
SATLAS EXPERIMENT Data-driver background estimates in the ATLAS tTH

multilepton

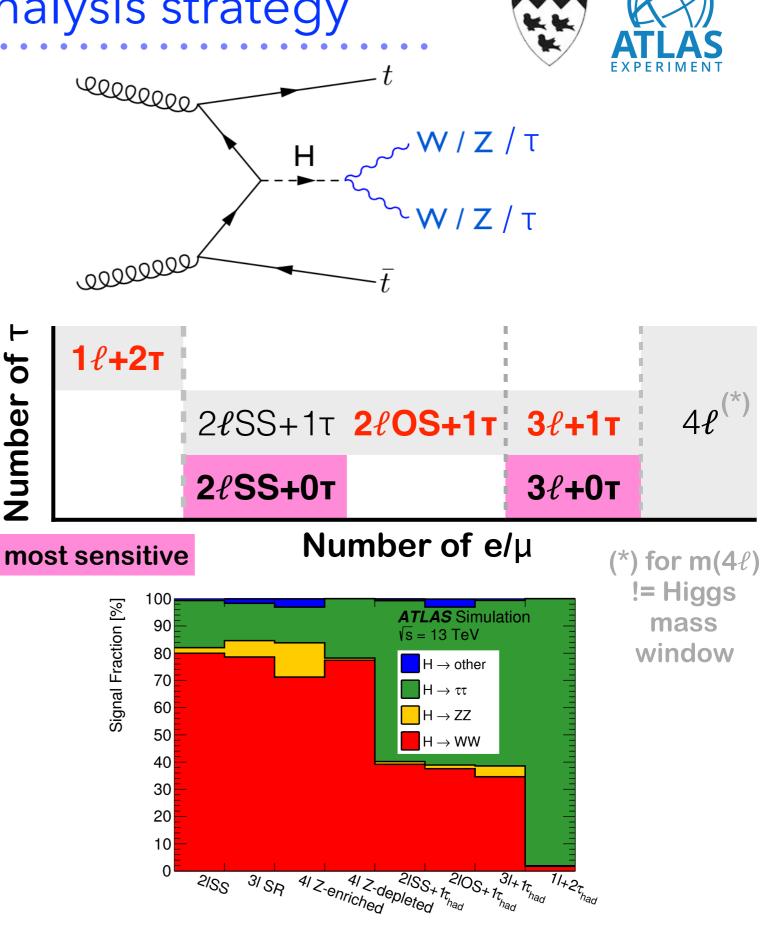
Tamara Vázquez Schröder McGill University

Higgs Toppings workshop Benasque, Spain - 28/05/18

> Run: 300571 Event: 90599753 2016-05-31 12:03

ttH (multileptons): analysis strategy

Target: ttH with


- $H \rightarrow WW/ZZ/TT \rightarrow \geq 1\ell$
- $t\bar{t} \rightarrow (\ell + jets, dilepton)$

High multiplicity final state **Rare in SM:** same-sign 2ℓ , 3ℓ , 4ℓ

• Exploit presence of hadronically decaying T

* Split in categories based on **number of e/μ** and **number of τ**

- Loose lepton definition (no isolation, loose ID)
- Dilepton and single lepton triggers

Tamara Vázquez Schröder (McGill University)

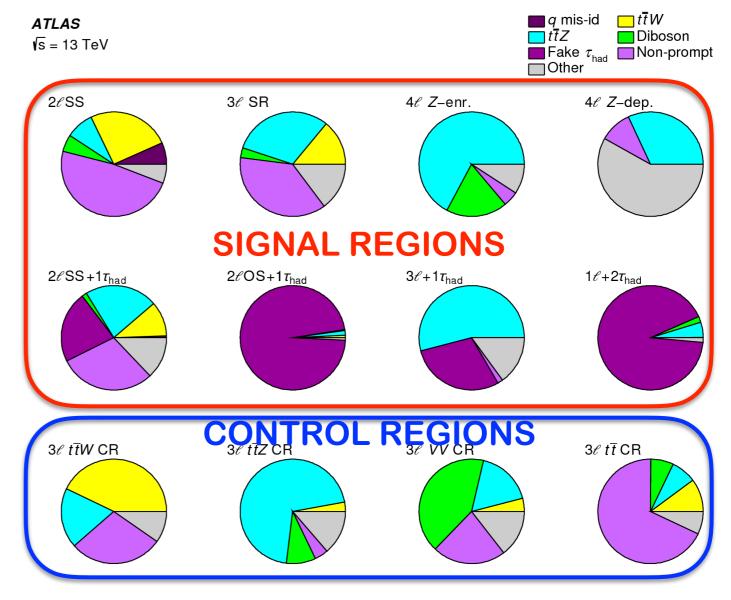
Number of

tīH (multileptons): background composition

* Non-prompt lepton in tī

- semileptonic b-decay
- y conversions

*** Fake T** from light/b-jets


DATA-DRIVEN (DD): MATRIX METHOD (MM), FAKE FACTOR (FF)

FF ~ matrix method except prompt background is taken from MC

* Misidentified charge lepton

- e.g. trident electrons (Bremsstrahlung)
- using **3D likelihood method** [pT, η, Tight/Loose]

Irreducible backgrounds with prompt-leptons (tīZ, tīW, ₩V)

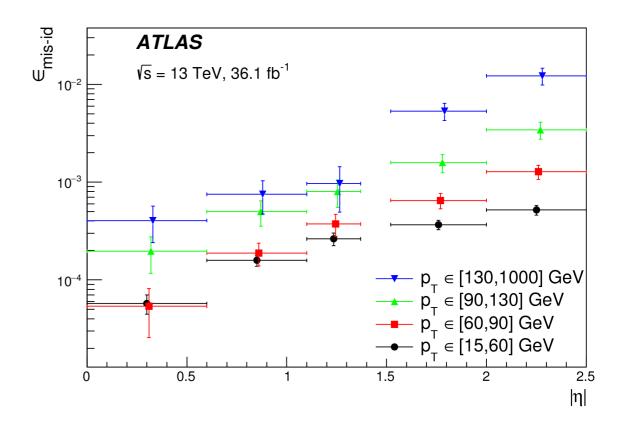
MC (cross check: fit to data)

"Other": 4tops, tīWW, tH, tZ

* ... that condition which type of data-driven method we should use and which type of fakes will be most dominant:

- Object definition
 - Lepton MVA-based isolation (PromptLeptonIso) to reject non-prompt *l* from semileptonic b-decay based on:
 - lepton and overlapping **track jets** properties
 - lepton track/calorimeter **isolation** variables
 - Lepton MVA to reduce charge misidentification background (QMisID) for 2ℓ SS and $3\ell+0\tau$ electron channels
 - These changes the:
 - Composition of the fakes lepton background we need to estimate
- Analysis strategy
 - Event MVA discriminant used in the final fit for the most sensitive channels
 - Need a data-driven method that provides a correct modelling of the shape of the fakes contribution (with complete set of uncertainties!)
- * Unavoidable consequence of analysing **more data**
 - Smaller statistical uncertainty in the estimate, but
 - Flaws of assumptions / simplifications in the DD methods become a problem

QMisID estimate



Selectrons under Z-peak Using 3D likelihood method [p_T, η, Tight/Anti-tight]

high p_T → straighter track → higher chance of QMisID

high η → more material → more trident electrons needed to provide input to Matrix Method (QMisID subtraction) + increase statistics (consider tight+antitight events)

- Obtain QMisID rates ε_{mis-id} by minimising a global likelihood function in a sample of Z→ee events reconstructed as SS or OS pairs
 - The background is subtracted using a sideband method
- Scale OS data events by this rate
- Total systematic uncertainty ~30 %
 - Dominated by closure test uncertainty at low p_T and by statistical uncertainties at high p_T

Non-prompt light ℓ

b

							EXPERIMENT		
Method [parametr.]		2ℓSS+0т		3ℓ+0т	4 ℓ	2ℓSS+1τ	Other т channels		
Non- prompt lepton		DD (Ι el: [p _{Τ,} μ: [p _Τ , e	NBjets]		pseudo- DD (Fake SF)	DD (FF) el/μ: [p _T]	MC (very small)		
DD/MC	ee: 2.0±0.5	eμ: 1.7±0.4	μμ: 1.5 ±0.5	SR: 1.8 ± 0.8					
S	Semileptonic b-decay			oton rsions	Non-prompt lepton & fake τ				
	b fake l++ j w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/			j j v e- v e+	b fak	e l+ j fak	сет		

strongly reduced with PLI 50% of the "fakes" in 3ł!

prompt ℓ^+

70% from t \overline{t} in 2 ℓ SS+1 τ

prompt ℓ^+

b

Tamara Vázquez Schröder (McGill University)

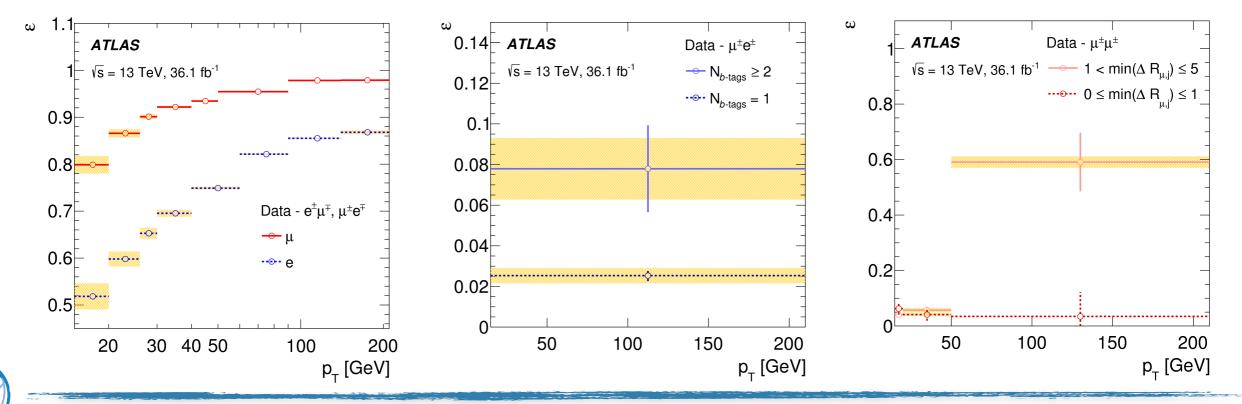
b ν prompt ℓ^+

Non-prompt light *l*: Matrix Method

2*l***SS/3***l***+OT:** Matrix Method

$$N_{TT}^{f} = w_{TT}N^{TT} + w_{TT}N^{TT} + w_{TT}N^{TT} + w_{TT}N^{TT}$$

f(<mark>ɛr</mark>, ɛf)


via tag&probe method in tī events

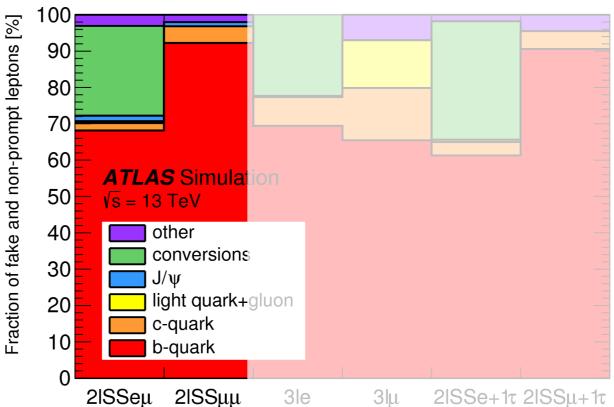
electrons and muons ε_r:
 1D (p_T) parametrisation

events in pre-MVA signal region with SS **loose** leptons (in 3*t*, lep_0 (OS to SS pair) is prompt in 98% of the times)

Channel	Region	Selection criteria
2ℓSS		$2 \le N_{\text{jets}} \le 3 \text{ and } N_{b-\text{jets}} \ge 1$
(3ℓ)		One very tight, one loose light lepton with $p_{\rm T} > 20$ (15) GeV
		Zero τ_{had} candidates
	ϵ_{real}	Opposite charge; opposite flavour
	$\epsilon_{\rm fake}$	Same charge; opposite flavour or $\mu\mu$

electrons ε_f: 2D (Nb-tags, p_T) parametrisation
muons ε_f: 2D (minΔR(µ,j), p_T) parametrisation

Non-prompt light *l*: Matrix Method (II)



***** Treatment of conversions

- $\epsilon_{\text{f},\gamma}$ significantly higher than $\epsilon_{\text{f},\text{hf}}$
- Account for the change of photon conversion fraction between the CR and SR from simulation
- \bullet Use to correct ϵ_{f}
- Systematic uncertainties: 40%
 - 15% from modelling of conversions in MC
 - 20% from measurement of $t\bar{t}\gamma$
 - 50% from modelling of semileptonic b-decays

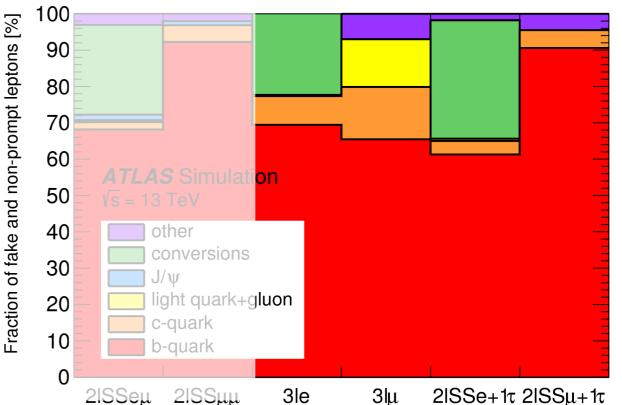
* Non-closure

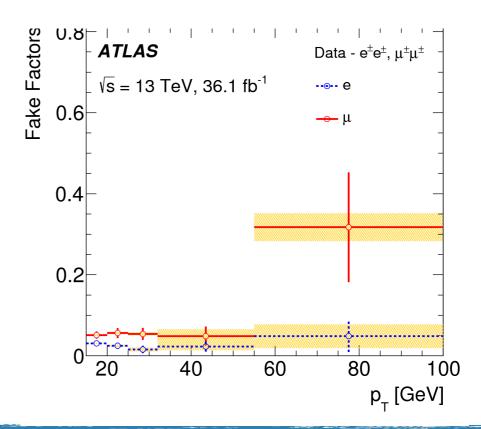
- Apply Matrix Method on tł MC, compare to tł MC prediction
- (11 ± 8)% and (9 ± 18)% non-closure in 2 ℓ SS and 3 ℓ , respectively
- Include non-closure as systematic uncertainty source

4 ℓ and **2** ℓ **SS1T** (light ℓ) fakes estimate

*** 4***l*

Semi data-driven technique


• Correction factors for MC (λ^{hf}_{e} , λ^{lf}_{e} , and λ_{μ}) measured in dedicated 3ℓ CR (loose leptons, 1-2 jets) split into 4 lepton-flavour categories, from a fit to the leading jet p_T distribution

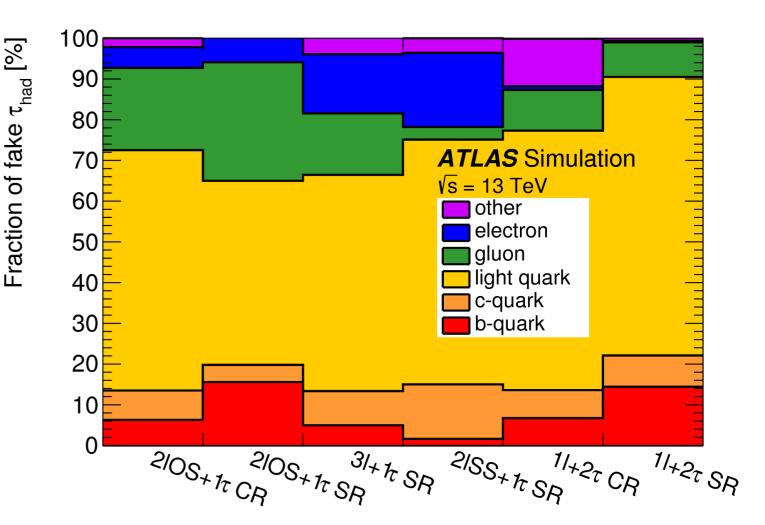

 $\lambda^{\mu} = 0.66 \pm 0.19$ $\lambda^{e}_{\text{heavy}} = 1.48 \pm 0.22$

 $\lambda_{\text{light}}^e = 0.72 \pm 0.53$

*** 2**ℓSS1т

- Fake-factor method to estimate background from events containing nonprompt light leptons (and a real or fake tau)
- FF derived from CR differing from SR by looser lepton requirements and lower jet multiplicity
- Total systematic uncertainty = 55%, dominated by statistical uncertainty in the closure test on simulation

Fake tau background


Estimate method [parametrisation]	1 ℓ+2т	2ℓOS+1τ	2ℓSS+1т	3ℓ+1т
Fake tau	DD (SS data)	DD (FF) [p⊤]	pseudo-DD (MC 2ℓOS+1	Correction with т DD SF)

- *** 1***ℓ***+2т:** mostly tī with 1 or 2 fake т
 - Estimated from data in CR with same definition as SR but SS taus
 - Closure uncertainty < 30%

*** 2**2**OS+1T:** fake factor

- Mainly $t\bar{t}$ with jet faking τ
- \bullet Fake rates parametrised in τ pT
- * 2ℓSS+1T and 3ℓ+1T: MC correction
 with SF derived from {DD(2ℓOS+1T) /
 MC}
 - Harmonised 1-fake-⊤ estimate for all channels, profit from large statistics from 2ℓOS+1⊤

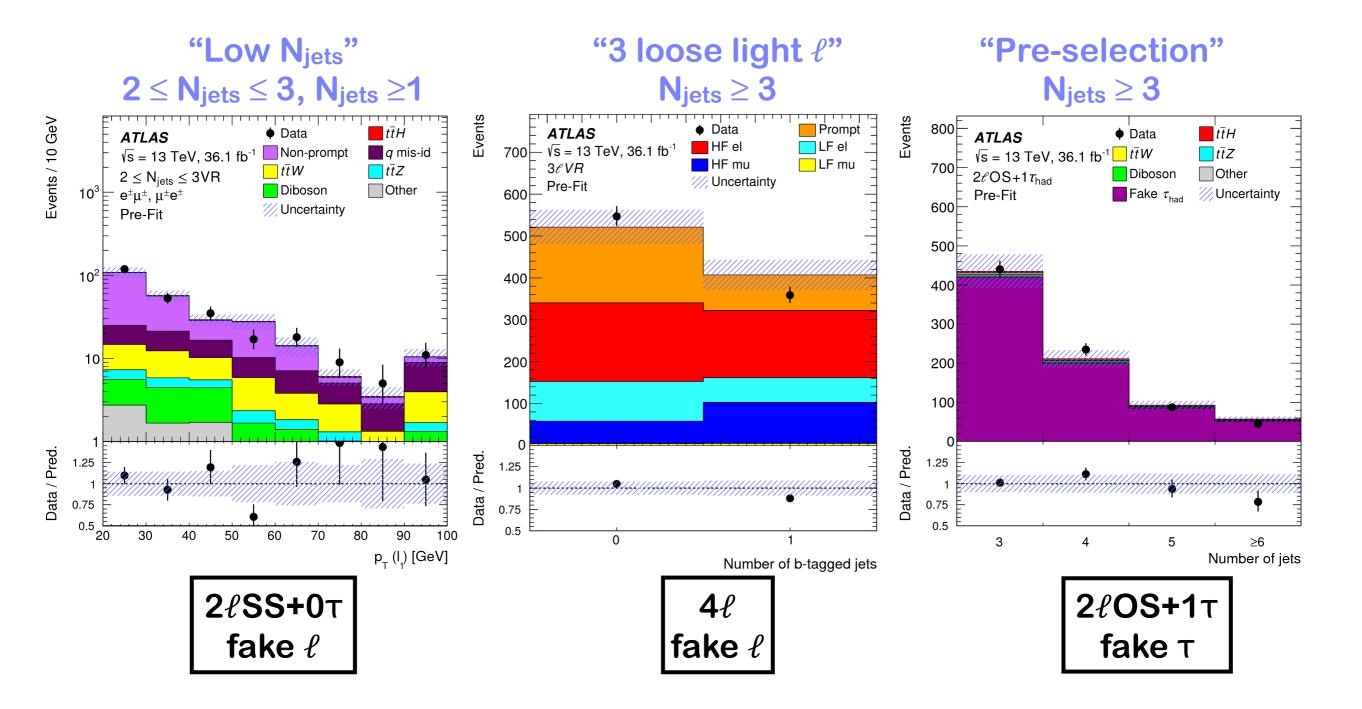
Final SF = 1.36 ± 0.16

Data-driven fake estimate uncertainties

Data-driven non-prompt/fake leptons and charge misassignn	nent	
Control region statistics	SN	38
Light-lepton efficiencies	SN	22
Non-prompt light-lepton estimates: non-closure	Ν	5
γ -conversion fraction	Ν	5
Fake τ_{had} estimates	N/SN	12
Electron charge misassignment	SN	1
Total (Data-driven reducible background)	—	83

***** Light lepton efficiencies:

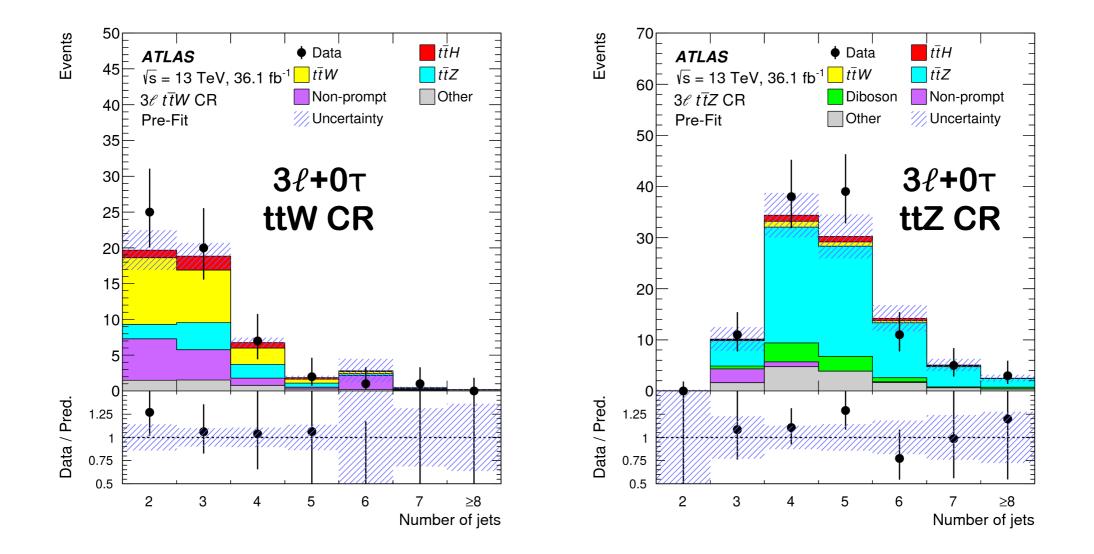
- real eff (1), fake eff (6 μ, 2 el, 3 prompt background subtraction theory uncertainties),
 4ℓ fake rate (1), 2ℓSS1⊤(10)
- *** γ** conversion fraction and non-closure uncertainties:
 - Uncorrelated across channels (ee, eµ, Xee, Xeµ, 2ℓ SS1T), affecting only normalisation


***** Electron charge miss assignment:

• Anti-correlated among background in SR and subtraction from fake rate calculation

***** Overall **reasonable data/prediction agreement** with estimates fakes in VRs

* The ttw and ttZ processed have only recently been observed


- Their properties are not yet fully understood
- Nor its behaviour in **higher jet multiplicity final states** such as ttt SR
- * When possible, **design CRs** enriched in this background
 - Difficult to have ttV-enriched CR in the high Njet region but with low signal contamination!
- ✤ In the last result:
 - 3ℓ CRs enriched in ttz (~70% purity) and in ttW (~45% purity) included in the fit
 - 5-dimensional multinominal BDTs mapped to 5 categories (tt̄H, tt̄W, tt̄Z, tt̄, VV)
 - Alternative-fit: ttZ and ttW normalisation free-floating
 - 15% loss in sensitivity: $\mu(t\bar{t}H)$ = 1.57 $^{+0.57}$ $_{-0.50}$
 - $\mu(t\bar{t}Z/W)$ in agreement with SM: $\mu_{t\bar{t}W}$ = 0.92 ± 0.32; $\mu_{t\bar{t}Z}$ = 1.17 $^{+0.25}$ $_{-0.22}$

* Overall good data/prediction agreement in ttV-enriched CRs using MC simulation

• Also good agreement in cut-based VRs

Post-fit signal regions

Events / bir

Data / Pred.

35

25

20⊢

15

10

1.25

0.75

0.5

0

ATLAS

Post-Fit

30 - 3ℓ SR

√s = 13 TeV, 36.1 fb⁻

3ℓ**+0**τ

Data

tt W

Other

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2**ℓSS+1**⊤

Diboson

--- Pre-Fit Bkgd.

ttH

tīZ

BDT output

2ℓSS+0τ

Data

Diboson

a mis-id

1*ℓ***+2**τ

t t H

ttZ

Other

Uncertainty --- Pre-Fit Bkgd.

0.2 0.4 0.6 0.8

BDT output

Non-prompt

Events / bin

10⁴

 10^{3}

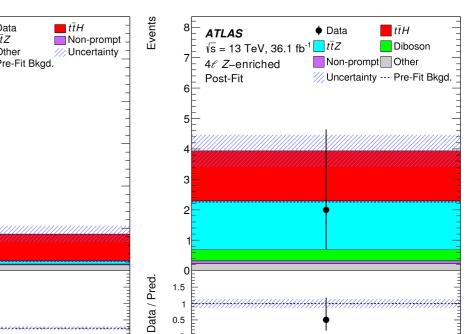
10²

10

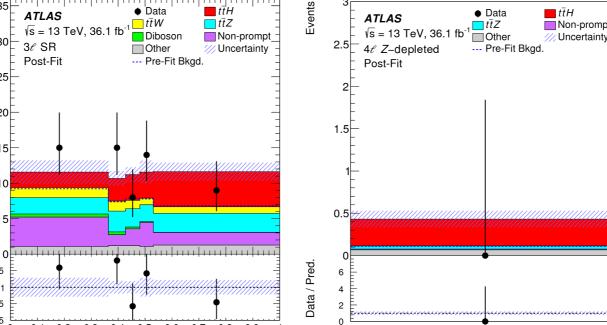
1 21.25 1 27.0 Data / Lued.

0.5

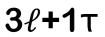
ATLAS

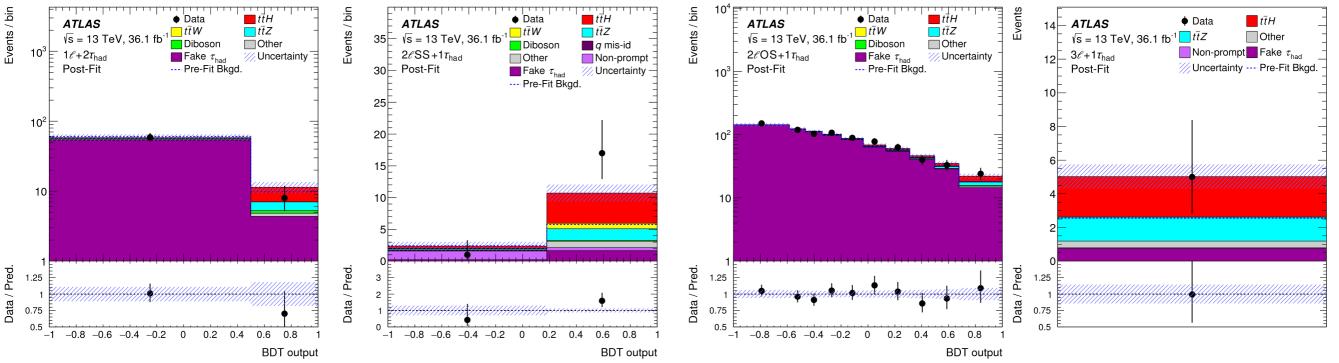

2ℓSS

Post-Fit


 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} t\bar{t}W$

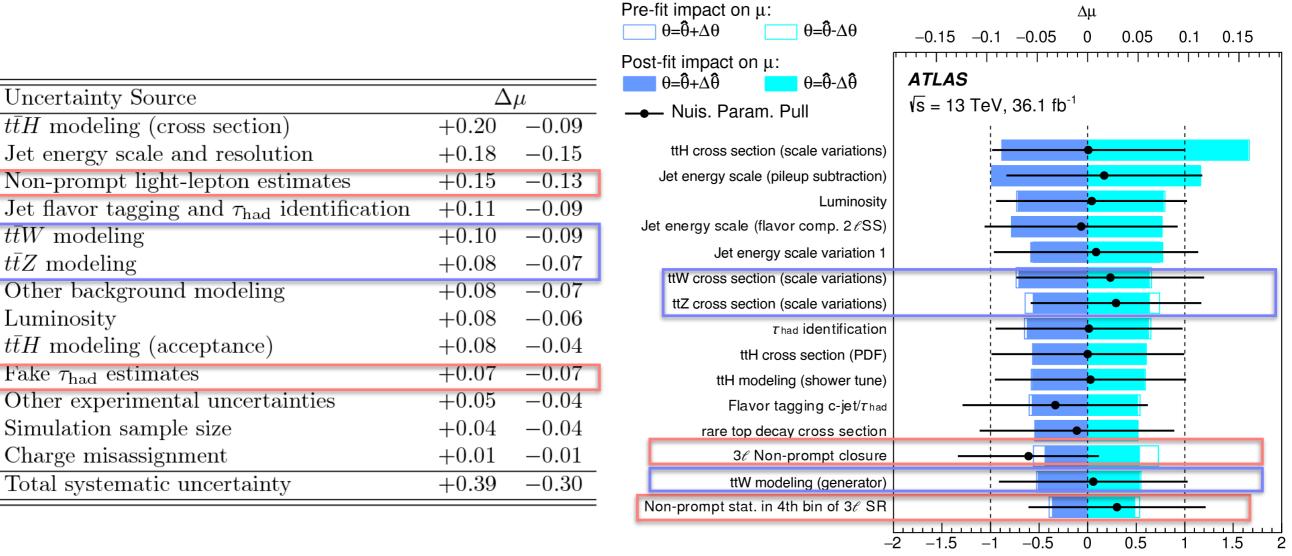
-0.8 -0.6 -0.4 -0.2 0





4ℓ (Z-depleted)

2**ℓ0S+1**⊤



*** Non-prompt light** *t* estimates uncertainties ranked as **3rd** group of systematics

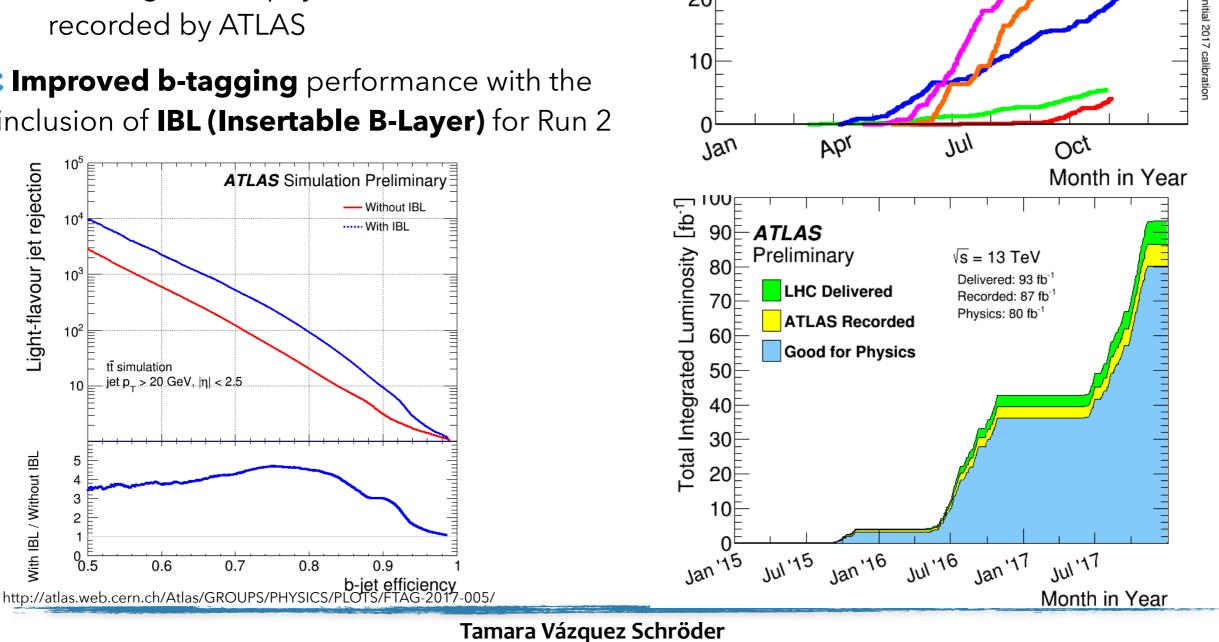
with the largest impact on the signal strength measurement

tīW and tīZ theory modelling uncertainties also have an important impact on the signal strength

* No major constraints or pulls of nuisance parameters

- * why did the light lepton fake estimate go down by ~30% in the updated version of the results?
- how do you exactly use the FF method to provide an MVA-shape-dependent estimate in each SR? How do you treat correlations between bins?
- * what is the DD/MC ratio in each channel for fake light lepton estimates? (CMS DD estimates are in general significantly lower than ATLAS' per channel)
- ***** is the conversion type in the CR similar to the SR?
 - "The small remaining background is modelled using the MC simulation. The validity of the simulation has been verified in control regions (CRs) in data."
- fake taus taken from MC without any correction? where do you validate this assumption?
- provide ranking of nuisance parameters impact on the signal strength measurement
- * provide plots with pulls and constraints of nuisance parameters

Back-up slides



Detector performance (I)

***** Excellent performance of LHC and ATLAS in Run 2 so far:

- Record instantaneous luminosity for pp interactions in 2017: 2.06x10³⁴ cm⁻²s⁻¹
 - **double** the LHC design!
- 80 fb⁻¹ good for physics from 87 fb⁻¹ recorded by ATLAS

*** Improved b-tagging** performance with the inclusion of IBL (Insertable B-Layer) for Run 2

60

50

40

30

20

ATLAS Online Luminosity

2011 pp 🛛 🛛 🛛 🛛 🗸 🗸 🗸 🗸 🗸

2012 pp

2015 pp

2016 pp

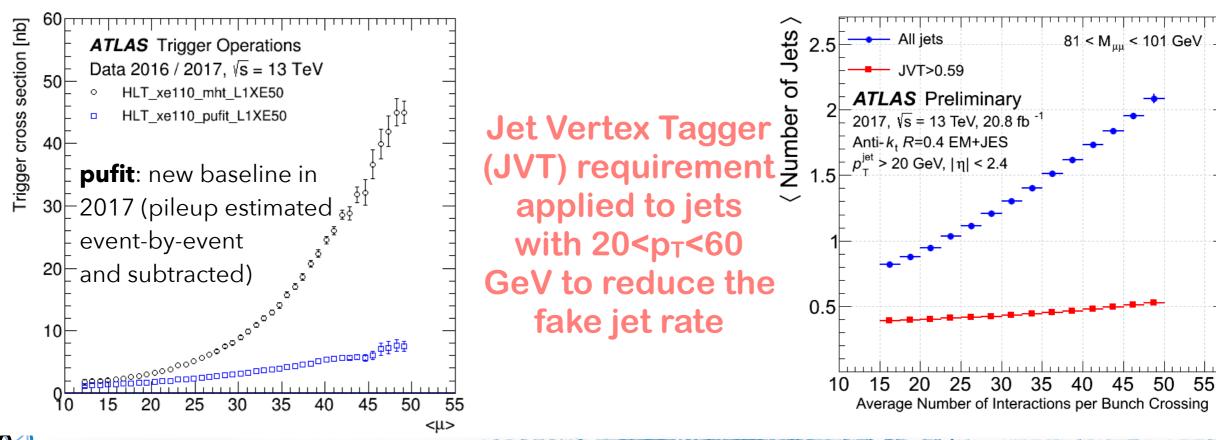
2017 pp

√s = 8 TeV

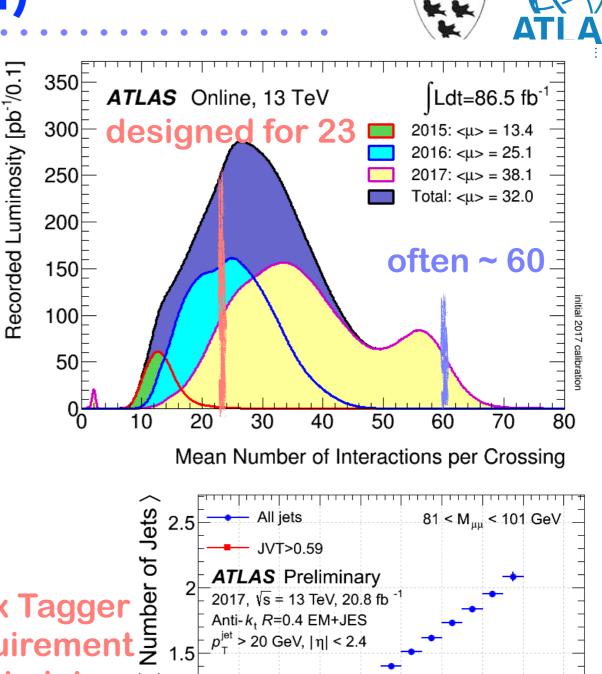
√s = 13 TeV

√s = 13 TeV

√s = 13 TeV

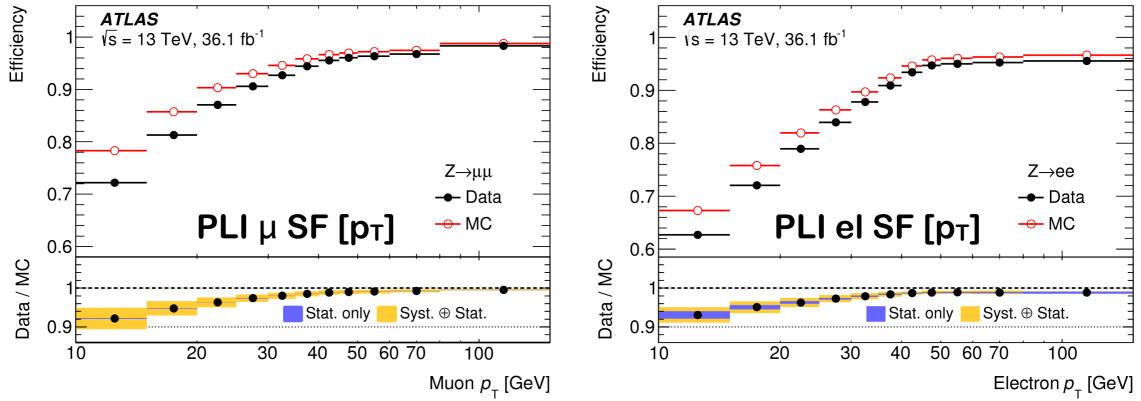

Delivered Luminosity [fb⁻¹]

Detector performance (II)


*** Biggest challenge**: robustness against pile-up

- Controlling trigger rates at high interaction per bunch crossing
- Online and offline reconstruction performance maintained even at the highest pile-up

improved HLT algorithms to suppress dependence of E_T^{miss} trigger rates on pile-up



tīH (multileptons): tight lepton definition

* Common main/important background: non-prompt leptons from semileptonic b-decay

- *** New MVA lepton isolation (PromptLeptonIso=PLI)** to reject non-prompt *l* based on:
 - lepton and overlapping **track jets** properties
 - lepton track/calorimeter **isolation** variables

- SF values ~ 0.90 0.98
- SF systematic uncertainties small (max ~3% @ low pT), w/ negligible impact in the analysis
- Factor O(20) rejection for leptons originating from b-hadrons

New MVA cut to reduce QMIsID for 2*t*SS and 3*t*+0⁺

• Factor $\mathcal{O}(17)$ background rejection for a 95% signal efficiency

tīH (multileptons): object definition summary

Several "Loose" and "Tight" lepton definitions to optimise the event selection in each multilepton channel

	e					μ		
	L	L^{\dagger}	L^*	Т	T*	L	Γ^{\dagger}	$L^*/T/T^*$
Isolation	No		Y	es		No		Yes
Non-prompt lepton BDT	N	No		Yes		No		Yes
Identification	I	LOOSE	,	T	Tight		Loose	
Charge misassignment veto BDT	No			Yes		No		
Transverse impact parameter significance, $ d_0 /\sigma_{d_0}$		< 5				< 3		
Longitudinal impact parameter, $ z_0 \sin \theta $	< 0.5 mm							

L = Loose L⁺ = + Loose isolated L^{*} = + PLI isolated T = Tight (PLI isolated) T* = + QMisID MVA veto (el only) Thad

Medium BDT ID to reject jets (1M, 1T in 1ℓ+2⊤)

 $p_T > 25 \text{ GeV}$

BDT to reject el faking т

τ-μ overlap removal

b-jet veto

 τ_{had} vertex is PV

 $\textbf{Jets} \; p_T > 25 \; GeV$

BJets MV2c10 70% WP

A Minimum jet requirements: $N_{jets} ≥ 2$; $N_{b-jets} ≥ 1$

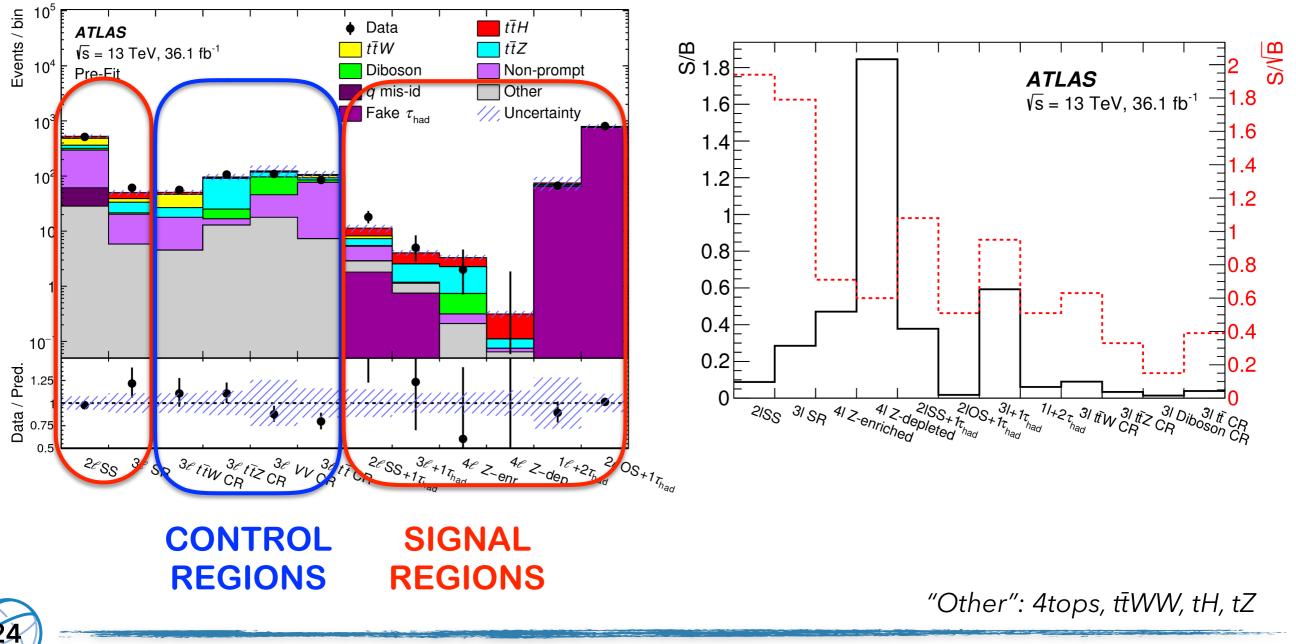
	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{had}$
Light lepton	$2T^*$	$1L^*, 2T^*$	2L, 2T	1T	$2T^*$	$2\mathrm{L}^{\dagger}$	$1L^{\dagger}, 2T$
$ au_{ m had}$	0M	0M	—	1T, 1M	$1\mathrm{M}$	$1\mathrm{M}$	$1\mathrm{M}$
$N_{\rm jets}, N_{b-\rm jets}$	$\geq 4, = 1, 2$	$\geq 2, \geq 1$	$\geq 2, \geq 1$	$\geq 3, \geq 1$	$\geq 4, \geq 1$	$\geq 3, \geq 1$	$\geq 2, \geq 1$

*** Signal extraction**: fit or cut on **BDTs (boosted decision tree)** to discriminate signal against the main background processes [except in $3\ell+1\tau$]

*** Pre-MVA region**: loose selection per channel to train MVA

- Input variables: system reconstruction, pseudo-continuous b-tagging, kinematics [full list in back-up]
- *** Final selection** per channel:
 - Either pre-MVA selection (e.g. 2ℓ SS+0 τ), tighter selection (e.g. 2ℓ SS+1 τ), or split pre-MVA region in categories (e.g. 3ℓ +0 τ)
 - 2ℓSSOT: combination of two BDTs (tīH vs. tī; tīH vs. tīV)
 - 3²0T: 5-dimensional multinominal BDTs mapped to 5 categories (tt̄H, tt̄W, tt̄Z, tt̄, VV)
 - 4ℓ (Z-enriched): tīH vs. tīZ
 - 2*l*SS+1т, 2*l*OS+1т, 1*l*+2т: tīH vs. tī (with fake т)

	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	$t ar{t} Z$ / -	$t\overline{t}$	all	$tar{t}$	-
Discriminant	$2 \times 1D BDT$	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1 / 1	2	2	10	1
Control regions	_	4	_	-	-	_	-


tīH (multileptons): pre-fit summary

*** Most statistically sensitive** to $t\bar{t}H: 2\ell SS+0\tau$ and $3\ell+0\tau$

Purest but lowest statistics: 4*t*

*** Largest pre-fit excess** per fit category: 2*2*SS+1

Fake control regions

Channel	Region	Selection criteria
2ℓSS		$2 \le N_{\text{jets}} \le 3 \text{ and } N_{b\text{-jets}} \ge 1$
(3 <i>l</i>)		One very tight, one loose light lepton with $p_{\rm T} > 20 (15) {\rm GeV}$
		Zero τ_{had} candidates
	$\epsilon_{\rm real}$	Opposite charge; opposite flavor
	$\epsilon_{\rm fake}$	Same charge; opposite flavor or $\mu\mu$
4ℓ		$1 \le N_{\text{jets}} \le 2$
		Three loose light leptons; sum of light lepton charges ± 1
		Subleading same-charge lepton must be tight
		Veto on 3ℓ selection
	Either	One SFOC pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$E_{\rm T}^{\rm miss}$ < 50 GeV, $m_{\rm T}$ < 50 GeV
	or	No SFOC pair
		Subleading jet $p_{\rm T} > 30 \text{ GeV}$
$2\ell SS+1\tau_{had}$		$2 \le N_{\text{jets}} \le 3 \text{ and } N_{b-\text{jets}} \ge 1$
		One very tight, one loose light lepton with $p_{\rm T} > 15 {\rm GeV}$
		A SFSC pair
		m(ee) - 91.2 GeV > 10 GeV
		Zero or one medium τ_{had} candidate, opposite in charge to the light leptons
$1\ell + 2\tau_{had}$		$N_{\text{jets}} \ge 3 \text{ and } N_{b-\text{jets}} \ge 1$
		One tight light lepton, with $p_{\rm T} > 27 \text{ GeV}$
		Two τ_{had} candidates of same charge
		At least one τ_{had} candidate has to satisfy tight identification criteria
$2\ell OS + 1\tau_{had}$		Two loose and isolated light leptons, with $p_{\rm T} > 25$, 15 GeV
		One loose τ_{had} candidate
		$ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ and $m(\ell^+\ell^-) > 12 \text{ GeV}$
		$N_{\text{jets}} \ge 3 \text{ and } N_{b-\text{jets}} = 0$

MC samples

Process	Event generator	ME order	Parton Shower	PDF	Tune
$t\bar{t}H$	MG5_AMC	NLO	Pythia 8	NNPDF 3.0 NLO [71]	A14
	$(MG5_AMC)$	(NLO)	(Herwig++)	(CT10 [72])	(UE-EE-5)
tHqb	$MG5_AMC$	LO	Pythia 8	CT10	A14
tHW	$MG5_AMC$	NLO	HERWIG++	CT10	UE-EE-5
$t \bar{t} W$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa $2.1.1)$	(LO multileg)	(Sherpa $)$	(NNPDF 3.0 NLO)	(Sherpa default)
$t\bar{t}(Z/\gamma^* \to ll)$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa $2.1.1)$	(LO multileg)	(Sherpa $)$	(NNPDF 3.0 NLO)	(Sherpa default)
tZ	$MG5_AMC$	LO	Pythia 6	CTEQ6L1	Perugia2012
tWZ	$MG5_AMC$	NLO	Pythia 8	NNPDF 2.3 LO	A14
$tar{t}t,tar{t}tar{t}$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$tar{t}$	Powheg-BOX v2 $[73]$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
$tar{t}\gamma$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
s-, t -channel,	Powheg-BOX v1 [74,75,76]	NLO	Pythia 6	CT10	Perugia2012
Wt single top					
$VV(\rightarrow llXX),$	Sherpa 2.1.1	MEPS NLO	Sherpa	CT10	Sherpa default
qqVV, VVV					
$Z \rightarrow l^+ l^-$	Sherpa 2.2.1	MEPS NLO	Sherpa	NNPDF 3.0 NLO	Sherpa default

Input variables for MVA

	Variable	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{\rm had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$
	Leading lepton $p_{\rm T}$		Х				
	Second leading lepton $p_{\rm T}$	×	×			×	
	Third lepton $p_{\rm T}$		X				
S	Dilepton invariant mass (all combinations)	×	$\times *$				×
rtı	Three-lepton invariant mass		×				
Lepton properties	Four-lepton invariant mass			X			
bid	Best Z -candidate dilepton invariant mass			X			
	Other Z -candidate dilepton invariant mass			X			
1	Scalar sum of all leptons $p_{\rm T}$			X			×
Ì	Second leading lepton track isolation					×	
	Maximum $ \eta $ (lepton 0, lepton 1)	×				×*	
	Lepton flavor	X*	X*				
	Lepton charge		×				
	Number of jets	×*	X*		Х	×	×
	Number of <i>b</i> -tagged jets	×*	X*		×	×	×
	Leading jet $p_{\rm T}$	A 4	77 m			~	×
	Second leading jet $p_{\rm T}$		×			×*	~
COT 1	Leading b-tagged jet $p_{\rm T}$		×			A *	
enti biobet me	Scalar sum of all jets $p_{\rm T}$				×	×	\sim
2	Scalar sum of all <i>b</i> -tagged jets $p_{\rm T}$		Х		×	×	×
7			V				×
h to prime provide the flood	Has leading jet highest b-tagging weight?		X				
•	b-tagging weight of leading jet		×				
	b-tagging weight of second leading jet		×			×	
	b-tagging weight of third leading jet					×	
	Pseudorapidity of fourth leading jet					×	
	Leading $\tau_{\rm had} p_{\rm T}$				×		×
$ au_{ m had}$	Second leading $\tau_{\rm had} p_{\rm T}$				×		
Ę	$\text{Di-}\tau_{\text{had}}$ invariant mass				×		
	Invariant mass τ_{had} -furthest lepton					×	
	$\Delta R($ lepton 0, lepton 1 $)$		×				
	$\Delta R($ lepton 0, lepton 2 $)$		Х				
	$\Delta R(\text{lepton } 0, \text{ closest jet})$	×	\times				
۵	$\Delta R($ lepton 0, leading jet $)$		×			×	
ICO	$\Delta R($ lepton 0, closest <i>b</i> -jet $)$		Х				
	$\Delta R(\text{lepton 1, closest jet})$	\times	×				
	$\Delta R($ lepton 2, closest jet $)$		\times				
contraction relation	Smallest $\Delta R(\text{lepton, jet})$		×				×
in S	Smallest $\Delta R(\text{lepton}, b\text{-tagged jet})$						×
	Smallest ΔR (non-tagged jet, <i>b</i> -tagged jet)						×
4	$\Delta R(\text{lepton } 0, \tau_{\text{had}})$						×
	$\Delta R(\text{lepton } 1, \tau_{\text{had}})$						×
	Minimum ΔR between all jets				×		
	ΔR between two leading jets					×	
2	Missing transverse momentum $E_{\rm T}^{\rm miss}$	X		X			
	Azimuthal separation $\Delta \phi$ (leading jet, $\vec{p}_{T}^{\text{miss}}$)		×				
p_{\uparrow}	Transverse mass leptons $(H/Z \text{ decay}) - \vec{p_T}^{\text{miss}}$			×			
	Pseudo-Matrix-Element			×			

The variables used in cross-check analyses are indicated by a *

Correlation NPs

ATLAS

√s = 13 TeV, 36.1 fb⁻¹

ttH signal strength	100.0	-26.3	-0.7	-11.0	2.8	1.6	-4.9	-2.0	-1.9	-1.3	1.7	4.0	-22.4	-1.9
ttH cross section (scale variations)	-26.3	100.0	0.0	0.0	-0.0	-0.0	0.0	-0.2	0.1	-0.1	-0.0	-0.0	0.0	0.0
tZ cross section	-0.7	0.0	100.0	-2.9	0.4	-0.1	-0.4	0.0	0.2	0.1	4.7	-21.1	1.1	-0.3
3ℓ Non-prompt closure	-11.0	0.0	-2.9	100.0	-24.5	-0.2	0.9	0.4	0.2	0.2	3.7	-9.4	4.7	1.3
Non-prompt stat. in $3\ell t \overline{t} CR$	2.8	-0.0	0.4	-24.5	100.0	0.0	-0.3	-0.1	-0.1	-0.1	0.2	4.2	-0.8	0.1
Fake τ_{had} stat. in 1st bin of 1ℓ + $2\tau_{had}$	1.6	-0.0	-0.1	-0.2	0.0	100.0	-58.9	-0.1	-0.0	-0.0	0.0	0.1	-0.4	-0.1
Fake τ_{had} modeling (1 ℓ + 2 τ_{had})	-4.9	0.0	-0.4	0.9	-0.3	-58.9	100.0	0.5	0.1	0.3	-1.7	-2.4	1.2	-0.5
Fake τ_{had} low $p_T (2\ell OS + 1\tau_{had})$	-2.0	-0.2	0.0	0.4	-0.1	-0.1	0.5	100.0	30.4	13.9	-0.3	-0.4	0.1	-0.1
Fake τ_{had} comp. tt (2 ℓ OS+1 τ_{had})	-1.9	0.1	0.2	0.2	-0.1	-0.0	0.1	30.4	100.0	-63.4	-0.1	0.0	0.1	0.3
Fake τ_{had} comp. Z (2 ℓ OS+1 τ_{had})	-1.3	-0.1	0.1	0.2	-0.1	-0.0	0.3	13.9	-63.4	100.0	-0.2	-0.4	0.3	0.1
VV modeling (shower tune)	1.7	-0.0	4.7	3.7	0.2	0.0	-1.7	-0.3	-0.1	-0.2	100.0	61.4	1.2	-3.3
VV cross section	4.0	-0.0	-21.1	-9.4	4.2	0.1	-2.4	-0.4	0.0	-0.4	61.4	100.0	-1.3	24.9
Jet energy scale (pileup subtraction)	-22.4	0.0	1.1	4.7	-0.8	-0.4	1.2	0.1	0.1	0.3	1.2	-1.3	100.0	-6.1
Jet energy resolution	-1.9	0.0	-0.3	1.3	0.1	-0.1	-0.5	-0.1	0.3	0.1	-3.3	24.9	-6.1	100.0
	ttH signal strength	ttH cross section (scale variations)	tZ cross section	3ℰ Non-prompt closure	Non-prompt stat. in 3 <i>ℓ</i> t ī CR	Fake τ _{had} stat. in 1st bin of 1ℓ+2τ _{had}	Fake $ au_{had}$ modeling (1 ℓ + 2 $ au_{had}$)	Fake r_{had} low p_T (2 ℓ OS+1 r_{had})	Fake $ au_{had}$ comp. tt (2 ℓ OS +1 $ au_{had}$)	Fake τ _{had} comp. Z (2ℓOS+1 τ _{had})	VV modeling (shower tune)	VV cross section	Jet energy scale (pileup subtraction)	Jet energy resolution

Correlation min threshold = 20%

tīH (multileptons): fit results (II)

	ATLAS			√s=13 TeV, 36.1 fb ⁻¹					
	— Tot.	···· St	at.	Tot		(Stat.,	Syst.)		
$2\ell OS + 1\tau_{had}$.	•	÷	1.7	+2.1 –1.9	$(^{+1.6}_{-1.5},$	+1.4)		
$1\ell + 2\tau_{had}$	┝━┝・╋・・┝┥			-0.6	+1.6 –1.5	$(^{+1.1}_{-0.8},$	+1.1 -1.3)		
4 <i>ℓ</i>	ŀ • ● • • • I			-0.5	+1.3 -0.9	$(^{+1.3}_{-0.8},$	+0.2 -0.3		
$3\ell + 1\tau_{had}$	•••	•	•	1.6	+1.8 –1.3	$(^{+1.7}_{-1.3},$	+0.6 -0.2)		
$2\ell SS + 1\tau_{had}$			•	н 3.5	+1.7 –1.3	$(^{+1.5}_{-1.2},$	+0.9 -0.5)		
3ℓ		₩ ● •				$(^{+0.6}_{-0.6},$	+0.6 -0.5)		
2ℓSS		 ● 			+0.7 0.6	$(^{+0.4}_{-0.4},$			
combined				16	+0.5 0,4	$\binom{+0.3}{-0.3}$,	^{+0.4} _0.3		
	-2 0	2	4	6	8	10	12		
			В	est-fit µ _ť	fo _{ĒH}	r m _H =12	25 GeV		

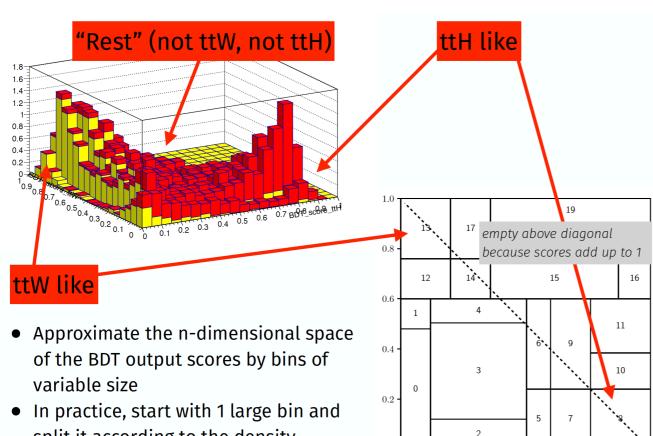
Channel	Significance					
	Observed	Expected				
$2\ell OS+1\tau_{had}$	0.9σ	0.5σ				
1ℓ + $2\tau_{had}$	-	0.6σ				
4ℓ (*)	-	0.8σ				
$3\ell + 1\tau_{had}$	1.3σ	0.9σ				
$2\ell SS+1\tau_{had}$	3.4σ	1.1σ				
3ℓ	2.4σ	1.5σ				
2ℓSS	2.7σ	1.9σ				
Combined	4.1 <i>o</i>	2.8σ				

* Cross-section extrapolated to the inclusive phase space:

• σ(ttH)=790 ±150 (stat.) ⁺¹⁷⁰ ₋₁₅₀ (syst.) fb

***** Significance with respect to background-only hypothesis = **4.1** σ (**2.8** σ) obs (exp)

- * Compatible with SM (within 1.4 σ)
- Compatibility (7 chan.) = 34%
- * Alternative fit: tt̄Z and tt̄W normalisation free-floating
 - 15% loss in sensitivity: $\mu(t\bar{t}H) = 1.57 + 0.57 0.50$
 - $\mu(t\bar{t}Z/W)$ in agreement with SM: $\mu_{t\bar{t}W} = 0.92 \pm 0.32$; $\mu_{t\bar{t}Z} = 1.17 + 0.25 0.22$


(*) for m(4ℓ) != Higgs mass window

Multinomial classification

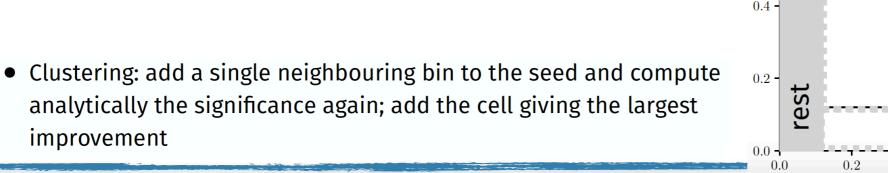
19

- * Explore multinomial classifiers to simultaneously define signal and control regions ERIMEN
 - Processes are separated in the space of a multiD observable
 - Define CRs and VRs with a topology similar to the SR

0.0 -

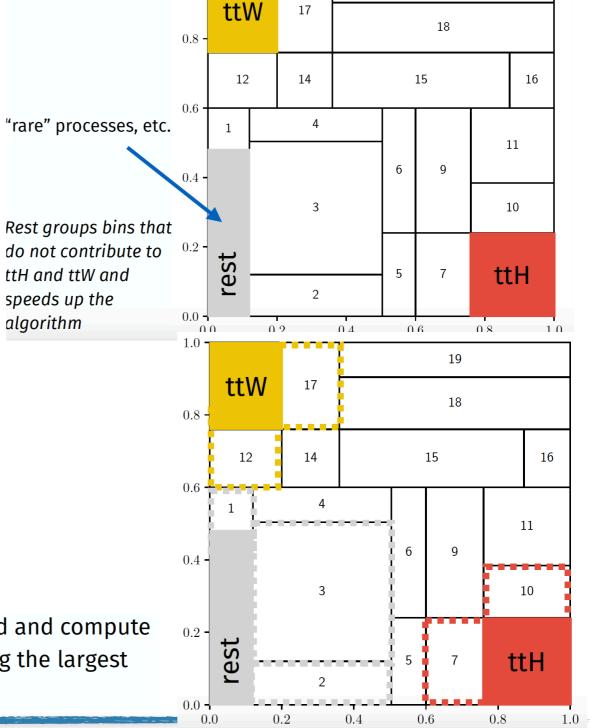
0.0

0.2


0.4

0.6

0.8


split it according to the density

improvement

speeds up the

algorithm

1.0

2 2 0S+1T: fake factor					nJets		Z cut	Used for	
FF method	т	anti-т	A, B	2LOS+tau selection	≥3	≥1	M _{ee/μμ} - M _Z I > 10 GeV	to be estimated	
apply in B:		В	C, D	ZVeto 3j0b	≥3	0	$ M_{ee/\mu\mu} - M_Z > 10 \text{ GeV}$	nominal FF	
		D		OnZ 3j0b	≥3	0	M _{ee/μμ} - M _Z I < 10 GeV	systematics (Z+jets enriched)	
extract FF:	С	D		eve2:1b	2	. 1		systematics	
				exc2j1b	Z	≥1	$ M_{ee/\mu\mu} - M_Z > 10 \text{ GeV}$	(ttbar enriched)	

- т/anti-т definition based on BDT score of jet-vs-т
- Reasonable agreement of yield and shape of DD estimate with data

222S+1T and 3*l***+1T: MC correction with SF derived from {DD(2***l***OS+1T) / MC}**

- Harmonised 1-fake- τ estimate for all channels, profit from large statistics from $2\ell OS+1\tau$, composition uncertainties to cover wide range of b-faking- τ content
- Final SF = 1.36 ± 0.16

Category	Non-prompt	Fake $ au_{had}$	<i>q</i> mis-id	tĪW	tīΖ	Diboson	Other	Total Bkgd.	tĪH	Observed
Pre-fit yields										
2ℓSS	233 ± 39	_	33 ± 11	123 ± 18	41.4 ± 5.6	25 ± 15	28.4 ± 5.9	484 ± 38	42.6 ± 4.2	514
3ℓ SR	14.5 ± 4.3	_	_	5.5 ± 1.2	12.0 ± 1.8	1.2 ± 1.2	5.8 ± 1.4	39.1 ± 5.2	11.2 ± 1.6	61
$3\ell t\bar{t}W$ CR	13.3 ± 4.3	_	_	19.9 ± 3.1	8.7 ± 1.1	< 0.2	4.53 ± 0.92	46.5 ± 5.4	4.18 ± 0.46	56
$3\ell t\bar{t}Z CR$	3.9 ± 2.5	_	_	2.71 ± 0.56	66 ± 11	8.4 ± 5.3	12.9 ± 4.2	93 ± 13	3.17 ± 0.41	107
3ℓ VV CR	27.7 ± 8.7	_	_	4.9 ± 1.0	21.3 ± 3.4	51 ± 30	17.9 ± 6.1	123 ± 32	1.67 ± 0.25	109
$3\ell t\bar{t} CR$	70 ± 17	_	_	10.5 ± 1.5	7.9 ± 1.1	7.2 ± 4.8	7.3 ± 1.9	103 ± 17	4.00 ± 0.49	85
4ℓ Z-enr.	0.11 ± 0.07	_	_	< 0.01	1.52 ± 0.23	0.43 ± 0.23	0.21 ± 0.09	2.26 ± 0.34	1.06 ± 0.14	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.06 ± 0.03	0.11 ± 0.03	0.20 ± 0.03	0
1ℓ + $2\tau_{\rm had}$	_	65 ± 21	_	0.09 ± 0.09	3.3 ± 1.0	1.3 ± 1.0	0.98 ± 0.35	71 ± 21	4.3 ± 1.0	67
$2\ell SS+1\tau_{had}$	2.4 ± 1.4	1.80 ± 0.30	0.05 ± 0.02	0.88 ± 0.24	1.83 ± 0.37	0.12 ± 0.18	1.06 ± 0.24	8.2 ± 1.6	3.09 ± 0.46	18
$2\ell OS+1\tau_{had}$	_	756 ± 80	_	6.5 ± 1.3	11.4 ± 1.9	2.0 ± 1.3	5.8 ± 1.5	782 ± 81	14.2 ± 2.0	807
3ℓ + $1\tau_{had}$	_	0.75 ± 0.15	_	0.04 ± 0.04	1.38 ± 0.24	0.002 ± 0.002	0.38 ± 0.10	2.55 ± 0.32	1.51 ± 0.23	5
					Post-fit yields	5				
2ℓSS	211 ± 26	_	28.3 ± 9.4	127 ± 18	42.9 ± 5.4	20.0 ± 6.3	28.5 ± 5.7	459 ± 24	67 ± 18	514
3ℓ SR	13.2 ± 3.1	_	_	5.8 ± 1.2	12.9 ± 1.6	1.2 ± 1.1	5.9 ± 1.3	39.0 ± 4.0	17.7 ± 4.9	61
$3\ell t\bar{t}W$ CR	11.7 ± 3.0	_	-	20.4 ± 3.0	8.9 ± 1.0	< 0.2	4.54 ± 0.88	45.6 ± 4.0	6.6 ± 1.9	56
$3\ell t\bar{t}Z CR$	3.5 ± 2.1	_	_	2.82 ± 0.56	70.4 ± 8.6	7.1 ± 3.0	13.6 ± 4.2	97.4 ± 8.6	5.1 ± 1.4	107
3ℓ VV CR	22.4 ± 5.7	_	_	5.05 ± 0.94	22.0 ± 3.0	39 ± 11	18.1 ± 5.9	106.8 ± 9.4	2.61 ± 0.82	109
$3\ell t\bar{t} CR$	56.0 ± 8.1	_	_	10.7 ± 1.4	8.1 ± 1.0	5.9 ± 2.7	7.1 ± 1.8	87.8 ± 7.9	6.3 ± 1.8	85
4ℓ Z-enr.	0.10 ± 0.07	_	_	< 0.01	1.60 ± 0.22	0.37 ± 0.15	0.22 ± 0.10	2.29 ± 0.28	1.65 ± 0.47	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.07 ± 0.03	0.11 ± 0.03	0.32 ± 0.09	0
1ℓ + $2\tau_{had}$	_	58.0 ± 6.8	_	0.11 ± 0.11	3.31 ± 0.90	0.98 ± 0.75	0.98 ± 0.33	63.4 ± 6.7	6.5 ± 2.0	67
$2\ell SS+1\tau_{had}$	1.86 ± 0.91	1.86 ± 0.27	0.05 ± 0.02	0.97 ± 0.26	1.96 ± 0.37	0.15 ± 0.20	1.09 ± 0.24	7.9 ± 1.2	5.1 ± 1.3	18
$2\ell OS+1\tau_{had}$	_	756 ± 28	_	6.6 ± 1.3	11.5 ± 1.7	1.64 ± 0.92	6.1 ± 1.5	782 ± 27	21.7 ± 5.9	807
$3\ell+1\tau_{had}$	_	0.75 ± 0.14	_	0.04 ± 0.04	1.42 ± 0.22	0.002 ± 0.002	0.40 ± 0.10	2.61 ± 0.30	2.41 ± 0.68	5