

Data-driven background estimates in ttH(bb) and tt+jets at CMS

Daniel Salerno

Higgs Toppings Workshop 2018

29 May 2018, Benasque, Spain

Fully hadronic ttH(bb)

Event selection

- ≥7 jets
- ≥3 medium b-tagged jets
- H_T > 500 GeV
- Quark-gluon likelihood ratio > 0.5
- Six categories:
 - 7 jets, 3 b-tags
 - 8 jets, 3 b-tags
 - ► ≥9 jets, 3 b-tags
 - ▶ 7 jets, ≥4 b-tags
 - ▶ 8 jets, ≥4 b-tags
 - ▶ ≥9 jets, ≥4 b-tags

Background estimation

- Control region in each category
 - Same selection except for btagging:
 - 2 medium b-tags
 - S or ≥4 loose b-tags
- Correction for kinematic differences of b-jets
 - p_T, η, and ΔR_{min} from the 2 medium b-tags
- QCD shape as the difference between data and ttbar MC
 - Normalisation left free-floating in final fit
 - Shape uncertainties from differences in validation region

Events

Fully hadronic ttH(bb)

Final estimate

Questions

- Can we use information from high-yield, high-background categories to constrain the lower-yield, signal-rich categories?
- Can we get any better estimate of shape in the SR?

1 of 6 categories

Fully hadronic ttbar

Event selection

- ≥6 jets
- ≥2 medium b-tagged jets
- H_T > 500 GeV
- ∆R_{bb} > 2.0
- Cut on kinematic fit probability
 - Equal top quark masses
 - Fixed W masses (80.4 GeV)
- Boosted analysis:
 - ≥2 fat jets (AK8) with p_T > 200 GeV and soft-drop mass > 50 GeV
 - ► ≥1 b-tagged subjet in each fat jet
 - Fisher discriminant cut on nsubjettiness ratios (3 vs. 2/1 prong)

Background estimation

- Control region in each category
 - Same selection except for btagging:
 - 0 medium b-tags (jets/subjets)
- Correction for kinematic differences of b-jets
 - Done for the variable of interest using ratio SR/CR from MC
 - m_t for signal extraction
 - $-\,$ From kin. fit or leading fat jet m_{SD}
 - Smooth log-linear function used
- QCD shape as corrected data
 - Normalisation left free-floating in final fit
 - Shape unc. from MC transfer fn.

Fully hadronic ttbar

Fully hadronic ttbar

Question

- Can we remove the reliance on MC for shape differences between CR and SR?
- Can we link the boosted and resolved regions to add some constraints?

Done for all variables

Semi-leptonic ttbar

Event selection

- 1 lepton (e/µ)
- ≥4 jets
- ≥2 medium b-tagged jets

Backgrounds

- Single top quark
 - ~3% of selected data
 - Estimate from MC
- V+jets & QCD multijet
 - ~ 2% of selected data
 - Combined estimate from data

Background estimation

- Control region in each category
 - Same selection except for btagging:
 - 0 medium b-tags
 - ~ 85% V+jets & QCD
 - ~ 15% ttbar
- Plot p_T distribution
- Scale normalisation to MC yield in SR for each jet multiplicity bin
- V+jets + QCD shape as scaled CR data
 - Shape uncertainties from n-jet reweighting and CR deviations
 - 8% normalisation uncertainty

Semi-leptonic ttbar

CMS-TOP-17-002 arXiv:1803.08856

Semi-leptonic ttbar

Final estimate 35.8 fb⁻¹ (13 TeV) Events / 40 GeV CMS e/µ+jets Data 10⁶ particle level tt signal tt nonsignal 10⁵ Single t Multijet, DY/W+jets 10⁴ Exp. uncertainty 10^{3} 10² 1.4 1.2 <u>Data</u> Pred. 0.8 0.6 500 800 900 600 700

100

200

300

400

Done for all variables

Issues

- Can we improve by subtracting the 15% of ttbar in the CR?
 - How would this affect systematics?
- Can we remove reliance on MC yield?

 $p_{T}(t_{h})$ [GeV]

Backup

QGLR

CR corrections

Higgs Toppings 2018 – Daniel Salerno

Post-fit MEM distributions

Higgs Toppings 2018 – Daniel Salerno

ML-fit pulls

