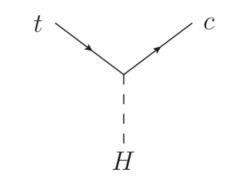


tqH FCNC Searches

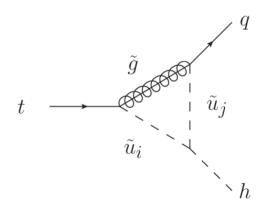
Peter Onyisi

Higgs Toppings, 31 May 2018


Introduction

- Standard Model: the only fundamental process that changes fermion flavor is W emission/absorption (charged currents).
 - Interactions of $\gamma/g/Z/H$ (neutral currents) are flavor-diagonal.
 - further, CKM unitarity → flavor-changing neutral currents in loops with Ws are highly suppressed (GIM mechanism).
- There is no reason additional degrees of freedom from BSM models need to respect the SM flavor structure
 - suppressed FCNC sets strong constraints on BSM!
- With large sample of top quarks at LHC, able to directly probe FCNC interactions of top: $t \to q\gamma$, $t \to qZ$, $t \to qH$

SM B(t \rightarrow cH) \sim 3 \times 10⁻¹⁵

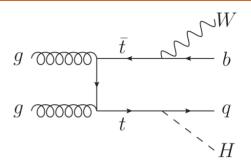

tqH interactions beyond the SM

- Tree-level vertices in more complex Higgs sectors
 - misalignment of multiple Yukawa coupling matrices
 - generic unless symmetries imposed
 - "Cheng-Sher ansatz": off-diagonal Yukawa coupling $\lambda_{tq}=rac{\sqrt{2m_tm_q}}{v}$

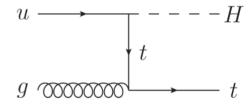
Loop-induced effective vertices, e.g. MSSM

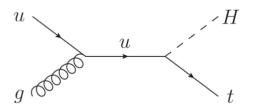
Multiple conventions for coupling normalizations; typically compare $t \rightarrow Hq$ branching fractions

BR in various models

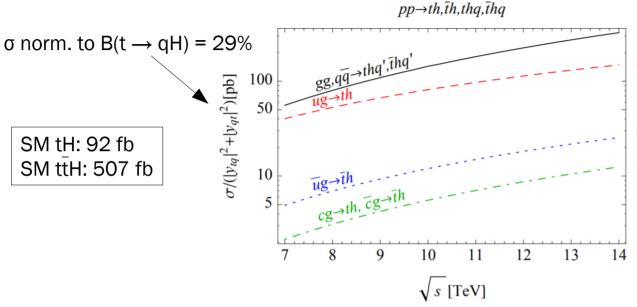

Table 1-7. SM and new physics model predictions for branching ratios of top FCNC decays. The SM predictions are taken from [119], on 2HDM with flavor violating Yukawa couplings [119, 120] (2HDM (FV) column), the 2HDM flavor conserving (FC) case from [121], the MSSM with 1TeV squarks and gluinos from [122], the MSSM for the R-parity violating case from [123, 124], and warped extra dimensions (RS) from [125, 126].

Process	SM	$2\mathrm{HDM}(\mathrm{FV})$	$2\mathrm{HDM}(\mathrm{FC})$	MSSM	RPV	RS
$t \to Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to gu$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

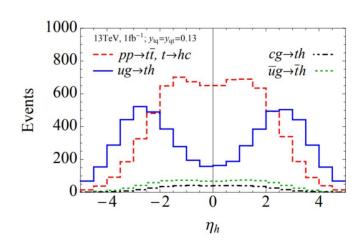

arxiv:1311.2028


Searching for tqH FCNC at the LHC

- m_t > m_H + m_q: top quark can decay to qH.
 Top pairs produced copiously at LHC → search for t → qH decays.
 - Cheng-Sher ansatz: B(t \rightarrow cH) \sim 0.15% \sim 90k events in 36 fb⁻¹



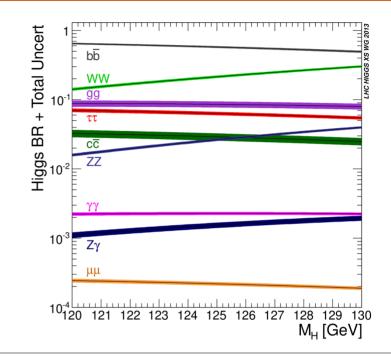
- tqH vertex can induce anomalous pp \rightarrow tH production
 - most relevant for tuH, due to proton having valence u.
 - proton has more u than $\overline{u} \rightarrow$ charge asymmetry!
 - no associated b (unlike SM tH); valence on glue → high longitudinal momentum



Top pair vs single top @ LHC

 $pp \rightarrow t\bar{t}, t/\bar{t} \rightarrow Hq$ tuH single top

tuH single antitop
tcH single top/antitop



- Single top cross section only appreciable for ug → tH
 - scales with t → uH branching fraction
- tH production can give an additional handle on tuH coupling

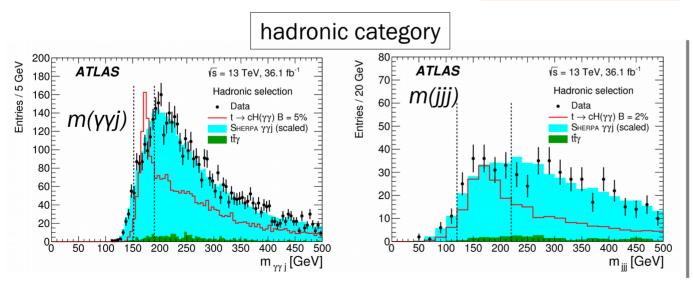
Greljo, Kamernik, Kopp, JHEP 07(2014) 046

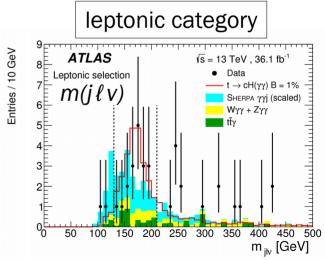
Channels

- "Standard" channels for searches set by Higgs decays
 - yy:
 - √ narrow peak, full top reconstruction
 - × small branching fraction
 - bb:
 - √ wide peak, full top reconstruction, high rate
 - × combinatorics, hard backgrounds
 - multilepton (WW, тт, ZZ):
 - √ reasonable rate, small backgrounds
 - × no full reconstruction
- Reject ttH production:
 - only one b-jet from top decay!
 - lower overall jet multiplicity

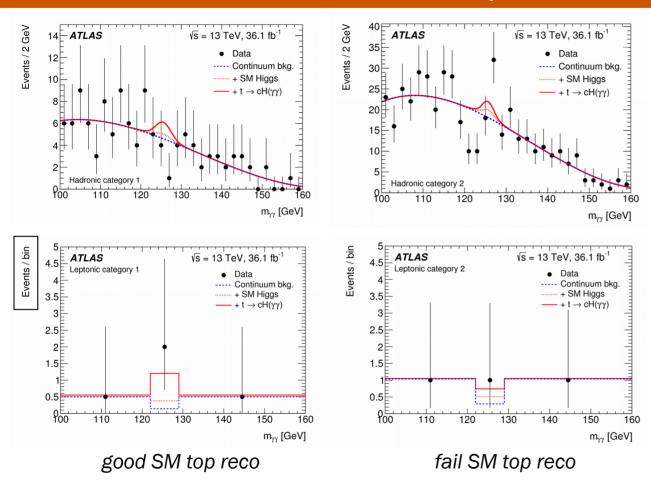
All channels exploited by both ATLAS & CMS @ 8 TeV Combined results (95% CL):

CMS: $B(t \rightarrow Hu) < 0.55\%$, $B(t \rightarrow Hc) < 0.40\%$


ATLAS: $B(t \rightarrow Hu) < 0.45\%, B(t \rightarrow Hc) < 0.46\%$


[JHEP 02(2017) 079, JHEP 12(2015) 061]

Diphoton


- Look for events pp \rightarrow tt \rightarrow ($\gamma\gamma q$)(Wb)
 - Narrow H \rightarrow $\gamma\gamma$ peak : challenge is not Higgs finding, but rather exclusion of SM Higgs production mechanisms
 - Both W → qq (hadronic) and W → Iv (leptonic) final states considered. Full reconstruction of event possible (in leptonic case, using W mass constraint for MET)
- 13 TeV ATLAS result

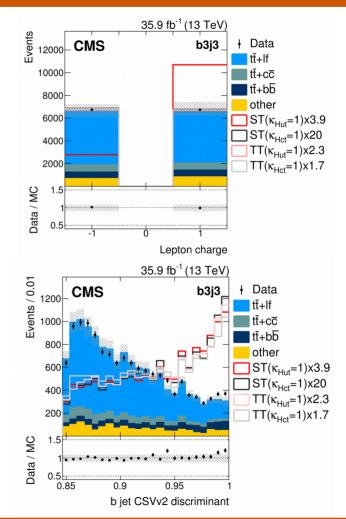
JHEP 10(2017) 129

Diphoton

$$B(t \rightarrow cH) < 0.22\% (0.16\% exp)$$

 $B(t \rightarrow uH) < 0.24\% (0.17\% exp)$

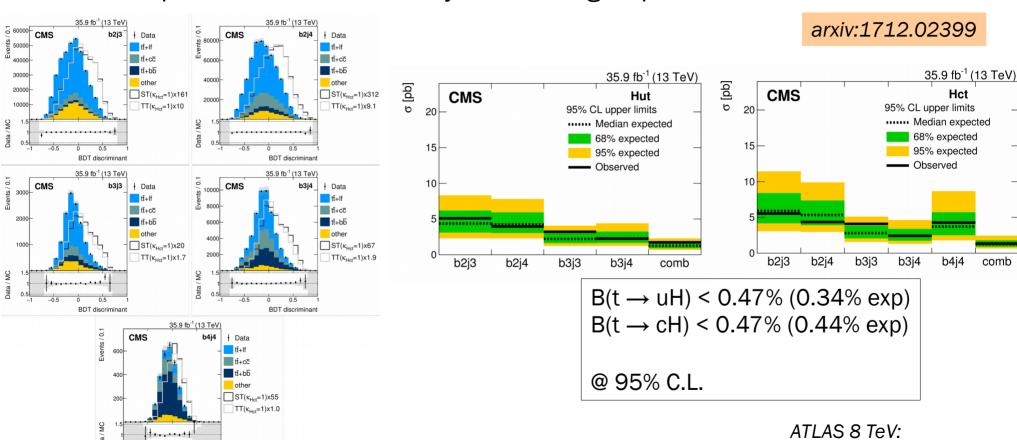
@ 95% C.L.


JHEP 10(2017) 129

CMS 8 TeV: $B(t \to qH) \lesssim 0.42 - 0.47\%$

$H \rightarrow bb$

- t → ℓ vb events considered
- 13 TeV CMS result: consider both top decay and single top production

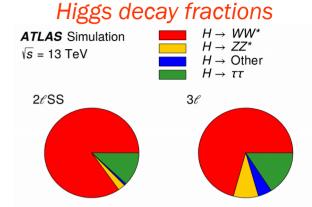

 arxiv:1712.02399
 - ratio between the two is fixed
- signal regions: 3 or ≥4 jets ⊗ 2, 3, 4 b-tags
 - most sensitive regions are those with 3 b-tags
 - 4 b-tag region recovers some sensitivity for t → Hc (charm frequently tagged as b)
- use BDT to choose best assignment of reconstructed objects to Higgs, top decay, then use another BDT to separate FCNC signal from backgrounds

$H \rightarrow bb$

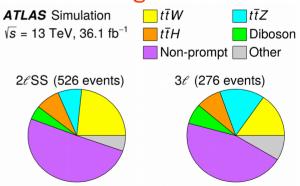
20% improvement in tuH limit by considering tH production

BDT discriminan

 $B(t \to qH) \lesssim 0.56 - 0.61\%$

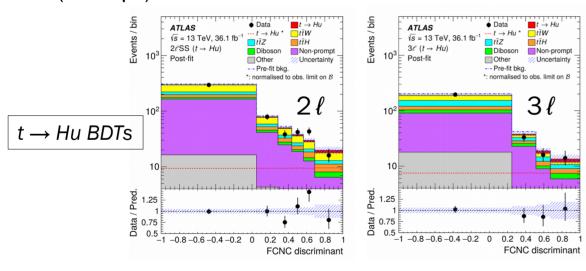

comb

Multilepton

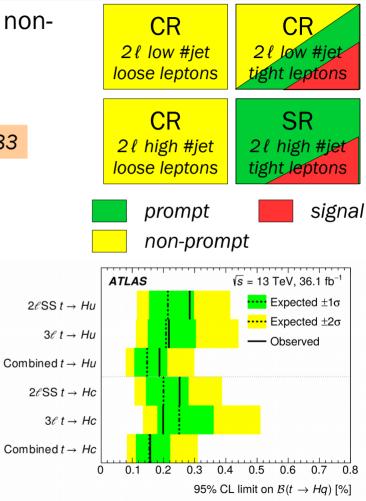

- Two same sign leptons or three leptons (lepton = e or μ)
 - target t $\rightarrow \ell$ vb, H \rightarrow WW $\rightarrow \ell$ vqq or ℓ v ℓ v (also contributions from H \rightarrow TT, ZZ)
- 13 TeV ATLAS result: uses the same SRs as ttH search
 - two same sign leptons $+ \ge 4$ jets

arxiv:1805.03483

- three leptons $+ \ge 2$ jets
- BDTs to separate FCNC signal from main backgrounds:
 - tt production with non-prompt lepton from b hadron decay
 - ttV production

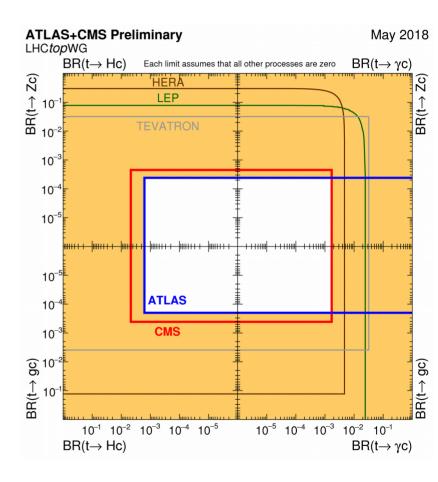


ATLAS Multilepton


- FCNC signal contaminates regions used for data-driven nonprompt lepton estimates!
 - tell fit how normalization, shape of non-prompt bkg change with nonzero signal

• $B(t \rightarrow qH) \lesssim 0.16-0.19\% @ 95\% CL$

arxiv:1805.03483



CMS 8 TeV: $B(t \rightarrow qH) \lesssim 0.86 - 0.93\%$

Summary

- Search for off-flavor-diagonal top-Higgs couplings now able to exclude couplings in a phenomenologically interesting range
- First results of 13 TeV searches becoming available
 - combinations of channels will give best limits
- Multiple Higgs decay channels used, with wide range of different backgrounds + systematic sensitivities
- Exciting future ahead!

ATLAS diphoton: acceptance, resonant bkg

Selection	Hadronic		Leptonic			
Category	1	2	1	2		
	Signal $t \to cH$					
Acceptance with stat. unc. $[\%]$	2.89 ± 0.10	4.15 ± 0.12	0.96 ± 0.03	0.27 ± 0.02		
Expected events for $\mathcal{B} = 0.2\%$	$7.85^{+0.64}_{-0.67}$	$11.30^{+0.91}_{-0.96}$	$2.60^{+0.21}_{-0.23}$	$0.71^{+0.07}_{-0.07}$		
	SM Higgs boson resonant background					
Expected events	$1.17^{+0.09}_{-0.11}$	$3.27^{+0.25}_{-0.27}$	$0.26^{+0.02}_{-0.03}$	$0.23^{+0.02}_{-0.02}$		
$t\bar{t}H$ fraction	90%	68%	92%	77%		