 2 \times 11, 11 \text{ GeV}$	$2 \times 8, 10$	$2 \times 12, 10$	0.3	< 0.1
One photon	one γ , $p_{\rm T} > 125 \text{ GeV}$	22	120	8	20
Two photons	Two loose γ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	2×15	35, 25	1.5	12
	Two tight γ 's, $p_{\rm T} > 25, 25 \text{ GeV}$	2×15	2×20	1.5	7
0: 1 : .	Jet $(R = 0.4), p_{\rm T} > 400 \text{ GeV}$	100	360	0.9	18
Single jet	Jet $(R = 1.0), p_{\rm T} > 400 \text{ GeV}$	100	360	0.9	23
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 180 {\rm ~GeV}$	50	70	0.7	55
Multi-jets	Four jets, each $p_{\rm T} > 95$ GeV	3×40	4×85	0.3	20
	Five jets, each $p_{\rm T} > 70 \text{ GeV}$	4×20	5×60	0.4	15
	Six jets, each $p_{\rm T} > 55 \text{ GeV}$	4×15	6×45	1.0	12
	One loose $b, p_{\rm T} > 235 \text{ GeV}$	100	225	0.9	35
b-jets	Two medium b 's, $p_{\rm T} > 160, 60 \text{ GeV}$	100	150,50	0.9	9
	One b & three jets, each $p_{\rm T} > 75 \text{ GeV}$	3×25	4×65	0.9	11
	Two b & two jets, each $p_{\rm T} > 45 \text{ GeV}$	3 imes 25	4×35	0.9	9
b-physics	Two μ 's, $p_T > 6, 4$ GeV plus dedicated <i>b</i> -physics selections	6, 4	6, 4	8	52
Total				70	1400

Benasque 2016-05-18

CMS L1 Trigger Menu Summary

(Unprescaled) object	PT threshold 2012 (final lumi), GeV	PT threshold 2015 (50ns, L=5e33), GeV	PT threshold 2015 (25ns, L=14e33), GeV	
Single Muon	16	16	20er ^(*) / 25	
Double Muon	10+3.5	10+3.5	12+5	
Single EGamma	22	25	40	
Single Iso EGamma	20	22er ^(*)	30er ^(*)	
Double EGamma	13+7	15+10 22+10		
Muon + EGamma	12+7 / 3.5+12	12+10 / 5+15	20+10 / 5+20	
Single Jet	128	128	200	
Quad Jet	40	40	60	
MET	40	50	70	
HTT	175	125	175	
Double Iso Tau	-	36er ^(*)	40er ^(*)	

CMS HLT Trigger Menu Summary

(Unprescaled) object	PT threshold 2012 (final lumi), GeV	PT threshold 2015 (50ns, L=5e33), GeV	PT threshold 2015 (25ns, L=14e33), GeV
Single Muon	40	50 / 45er ^(*)	50 / 45er ^(*)
Single Iso Muon	24	20	27 / 24er ^(*)
Single Iso Electron	27	27	32
Single Photon	150	170	170
Single PF Jet	320	450	450
(PF) MET	120 (80 parked)	170	170
(PF) HT	750	900	900

Note: these are preliminary thresholds shown at CHEP2015. Subject to later fine tuning.