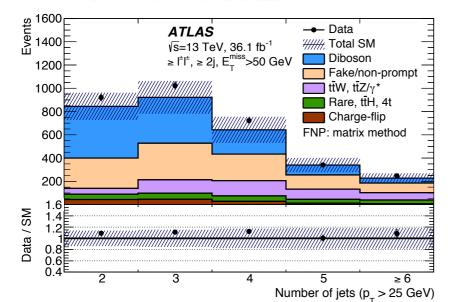
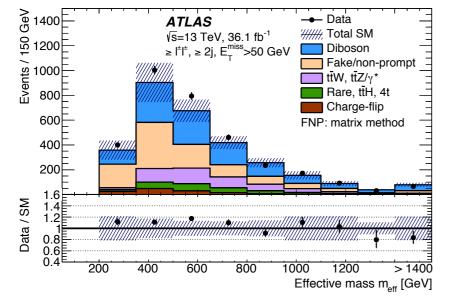
Top pair production in association with a W or a Z boson

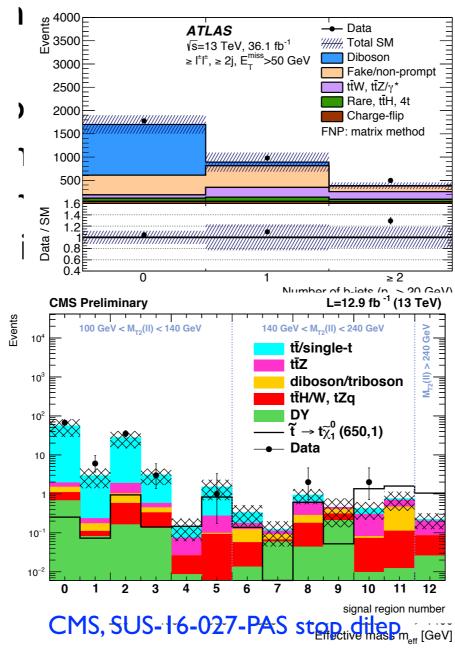
Marco Zaro Higgs Toppings Workshop@Benasque

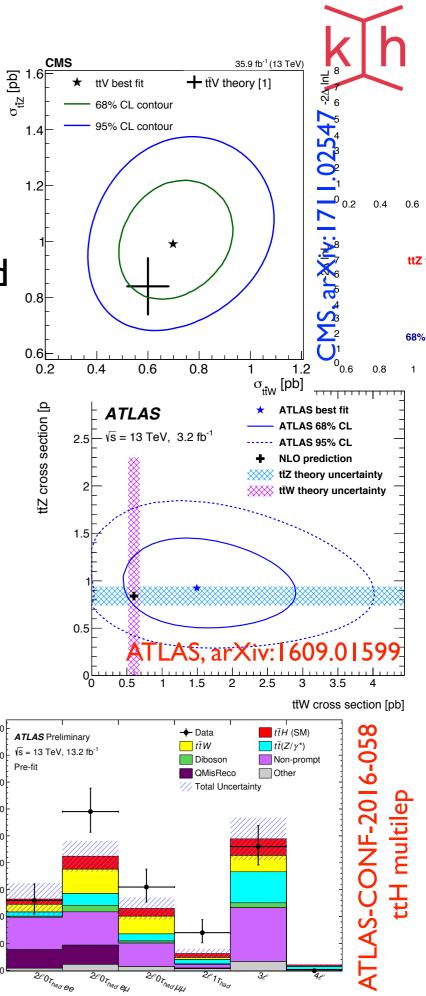
May 28th 2018


Outline:

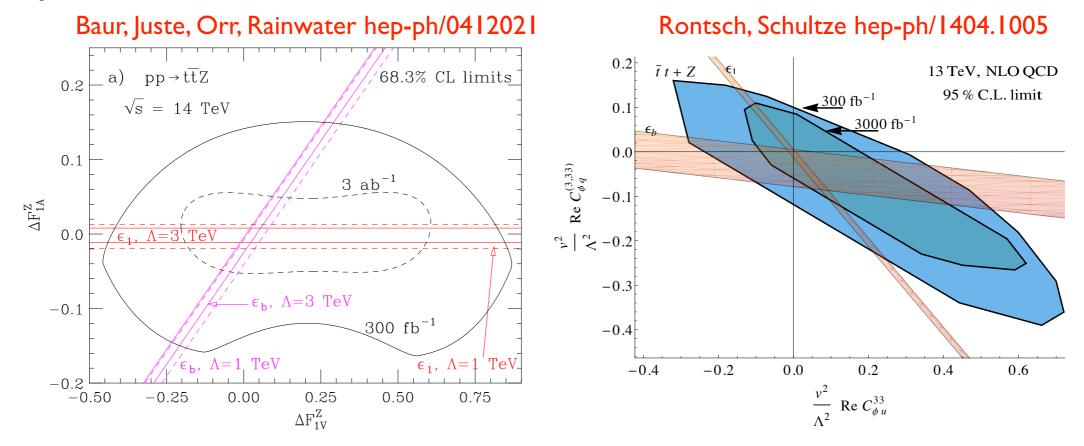
- Motivation
- State-of-the art predictions for $t\overline{t}V$: where do we stand?
- What can ttV tell us about new physics?




Motivation -


• $t\bar{t}V$ and $t\bar{t}Z$ production has already been measured

ATLAS, 1706.03731 SUSY multilep+jets



Motivation - II

 These processes are also interesting by themselves: they give direct access to the top weak couplings, otherwise only indirectly bound by EW precision data

Higher-order corrections for $\ensuremath{t\overline{t}V}$

Precision for $t\overline{t}W$ and $t\overline{t}Z$

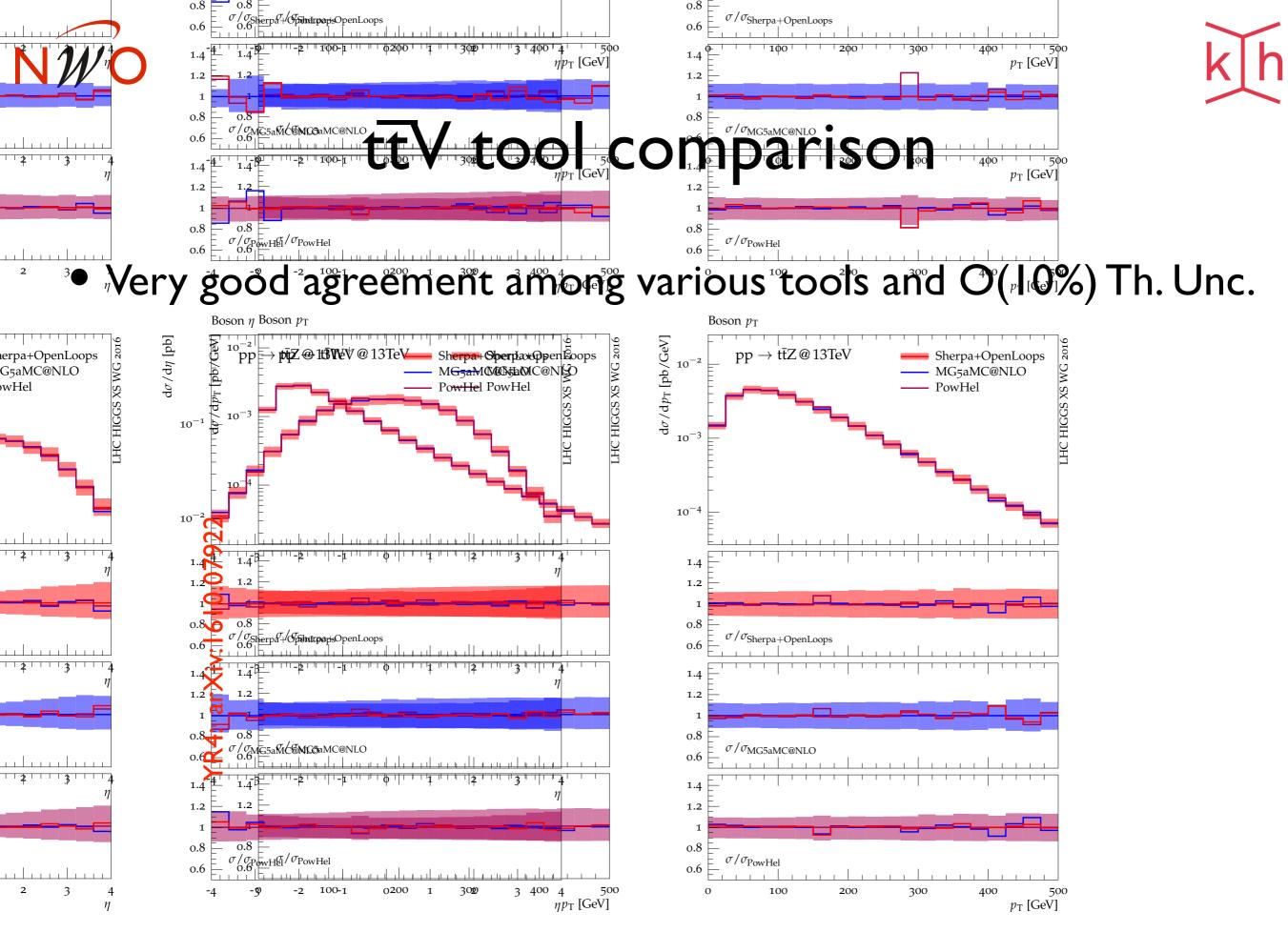
- ttV(V=W,Z): simulation-wise, well within reach of NLO+PS generators
 - NLO QCD corrections are moderate-to-large (~60%) at 13 TeV. Beware, for ttW they are huge (150%) at 100 TeV

tty Melnikov et al. arXiv:1102.1967; ttW,tty*/Z, tty Hirschi et al. arXiv:1103.0621; ttZ Lazopoulos et al. arXiv: 0804.2220; ttZ Kardos et al. arXiv:1111.0610; ttW Campbell et al. arXiv:1204.5678; ...

- + Ij can be included with NLO merging
- Beyond NLO QCD, resumed predictions (NNLL) and EW corrections are available for ttV

Frixione, Hirschi, Pagani, Shao, MZ, arXiv:1504.03446 Broggio, Ferroglia, Ossola, Pecjak, arXiv:1607.05303 & 1702.00800

• Both effects are found to be moderate; EW corrections enhanced in the tails

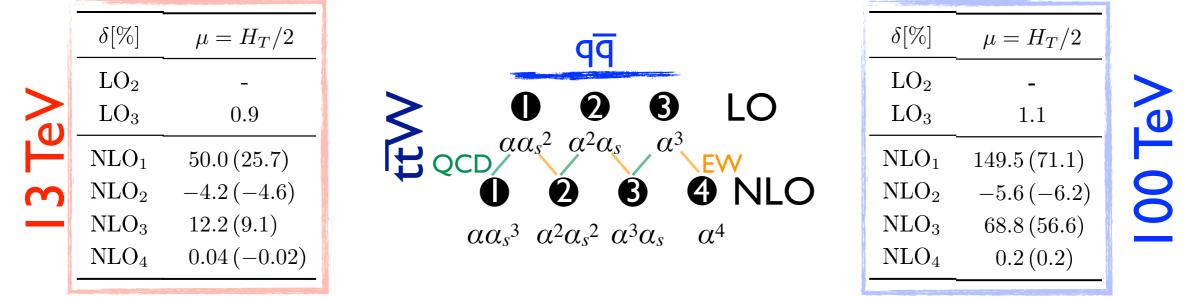

$t\bar{t}W^+$: $\delta(\%)$	$13 { m TeV}$	ttZ 13 TeV
NLO QCD	$50.1^{+14.2}_{-13.5} \pm 2.4 \ (59.7^{+18.9}_{-17.7} \pm 3.1)$	$45.9^{+13.2}_{-15.5} \pm 2.9 \ (40.2^{+11.1}_{-15.0} \pm 4.7)$
LO EW	0	$0.0 \pm 0.7 \ (2.1 \pm 1.6)$
LO EW no γ	0	$-1.1 \pm 0.0 \ (-0.3 \pm 0.0)$
NLO EW	$-7.7 \pm 0.2 (-19.2 \pm 0.7)$	$-3.8 \pm 0.2 \ (-11.1 \pm 0.5)$
NLO EW no γ	$-8.0\pm0.2~(-20.0\pm0.5)$	$-4.1\pm0.1~(-11.5\pm0.3)$
HBR	3.88(7.41)	0.96(2.13)

EW corrections, $\alpha^2 \alpha_s^2$ (boosted kin.)

NNLL resummation

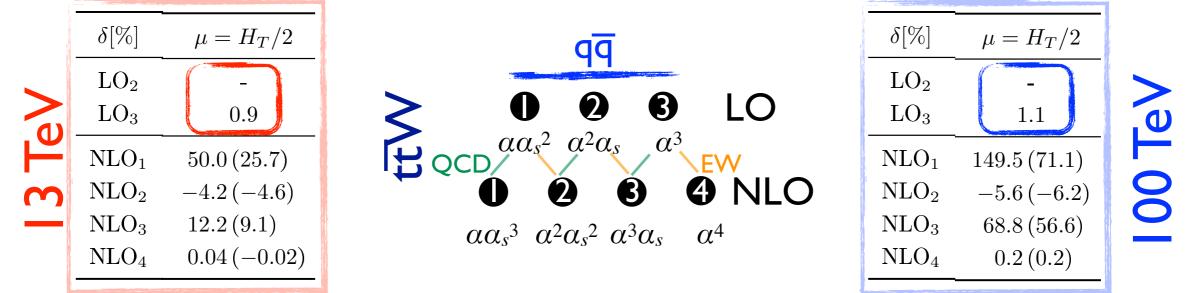
13 TeV NLO	$t\bar{t}W^+$	$356.3^{+43.7}_{-39.5}$
13 TeV NLO	$t\bar{t}W^{-}$	$182.2^{+23.1}_{-20.4}$
13 TeV NLO	$t\bar{t}Z$	$728.3^{+93.8}_{-90.3}$
13 TeV NLO+NNLL	$t\bar{t}W^+$	$341.0^{+23.1}_{-13.6}$
13 TeV NLO+NNLL	$t\bar{t}W^{-}$	$177.1^{+12.0}_{-6.9}$
13 TeV NLO+NNLL	$t\bar{t}Z$	$777.8^{+61.3}_{-65.2}$

Marco Zaro, 28-05-2018

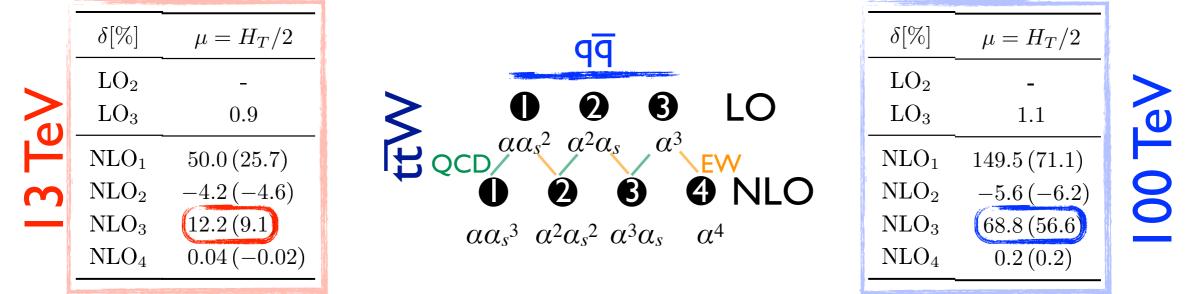


Marco Zaro, 28-05-2018

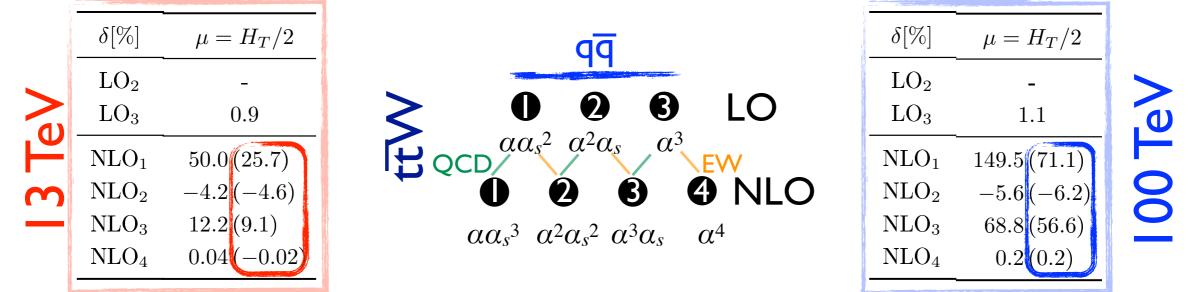
	$\delta[\%]$	$\mu = H_T/2$	ΔD	$\delta [\%]$	$\mu = H_T/2$	
>	LO_2 LO_3	- 0.9		LO_2 LO_3	- 1.1	e<
I 3 Te	$\begin{array}{c} \mathrm{NLO}_1\\ \mathrm{NLO}_2\\ \mathrm{NLO}_3\\ \mathrm{NLO}_4 \end{array}$	$50.0(25.7) \\ -4.2(-4.6) \\ 12.2(9.1) \\ 0.04(-0.02)$	$\begin{array}{c} \alpha \alpha_s^2 & \alpha^2 \alpha_s & \alpha^3 \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \alpha \alpha_s^3 & \alpha^2 \alpha_s^2 & \alpha^3 \alpha_s & \alpha^4 \end{array}$	$\begin{array}{c} \mathrm{NLO}_1\\ \mathrm{NLO}_2\\ \mathrm{NLO}_3\\ \mathrm{NLO}_4 \end{array}$	$\begin{array}{c} 149.5(71.1)\\ -5.6(-6.2)\\ 68.8(56.6)\\ 0.2(0.2) \end{array}$	1 00 T


Frederix, Pagani, MZ, arXiv:1711.02116

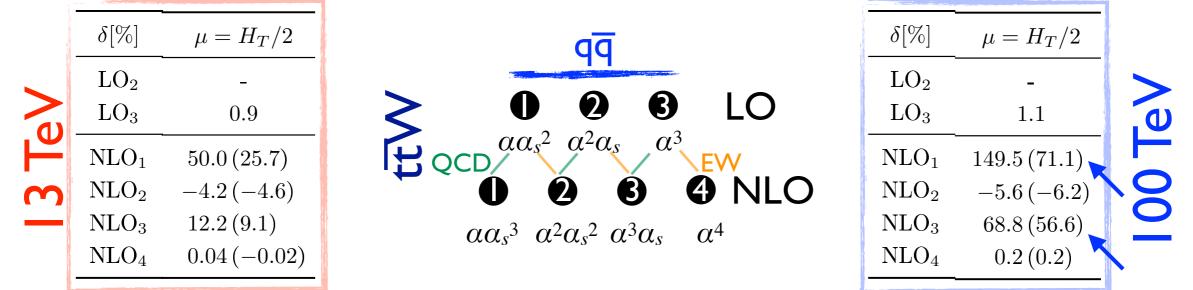
- Subleading contributions to ttW (and ttZ) exist beyond NLO QCD and EW.An estimate based on coupling-constants suggest them to be negligible.
- This is not the case:


• Relative contributions /LO1 (number in parentheses are for a 100 GeV jet-veto)

- Subleading contributions to ttW (and ttZ) exist beyond NLO QCD and EW.An estimate based on coupling-constants suggest them to be negligible.
- This is not the case:


- Relative contributions /LO1 (number in parentheses are for a 100 GeV jet-veto)
- LO_{2,3} are completely negligible (LO₂ is identically zero)

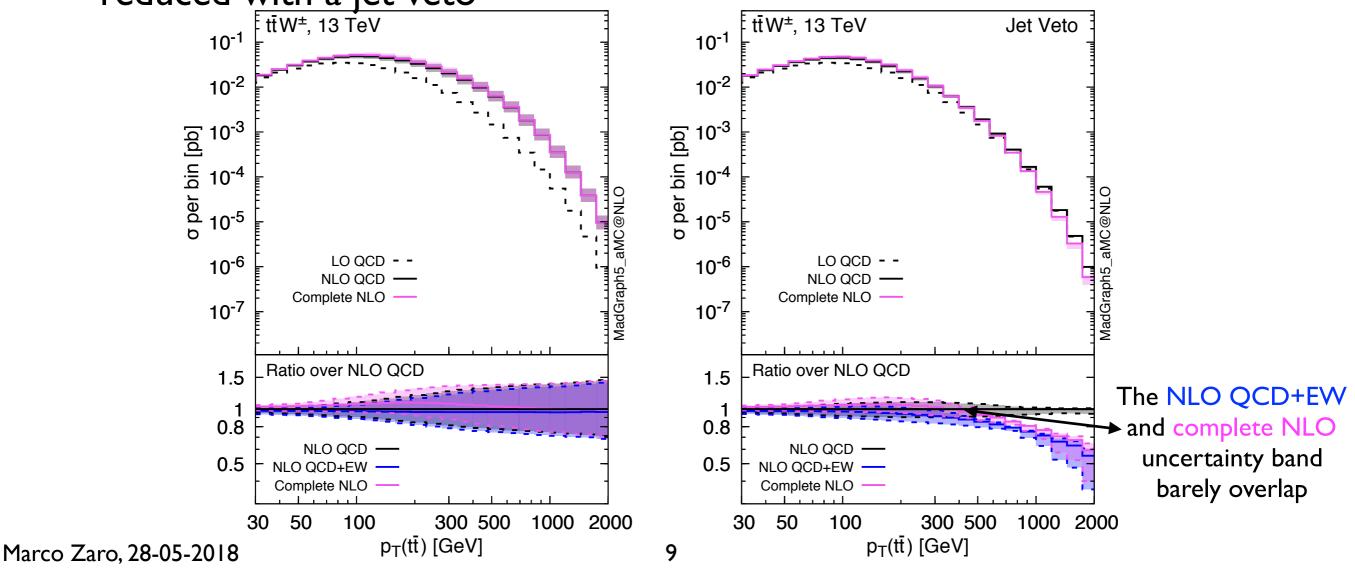
- Subleading contributions to ttW (and ttZ) exist beyond NLO QCD and EW.An estimate based on coupling-constants suggest them to be negligible.
- This is not the case:


- Relative contributions $/LO_1$ (number in parentheses are for a 100 GeV jet-veto)
- LO_{2,3} are completely negligible (LO₂ is identically zero)
- Because of the t-W scattering, NLO₃ is positive and (much) larger than NLO₂

- Subleading contributions to ttW (and ttZ) exist beyond NLO QCD and EW.An estimate based on coupling-constants suggest them to be negligible.
- This is not the case:

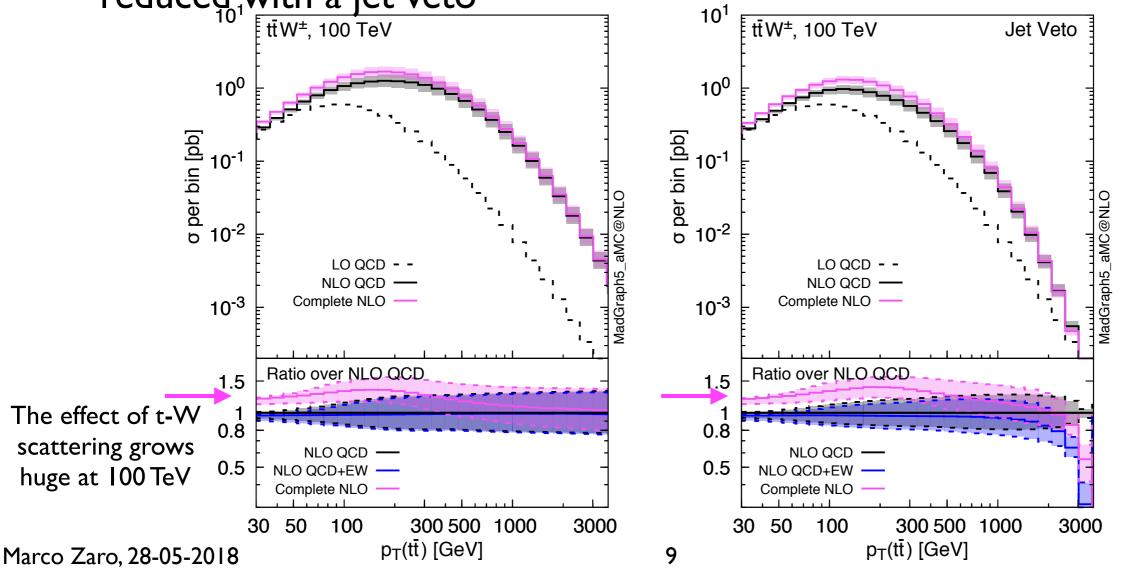
- Relative contributions /LO₁ (number in parentheses are for a 100 GeV jet-veto)
 LO₂ are completely perficible (LO₂ is identically zero)
- LO_{2,3} are completely negligible (LO₂ is identically zero)
 Because of the t \M scattering MI O₂ is positive and (much) larger
- Because of the t-W scattering, NLO₃ is positive and (much) larger than NLO₂
 The jet veto greatly reduces the NLO₁ (QCD corrections), which is dominated
- by hard radiation, and only mildly affects the other contributions

- Subleading contributions to ttW (and ttZ) exist beyond NLO QCD and EW.An estimate based on coupling-constants suggest them to be negligible.
- This is not the case:

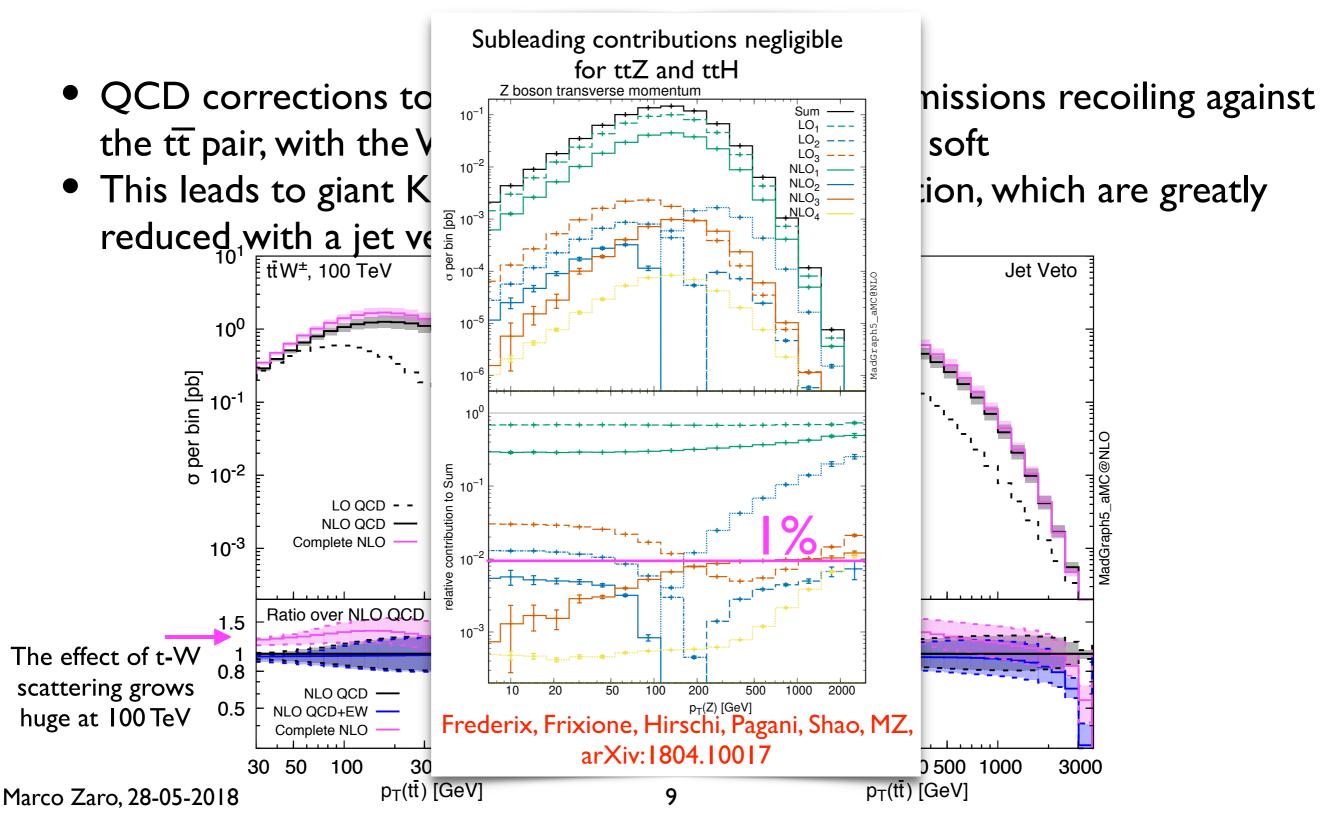

- Relative contributions /LO₁ (number in parentheses are for a 100 GeV jet-veto)
- LO_{2,3} are completely negligible (LO₂ is identically zero)
- Because of the t-W scattering, NLO₃ is positive and (much) larger than NLO₂
- The jet veto greatly reduces the NLO₁ (QCD corrections), which is dominated by hard radiation, and only mildly affects the other contributions
- At 100 TeV, NLO₃/LO₁~60% \rightarrow almost as large as NLO₁ with the jet veto

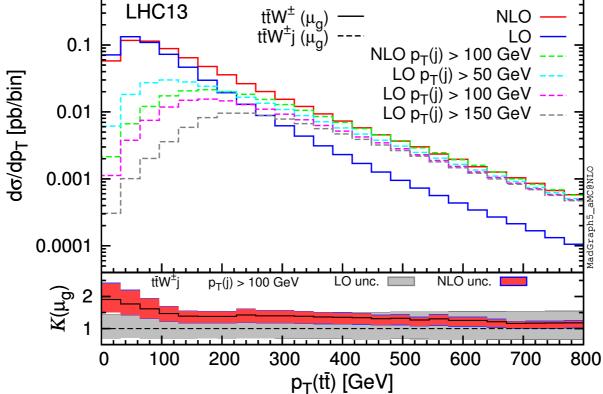
$p_T(t\bar{t})$ and the effect of the jet veto

- QCD corrections to ttW are dominated by real emissions recoiling against the tt pair, with the W collinear to the emission or soft
- This leads to giant K-factors for the p_T(tt) distribution, which are greatly reduced with a jet veto

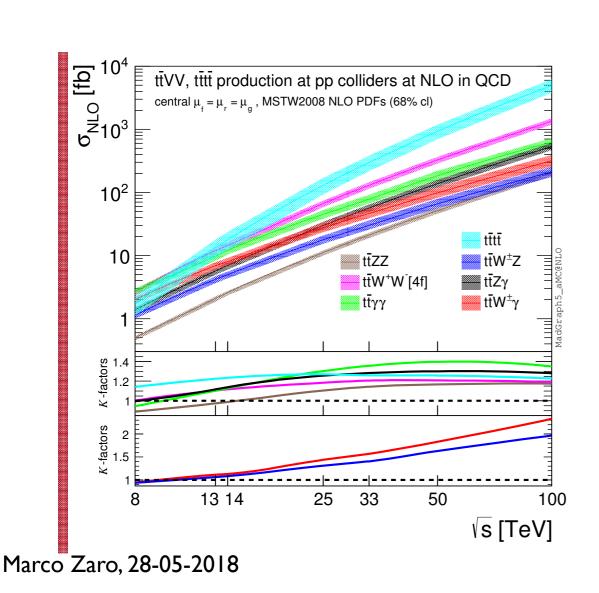


$p_T(t\bar{t})$ and the effect of the jet veto

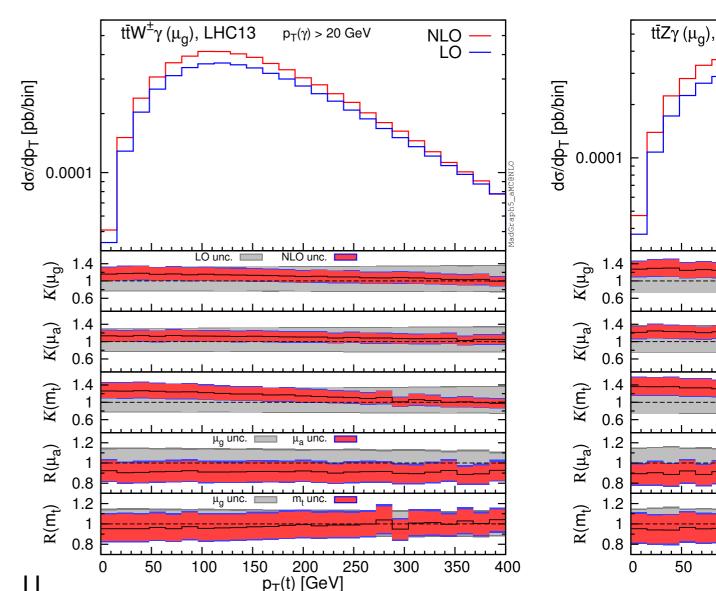

- QCD corrections to ttW are dominated by real emissions recoiling against the tt pair, with the W collinear to the emission or soft
- This leads to giant K-factors for the $p_T(t\bar{t})$ distribution, which are greatly reduced with a jet veto


$p_T(t\bar{t})$ and the effect of the jet veto

More on $p_T(t\bar{t})$ and other $t\bar{t}V(V)$ processes



- pT(tt) receives huge NLO corrections, due to configurations where the tt pair recoils against a hard jet (and a soft V)
- Do we expect large corrections also at NNLO? Probably not: ttWj receives smaller corrections at NLO
- The same happens for ttVV
- In 1507.05640 a very detailed study of all ttV, ttVV processes is present


Complex backgrounds for ttH: ttVV

Maltoni et al, arXiv:1507.05640

- All tt+VV processes studied at NLO+PS accuracy
- NLO corrections essential for realistic phenomenology
- Detailed study in the context of ttH searches

NWO

 $K(\mu_g)$

 $K(\mu_a)$

 $K(m_{\rm t})$

 $R(\mu_a)$

 $R(m_{f})$

0.6

1.4

0.6

1.2

0.8

0.8

0

50

Complay hackgrounds for ttH.

SR2

SR3

All tt+VV pi

13 TeV σ [fb]

NWO

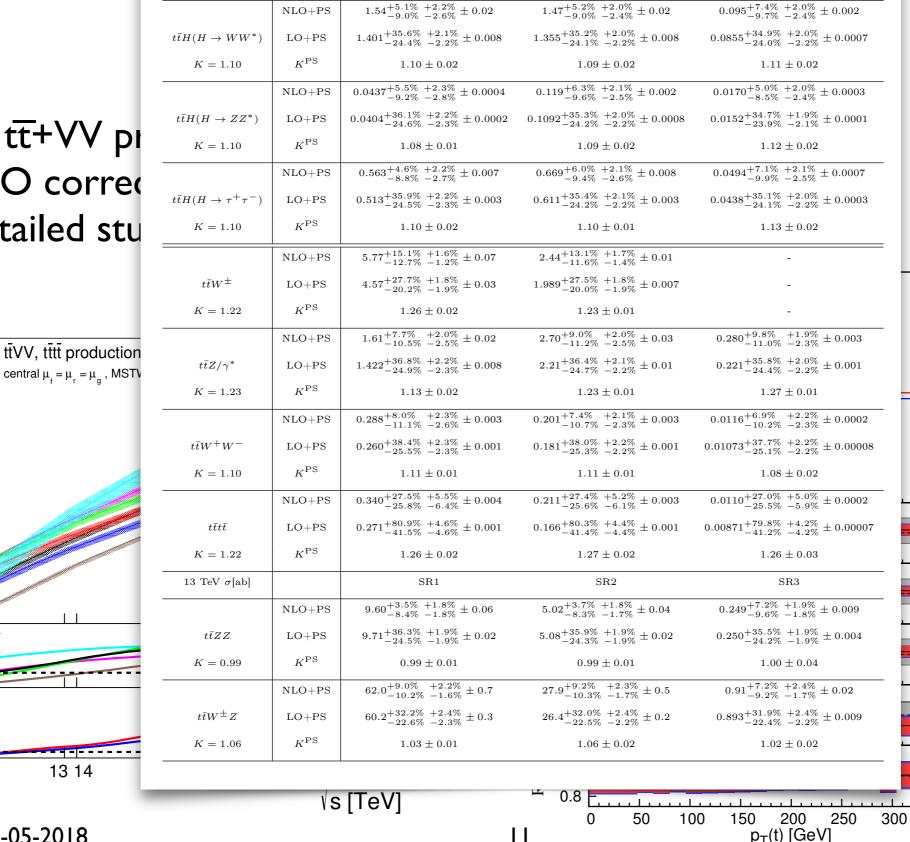
- NLO correc
- Detailed stu

 10^{4}

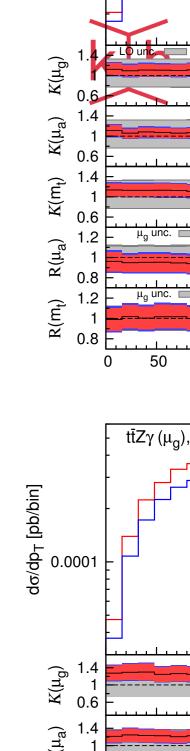
0 10³0³0

10²

10 |=

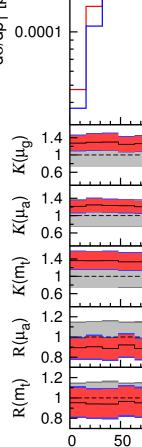

1

K-factors 1.4


2 -factors 1.5

×

[fb]


SR1

NLO — LO —

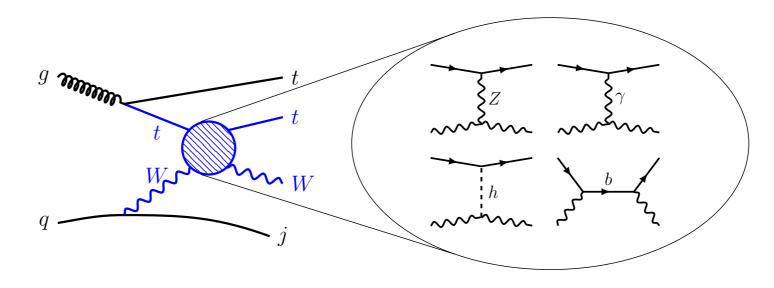
350

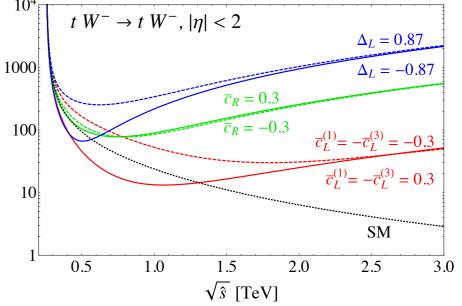
400

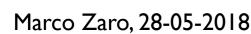
Marco Zaro. 28-05-2018

8

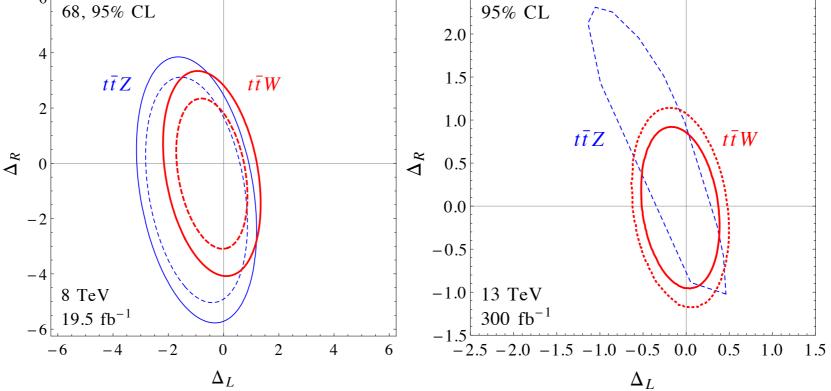
p_T(t) [GeV]


What can ttV tell us about new physics?




tW scattering

Dror, Farina, Salvioni, Serra, arXiv:1511.03674



- ttW(j) at order α_sα³ includes the tW→tW
 scattering. High sensitivity to the top-Higgs/ ¹⁰
 Z/gamma couplings
- If e.g. the top-Z couplings deviates from the SM value, the amplitude grows as ~s
- Extracting the tW→tW scattering contribution from ttW production makes it possible to set bounds on top-Z couplings

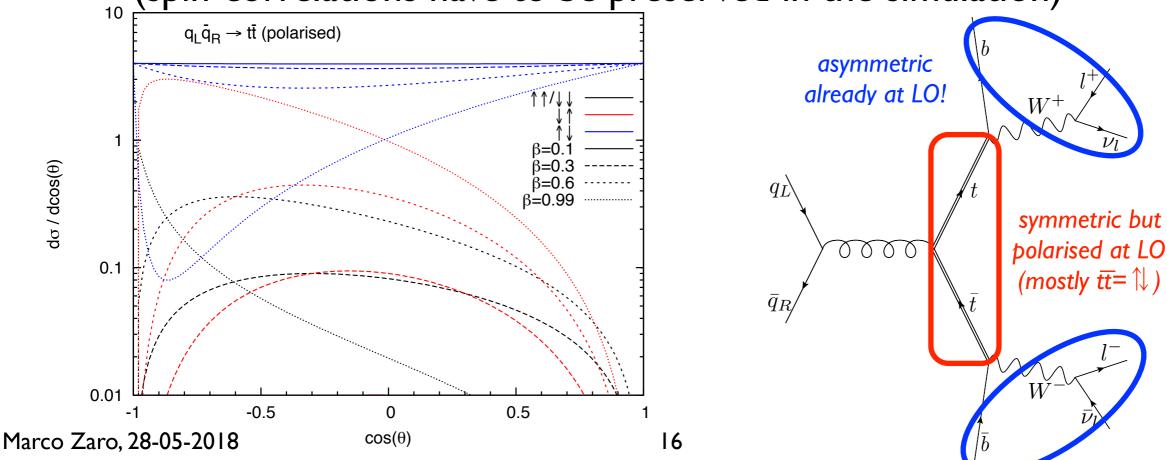
from tW scattering

Indirect limits on t-Z couplings

- Recasting the CMS ttW measurements at 8 TeV gives better bounds on t-Z coupling than the direct CMS ttZ measurement
- Further improvements can come from a dedicated analysis of ttWj at 13 TeV

Top asymmetry and polarisation in ttW

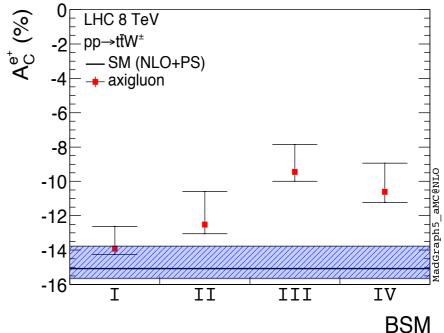
Maltoni, Mangano, Tsinikos, MZ, arXiv: 1406.3262


- Top asymmetry and polarisation can provide useful (indirect) informations on the nature of new physics
- A measurement of the top asymmetry does not seem feasible at the FCC, because tt is essentially produced via gg only
- ttW production can be an alternative
 - $q\overline{q}$ induced at LO, has a rather large asymmetry at NLO
 - A_t^{tt}=0.45, A_t^{tt}W=2.24 @LHC RunII
 - A_t^{tt}=0.12, A_t^{tt}W=1.85 @FCC
 - Top quarks are highly polarised

Polarised top production

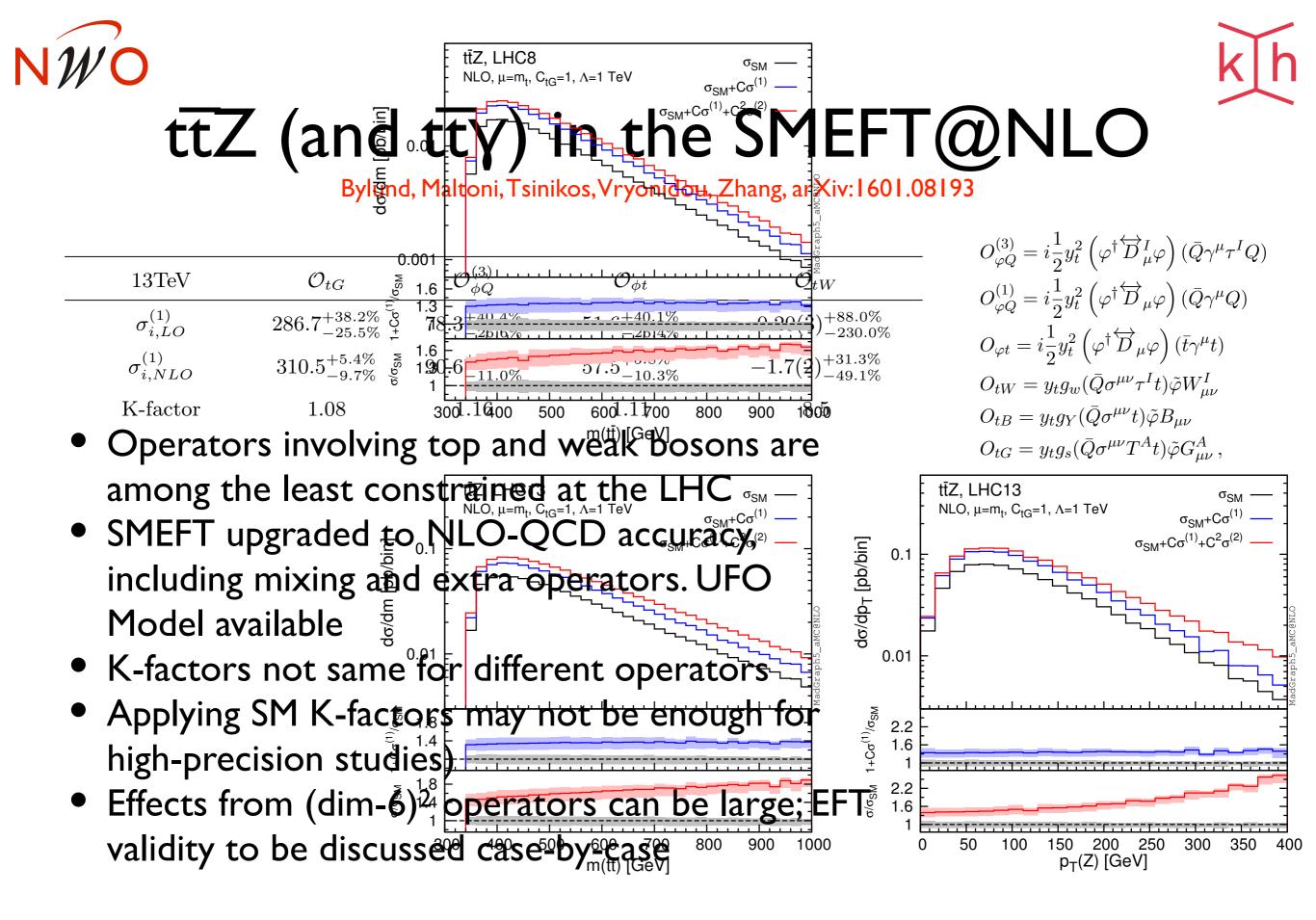
- The radiation of a W boson from the initial line has the effect of polarising the light quarks for details see Parke, Shadmi, hep-ph:9606419
 - ttW is totally analogous to polarised $q\overline{q} \rightarrow t\overline{t}$ scattering
 - $t\bar{t}$ pair is highly polarised ($\uparrow\downarrow$ dominates at threshold)
 - The top decay products are asymmetric already at LO (spin-correlations have to be preserved in the simulation)

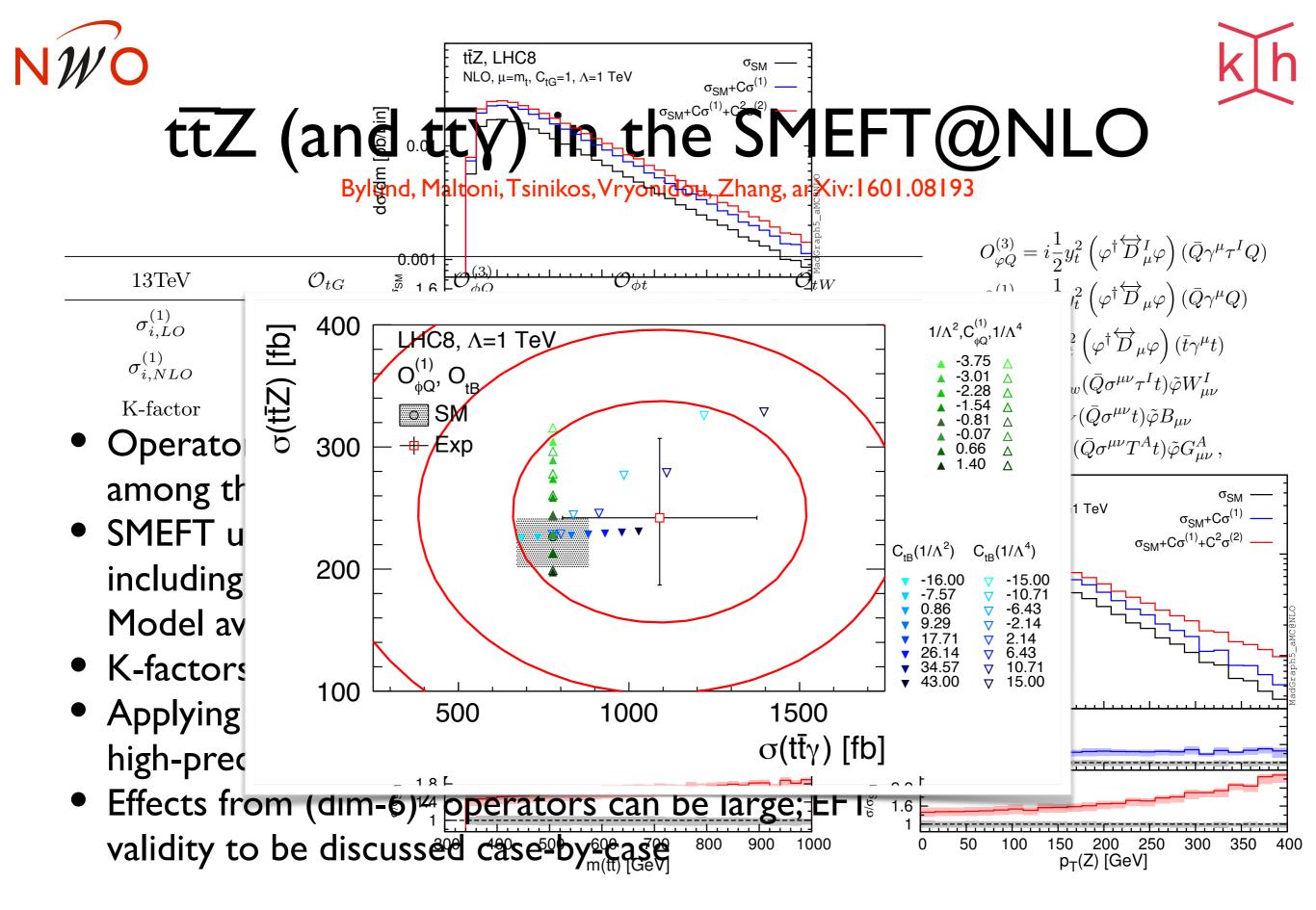
NWO Decay product asymmetries and prospects for LHC and FCC


measurements

		8 TeV	$13 { m TeV}$	$14 \mathrm{TeV}$	$33 { m TeV}$	100 TeV
$t\bar{t}$	$\sigma(\mathrm{pb})$	$198^{+15\%}_{-14\%}$	$661^{+15\%}_{-13\%}$	$786^{+14\%}_{-13\%}$	$4630^{+12\%}_{-11\%}$	$30700^{+13\%}_{-13\%}$
	$A_c^t(\%)$	$0.72_{-0.09}^{+0.14}$	$0.45\substack{+0.09 \\ -0.06}$	$0.43\substack{+0.08 \\ -0.05}$	$0.26\substack{+0.04 \\ -0.03}$	$0.12\substack{+0.03\\-0.02}$
	$\sigma({ m fb})$	$210^{+11\%}_{-11\%}$	$587^{+13\%}_{-12\%}$	$678^{+14\%}_{-12\%}$	$3220^{+17\%}_{-13\%}$	$19000^{+20\%}_{-17\%}$
$t\bar{t}W^{\pm}$	$A_c^t(\%)$	$2.37^{+0.56}_{-0.38}$	$2.24_{-0.32}^{+0.43}$	$2.23_{-0.33}^{+0.43}$	$1.95\substack{+0.28 \\ -0.23}$	$1.85_{-0.17}^{+0.21}$
	$A^b_c(\%)$	$8.50^{+0.15}_{-0.10}$	$7.54_{-0.17}^{+0.19}$	$7.50_{-0.22}^{+0.24}$	$5.37^{+0.22}_{-0.30}$	$3.36\substack{+0.15\\-0.19}$
	$A_c^e(\%)$	$-14.83^{-0.65}_{+0.95}$	$-13.16_{+1.12}^{-0.81}$	$-12.84_{+1.11}^{-0.81}$	$-9.21_{+1.05}^{-0.87}$	$-4.94_{+0.72}^{-0.63}$

Expected sensitivity on asymmetries (100% efficiencies, ...)

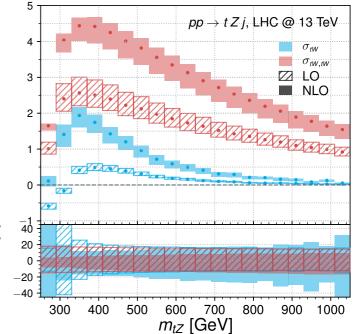

tŧW: δΑ/Α	t	b	e/µ
8TeV 40fb-1	209 %	58 %	33 %
14TeV 300fb-1	45 %	13 %	8 %
14TeV 3ab-1	14 %	4 %	2 %
100TeV 3ab-1	3 %	2 %	1 %


BSM effects (axigluon with different couplings)

Marco Zaro, 28-05-2018

17

tΖ

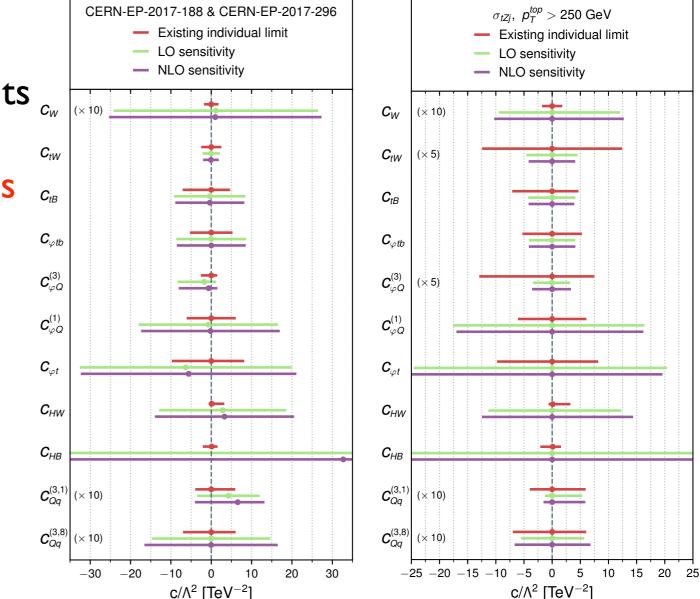

Degrande, Maltoni, Mimasu, Vryonidou, Zhang, arXiv: 1804.07773

$\lambda_b, \lambda_W, \lambda_t$	SM	\mathcal{O}_{tarphi}	${\cal O}^{(3)}_{arphi Q}$	$\mathcal{O}_{arphi W}$	\mathcal{O}_{tW}	${\cal O}_{HW}$
-,0,-	s^0	s^0	$\sqrt{s(s+t)}$	s^0	s^0	$\sqrt{s(s+t)}$
-, 0, +	$\frac{1}{\sqrt{s}}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$\frac{1}{\sqrt{s}}$	$\frac{m_W s}{\sqrt{-t}}$	$\frac{1}{\sqrt{s}}$
_, _, _	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$	$m_W \sqrt{-t}$	$\frac{m_W s}{\sqrt{-t}}$	$m_t \sqrt{-t}$	$\frac{m_W(s{+}t)}{\sqrt{-t}}$
-,-,+	$\frac{1}{s}$	s^0	s^0	_	$\sqrt{s(s+t)}$	$\frac{1}{s}$
	$\frac{1}{\sqrt{s}}$	_	$\frac{1}{\sqrt{s}}$	$\frac{m_W(s{+}t)}{\sqrt{-t}}$	$\frac{1}{\sqrt{s}}$	$\frac{m_W(s{+}t)}{\sqrt{-t}}$
-, +, +	s^0	_	s^0	s^0	s^0	$\frac{1}{s}$

0	$\sim W^I W^{J,\nu\rho} W^{K,\mu}$	$\mathcal{O}^{(3)}_{arphi Q}$	$i(\sigma^{\dagger} \stackrel{\leftrightarrow}{D} \tau \sigma) (\bar{\Omega} \sigma^{\mu} \tau^{I} \Omega) + h \sigma$
\mathcal{O}_W	$\varepsilon_{IJK} W^{I}_{\mu\nu} W^{J,\nu\rho} W^{K,\mu}_{\rho}$	$U_{\varphi Q}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi \right) \left(\bar{Q} \gamma^{\mu} \tau^{I} Q \right) + \text{h.c.}$
$\mathcal{O}_{arphi W}$	$\left(\varphi^{\dagger} \varphi - \frac{v^2}{2} ight) W_I^{\mu u} W_{\mu u}^I$	$\mathcal{O}_{arphi Q}^{(1)}$	$i(\varphi^{\dagger}D_{\mu}\varphi)(\bar{Q}\gamma^{\mu}Q) + \text{h.c.}$
$\mathcal{O}_{arphi WB}$	$(\varphi^{\dagger} au_{\scriptscriptstyle I} \varphi) B^{\mu u} W^{\scriptscriptstyle I}_{\mu u}$	$\mathcal{O}_{arphi t}$	$i (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{t} \gamma^{\mu} t) + \text{h.c.}$
$\mathcal{O}_{arphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$	$\mathcal{O}_{arphi tb}$	$i \left(\tilde{\varphi} D_{\mu} \varphi \right) \left(\bar{t} \gamma^{\mu} b \right) + \text{h.c.}$
$\mathcal{O}_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$\mathcal{O}^{(1)}_{arphi q}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{q}_i \gamma^{\mu} q_i \right) + \text{h.c.}$
\mathcal{O}_{tarphi}	$\left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) \bar{Q} t \tilde{\varphi} + \text{h.c.}$	$\mathcal{O}^{(3)}_{arphi q}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi \right) \left(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{i} \right) + \text{h.c.}$
\mathcal{O}_{tW}	$i \left(\bar{Q} \sigma^{\mu\nu} \tau_I t \right) \tilde{\varphi} W^I_{\mu\nu} + \text{h.c.}$	$\mathcal{O}_{arphi u}$	$i (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u}_i \gamma^{\mu} u_i) + \text{h.c.}$
\mathcal{O}_{tB}	$i(\bar{Q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}+\text{h.c.}$	$\mathcal{O}_{Qq}^{(3,1)}$	$\left(\bar{q}_i \gamma_\mu \tau_I q_i \right) \left(\bar{Q} \gamma^\mu \tau^I Q \right)$
\mathcal{O}_{tG}	$i \left(\bar{Q} \sigma^{\mu\nu} T_A t \right) \tilde{\varphi} G^A_{\mu\nu} + \text{h.c.}$	$\mathcal{O}_{Qq}^{(3,8)}$	$\left(ar{q}_i \gamma_\mu au_I T_A q_i ight) \left(ar{Q} \gamma^\mu au^I T^A Q ight)$

- tZ (and tH) can be very interesting probes of new physics
- For tZ, the cross section is comparable to $t\bar{t}Z$ (800 fb)
- In the SM, delicate cancellations appear among diagrams, which are spoiled by BSM effects, even for operators without energy-growing interactions (e.g $O_{t\phi}$)
- NLO corrections can modify the cross-section sensitivity on a given operator, specially on the SM-EFT interference $2.66(4)^{\pm 18.8[0.9]\%} \pm 11.4\%$ $13.0(1)^{\pm 15.8[2.1]\%} \pm 1.2\%$ 4.90

σ_{tW}	$2.66(4)^{+18.8[0.9]\%}_{-15.3[1.0]\%} \pm 11.4\%$	$13.0(1)^{+15.8[2.1]\%}_{-22.8[0.0]\%} \pm 1.2\%$	4.90
$\sigma_{tW,tW}$	$48.16(4)^{+10.0[1.7]\%}_{-5.8[1.9]\%} \pm 11.3\%$	$80.00(4)^{+7.9[1.3]\%}_{-14.7[1.6]\%} \pm 1.9\%$	1.66



Limits from tZ and tH

- Limits from current measurements (LO and NLO) are in general looser than other existing bounds (except for Otw)
- Effects enhanced in tail of distributions at the HL-LHC
- SMEFT global fits can be performed at the LHC

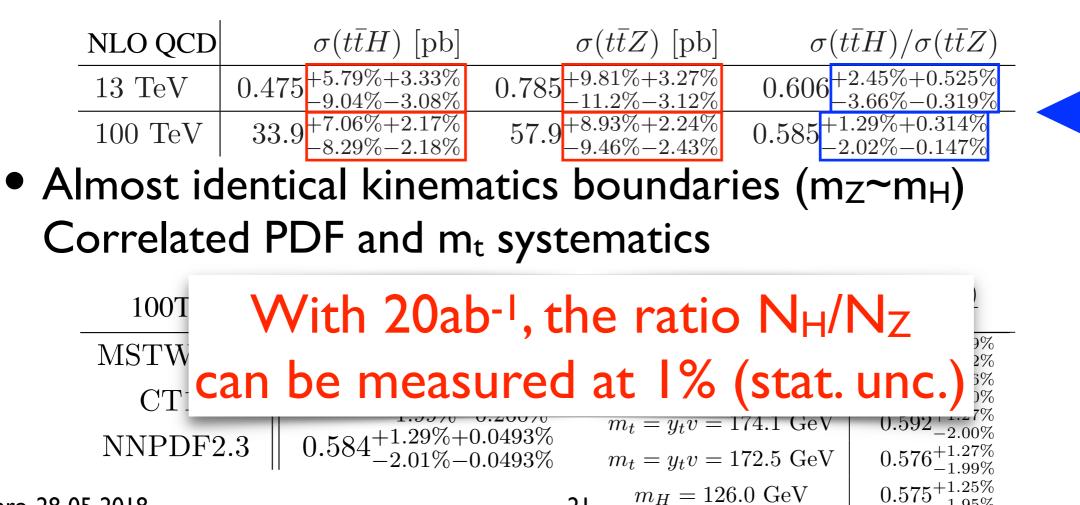
NWO Is a 1% measurement of y_t possible? ttZ and the FCC can help...

Mangano, Plehn, Reimitz, Schell, Shao, arXiv: 1507.08169

- ttH and ttZ are quite similar processes, with rather large theoretical uncertainties (~10%).
 - Dominant production mode (gg) has identical diagrams Correlated QCD corrections, scale and α_s systematics

	NLO QCD	$\sigma(t\bar{t}H)$ [pb]	$\sigma(t\bar{t}Z)$ [pb]	$\sigma(t\bar{t}H)/\sigma(t\bar{t}Z)$
-	13 TeV	$0.475^{+5.79\%+3.33\%}_{-9.04\%-3.08\%}$	$0.785^{+9.81\%+3.27\%}_{-11.2\%-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
-	100 TeV	$33.9^{+7.06\%+2.17\%}_{-8.29\%-2.18\%}$		$0.585^{+1.29\%+0.314\%}_{-2.02\%-0.147\%}$

Almost identical kinematics boundaries (m_Z~m_H)
 Correlated PDF and m_t systematics


100TeV	$\left\ \frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)} \right\ $		$rac{\sigma(tar{t}H)}{\sigma(tar{t}Z)}$
MSTW2008	$0.585^{+1.29\%+0.0526\%}_{-2.02\%-0.0758\%}$	default	$0.585^{+1.29\%}_{-2.02\%}$
CT10	$0.584^{+1.27\%+0.189\%}_{-1.99\%-0.260\%}$	$\mu_0 = m_t + m_{H,Z}/2$	$0.580^{+1.16\%}_{-1.80\%}$
NNPDF2.3		$m_t = y_t v = 174.1 \text{ GeV}$	$0.592^{+1.27\%}_{-2.00\%}$
ININF DF 2.3	$\left\ \begin{array}{c} 0.584^{+1.29\%+0.0493\%}_{-2.01\%-0.0493\%} \right.$	$m_t = y_t v = 172.5 \text{ GeV}$	$0.576^{+1.27\%}_{-1.99\%}$
8-05-2018	2	$m_H = 126.0 \text{ GeV}$	$0.575^{+1.25\%}_{-1.95\%}$

Marco Zaro, 28-05-2018

Is a 1% measurement of yt possible? ttZ and the FCC can help...

Mangano, Plehn, Reimitz, Schell, Shao, arXiv: 1507.08169

- ttH and ttZ are quite similar processes, with rather large theoretical uncertainties (~10%).
 - Dominant production mode (gg) has identical diagrams Correlated QCD corrections, scale and α_s systematics

21

Conclusions

- At least two good reasons to look at ttW and ttZ: they appear as background to the Higgs and to many BSM searches and they can shed light on new physics affecting the top weak couplings
- Current SM predictions have decent perturbative accuracy, which we are bound to live with for quite some time
- $t\overline{t}W$ and $t\overline{t}Z$ show complementary sensitivity to new physics:
 - asymmetry and t-W scattering in ttW
 - sensitivity to HD operators through rate and distributions for $t\overline{t}Z$
- LHC measurements of these processes are just started... Potentially large improvements ahead!

Backup

Marco Zaro, 28-05-2018

more in Frixione, Hirschi, Shao, Zaro, arXiv: 1504.03446

setup

- EW corrections computed in the $\alpha(m_Z)$ scheme (G_µ also available)
- Particle masses:
 - m_t=173.3 GeV
 - mw=80.385 GeV m

m_H=125 GeV m₇=91.188 GeV

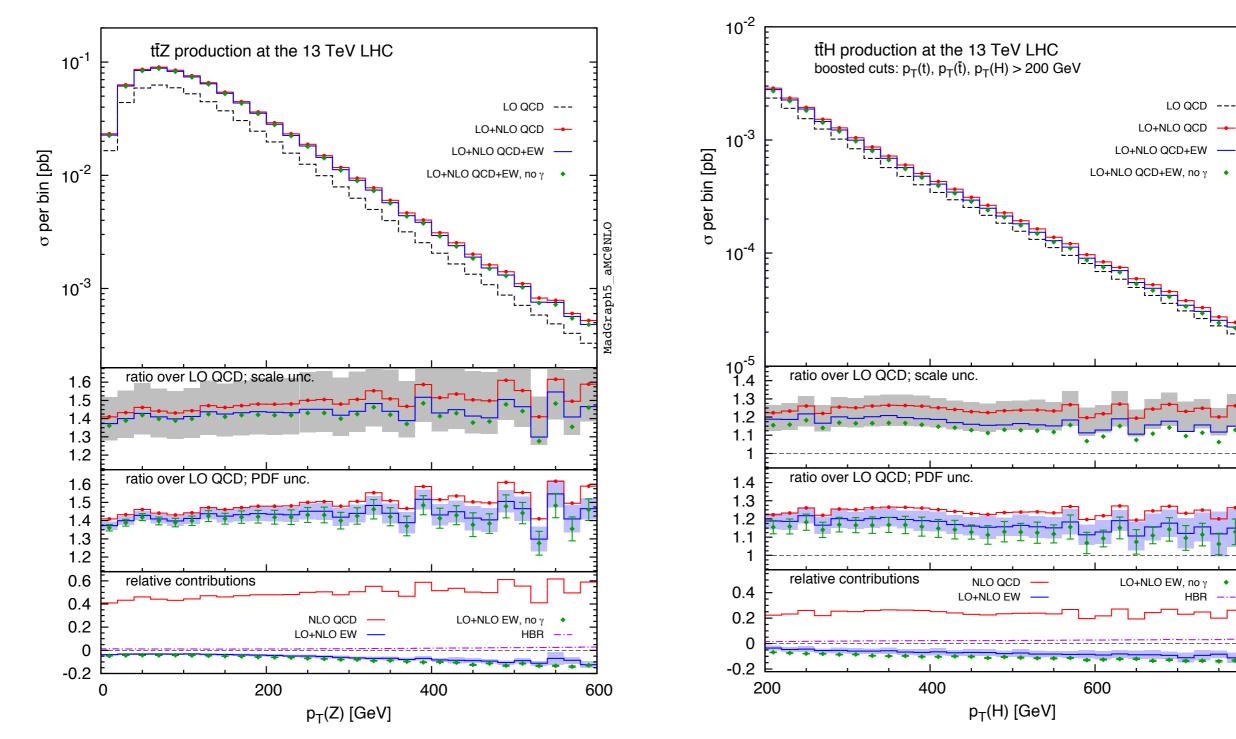
- NNPDF2.3 QED PDF, quoted uncertainties @68%CL
- Ren./Fac. scale choice: $\mu = \frac{H_T}{2}$
- LO+NLO QCD scale uncertainties in the range $\frac{1}{2}\mu \leq \mu_R, \mu_F \leq 2\mu$

Results for ttH and ttZ: total rates (within boosted cuts)

$t\bar{t}H$: $\sigma(\mathrm{pb})$	$13 { m TeV}$		$t\bar{t}Z$: $\sigma(\mathrm{pb})$	$13 { m TeV}$
LO QCD	$3.617 \cdot 10^{-1} \ (1.338 \cdot 10^{-2})$		LO QCD	$5.282 \cdot 10^{-1} \ (1.955 \cdot 10^{-2})$
NLO QCD	$1.073 \cdot 10^{-1} \ (3.230 \cdot 10^{-3})$		NLO QCD	$2.426 \cdot 10^{-1} \ (7.856 \cdot 10^{-3})$
LO EW	$4.437 \cdot 10^{-3} (3.758 \cdot 10^{-4})$		LO EW	$-2.172 \cdot 10^{-4} \ (4.039 \cdot 10^{-4})$
LO EW no γ	$-1.390 \cdot 10^{-3} \ (-2.452 \cdot 10^{-5})$		LO EW no γ	$-5.771 \cdot 10^{-3} \ (-6.179 \cdot 10^{-5})$
NLO EW	$-4.408 \cdot 10^{-3} \ (-1.097 \cdot 10^{-3})$		NLO EW	$-2.017 \cdot 10^{-2} \ (-2.172 \cdot 10^{-3})$
NLO EW no γ	$-4.919 \cdot 10^{-3} \ (-1.131 \cdot 10^{-3})$		NLO EW no γ	$-2.158\cdot 10^{-2} \ (-2.252\cdot 10^{-3})$
HBR	$3.216 \cdot 10^{-3} \ (2.496 \cdot 10^{-4})$		HBR	$5.056 \cdot 10^{-3} \ (4.162 \cdot 10^{-4})$
$t\bar{t}H:\delta(\%)$	$13 { m ~TeV}$		$tar{t}Z:\delta(\%)$	$13 { m TeV}$
NLO QCD	$29.7^{+6.8}_{-11.1} \pm 2.8 \ (24.2^{+4.8}_{-10.6} \pm 4.5$)	NLO QCD	$45.9^{+13.2}_{-15.5} \pm 2.9 \ (40.2^{+11.1}_{-15.0} \pm 4.7)$
LO EW	$1.2 \pm 0.9 (2.8 \pm 2.0)$		LO EW	$0.0 \pm 0.7 \ (2.1 \pm 1.6)$
LO EW no γ	$-0.4 \pm 0.0 (-0.2 \pm 0.0)$		LO EW no γ	$-1.1 \pm 0.0 (-0.3 \pm 0.0)$
NLO EW	$-1.2 \pm 0.1 \ (-8.2 \pm 0.3)$		NLO EW	$-3.8 \pm 0.2 \ (-11.1 \pm 0.5)$
NLO EW no γ	$-1.4 \pm 0.0 \ (-8.5 \pm 0.2)$		NLO EW no γ	$-4.1 \pm 0.1 \ (-11.5 \pm 0.3)$
HBR	0.89~(1.87)		HBR	0.96~(2.13)

- NLO EW correction have modest impact on inclusive xsect, but can be important in the boosted regime (same order of QCD uncertainties)
- Boosted regime enhances photon contribution in LO-EW
- HBR contributions remain small

Marco Zaro, 28-05-2018


aMC@NLC

HBR

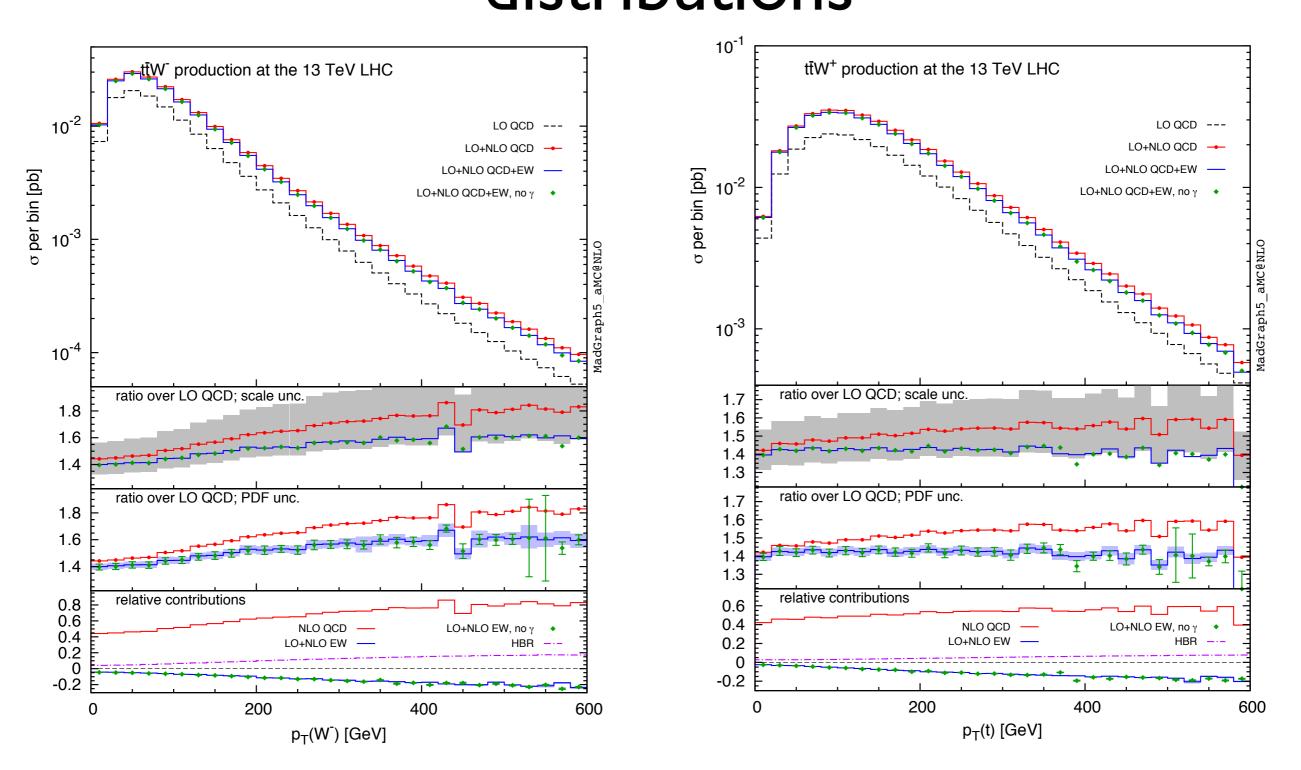
800

Results for $t\bar{t}H$ and $t\bar{t}Z$:

distributions

Marco Zaro, 28-05-2018

Results for ttW: total rates (within boosted cuts)

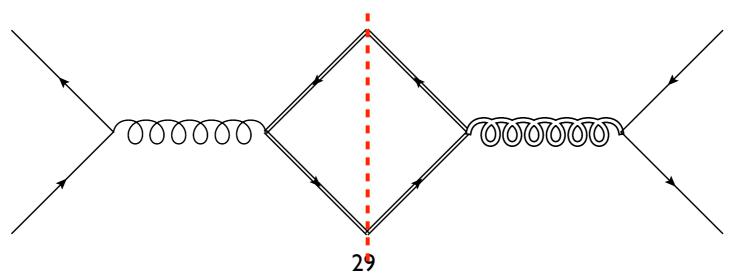

$t\bar{t}W^+$: $\sigma(\mathrm{pb})$	$13 { m TeV}$	$t\bar{t}W^{-}$: $\sigma(\mathrm{pb})$	$13 { m TeV}$
LO QCD	$2.496 \cdot 10^{-1} \ (7.749 \cdot 10^{-3})$	LO QCD	$1.265 \cdot 10^{-1} \ (3.186 \cdot 10^{-3})$
NLO QCD	$1.250 \cdot 10^{-1} \ (4.624 \cdot 10^{-3})$	NLO QCD	$6.515 \cdot 10^{-2} \ (2.111 \cdot 10^{-3})$
LO EW	0	LO EW	0
LO EW no γ	0	LO EW no γ	0
NLO EW	$-1.931 \cdot 10^{-2} \ (-1.490 \cdot 10^{-3})$	NLO EW	$-8.502 \cdot 10^{-3} \ (-5.838 \cdot 10^{-4})$
NLO EW no γ	$-1.988 \cdot 10^{-2} \ (-1.546 \cdot 10^{-3})$	NLO EW no γ	$-8.912 \cdot 10^{-3} \ (-6.094 \cdot 10^{-4})$
HBR	$9.677 \cdot 10^{-3} \ (5.743 \cdot 10^{-4})$	HBR	$8.219 \cdot 10^{-3} (4.781 \cdot 10^{-4})$
$t\bar{t}W^+$: $\delta(\%)$	$13 { m ~TeV}$	$t\bar{t}W^-$: $\delta(\%)$	$13 { m ~TeV}$
NLO QCD	$50.1^{+14.2}_{-13.5} \pm 2.4 \ (59.7^{+18.9}_{-17.7} \pm 3.1)$	NLO QCD	$51.5^{+14.8}_{-13.8} \pm 2.8 \ (66.3^{+21.7}_{-19.6} \pm 3.9)$
LO EW	0	LO EW	0
LO EW no γ	0	LO EW no γ	0
NLO EW	$-7.7 \pm 0.2 (-19.2 \pm 0.7)$	NLO EW	$-6.7 \pm 0.2 (-18.3 \pm 0.8)$
NLO EW no γ	$-8.0\pm0.2(-20.0\pm0.5)$	NLO EW no γ	$-7.0 \pm 0.2 (-19.1 \pm 0.6)$
HBR	3.88 (7.41)	HBR	$6.50\ (15.01)$

- EW corrections larger than ttH/Z, in particular with boosted cuts
- HBR enhanced by parton luminosities: ttWW has gg, ttW only $q\overline{q}$

Results for ttW: distributions

Marco Zaro, 28-05-2018

- Several BSM solutions have been proposed to cure the discrepancies observed at the Tevatron
- What is their effect at the LHC, in particular for $t\overline{t}W$?


- Several BSM solutions have been proposed to cure the discrepancies observed at the Tevatron
- What is their effect at the LHC, in particular for $t\overline{t}W$?
- Choose one simple case: the axigluon model Frampton, Shu, Wang arXiv:0911.2955
 - Extra color octet G which couples differently to quarks of different chiralities and to u/d and heavy quarks

$$\begin{split} i = u, d, t \\ \hline 0000000 = \lambda^a \left(\frac{1 - \gamma_5}{2} g_L^i + \frac{1 + \gamma_5}{2} g_R^i \right) \gamma^\mu \end{split}$$

- Several BSM solutions have been proposed to cure the discrepancies observed at the Tevatron
- What is their effect at the LHC, in particular for $t\overline{t}W$?
- Choose one simple case: the axigluon model Frampton, Shu, Wang arXiv:0911.2955
 - Extra color octet G which couples differently to quarks of different chiralities and to u/d and heavy quarks
 - The interference between the gluon and axigluon gives an asymmetry at LO

Benchmark scenarios:

Light, un	iversal G	Heavy, non-universal G		
l (left)	ll (axial)	III (left)	IV (axial)	
m _G =2	00GeV	m _G =2TeV		
	0GeV	$\Gamma_{G}=1.123$ TeV	Г _G =0.742ТеV	
g ^u L=g ^d L=0.5g _s	g ^u L=g ^d L=-0.4gs	g ^u L=g ^d L=-0.8gs	g ^u L=g ^d L=0.6g _s	
g ^u _R =g ^d _R =0	g ^u _R =g ^d _R =0.4g _s	g ^u _R =g ^d _R =0	g ^u _R =-0.6g _s g ^d _L =0	
gt ^{R,L} =	-gu ^{R,L}	g ^t _R =0 g ^t _L =6g _s	g ^t _R =-g ^t _L =4g _s	

W boson polarises light quarks: $\sigma=0$ in right-handed scenarios

- What is the expected asymmetry in the SM with an extra axigluon?
 - The SM asymmetry appears at NLO
 - The axigluon asymmetry appears at LO
 - Combine the two asymmetries, beware of double counting!

- What is the expected asymmetry in the SM with an extra axigluon?
 - The SM asymmetry appears at NLO
 - The axigluon asymmetry appears at LO
 - Combine the two asymmetries, beware of double counting!

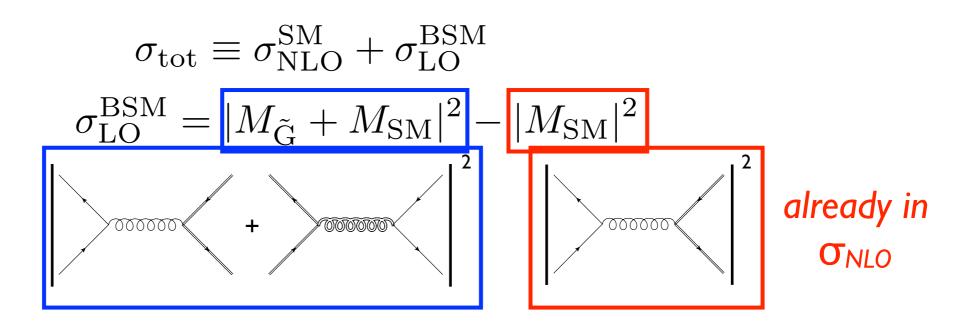
$$\sigma_{\rm tot} \equiv \sigma_{\rm NLO}^{\rm SM} + \sigma_{\rm LO}^{\rm BSM}$$

- What is the expected asymmetry in the SM with an extra axigluon?
 - The SM asymmetry appears at NLO
 - The axigluon asymmetry appears at LO
 - Combine the two asymmetries, beware of double counting!

$$\sigma_{\rm tot} \equiv \sigma_{\rm NLO}^{\rm SM} + \sigma_{\rm LO}^{\rm BSM}$$
$$\sigma_{\rm LO}^{\rm BSM} = |M_{\tilde{\rm G}} + M_{\rm SM}|^2 - |M_{\rm SM}|^2$$

- What is the expected asymmetry in the SM with an extra axigluon?
 - The SM asymmetry appears at NLO
 - The axigluon asymmetry appears at LO
 - Combine the two asymmetries, beware of double counting!

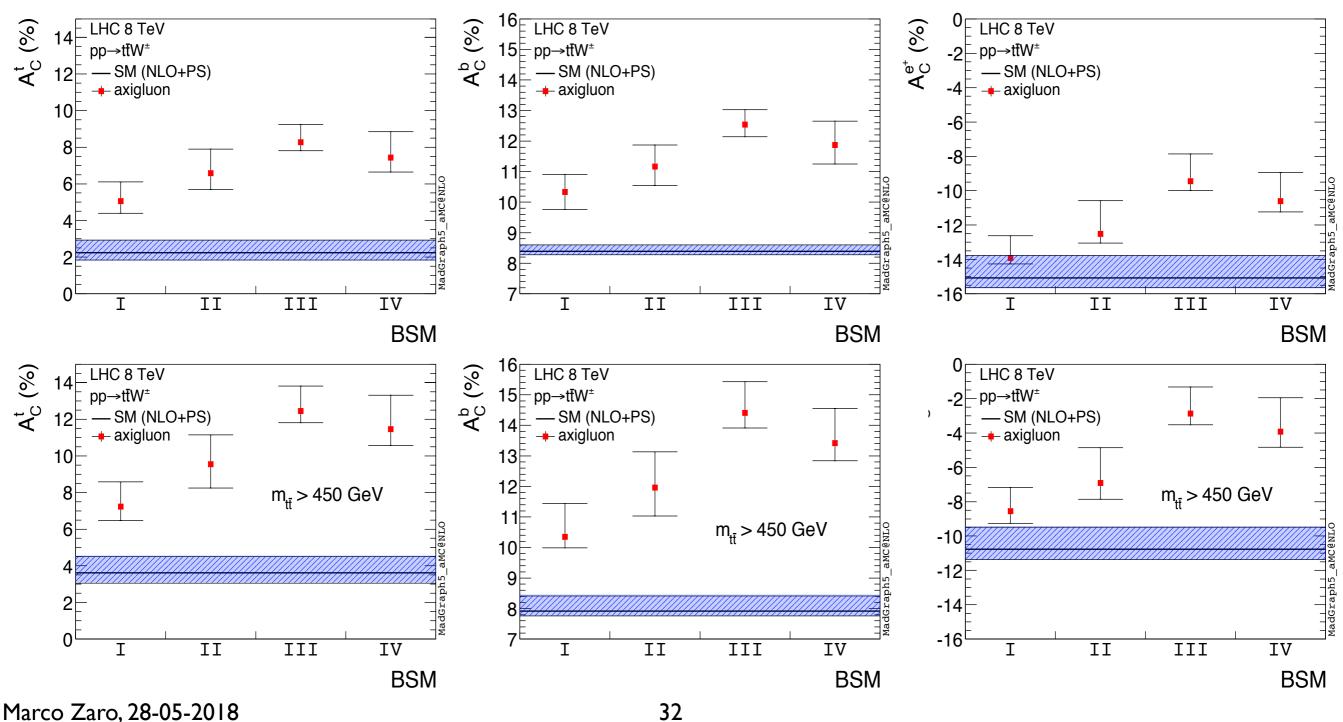
$$\sigma_{\rm tot} \equiv \sigma_{\rm NLO}^{\rm SM} + \sigma_{\rm LO}^{\rm BSM}$$
$$\sigma_{\rm LO}^{\rm BSM} = |M_{\tilde{\rm G}} + M_{\rm SM}|^2 - |M_{\rm SM}|^2$$


- What is the expected asymmetry in the SM with an extra axigluon?
 - The SM asymmetry appears at NLO
 - The axigluon asymmetry appears at LO
 - Combine the two asymmetries, beware of double counting!

$$\sigma_{\rm tot} \equiv \sigma_{\rm NLO}^{\rm SM} + \sigma_{\rm LO}^{\rm BSM}$$
$$\sigma_{\rm LO}^{\rm BSM} = |M_{\tilde{\rm G}} + M_{\rm SM}|^2 - |M_{\rm SM}|^2$$

- What is the expected asymmetry in the SM with an extra axigluon?
 - The SM asymmetry appears at NLO
 - The axigluon asymmetry appears at LO
 - Combine the two asymmetries, beware of double counting!

- What is the expected asymmetry in the SM with an extra axigluon?
 - The SM asymmetry appears at NLO
 - The axigluon asymmetry appears at LO
 - Combine the two asymmetries, beware of double counting!


$$\sigma_{\rm tot} \equiv \sigma_{\rm NLO}^{\rm SM} + \sigma_{\rm LO}^{\rm BSM}$$
$$\sigma_{\rm LO}^{\rm BSM} = |M_{\tilde{\rm G}} + M_{\rm SM}|^2 - |M_{\rm SM}|^2$$
$$\sigma_{\rm LO}^{\rm SM} = |M_{\tilde{\rm G}} + M_{\rm SM}|^2 - |M_{\rm SM}|^2$$

$$A_C = \frac{\sigma_{NLO}^{\rm SM}}{\sigma_{\rm tot}} A_C^{\rm SM} + \frac{A_{\rm LO}^{\rm BSM}}{\sigma_{\rm tot}} A_C^{\rm BSM}$$

Results

Marco Zaro, 28-05-2018