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Operators in top-Higgs sector

Figure 1. Example diagrams for tt̄H production. The inserted operators are: (a) Ot' (b) O'G (c)
OtG.

available in such a framework, including top-quark decay processes, flavor-changing neutral
production, top-pair production, single-top production, and tt̄ associated production with a
Z-boson and with a photon [40–47]. Several Higgs decay results have also become available
recently [48–51].

The goal of this work is to improve the predictions of such deviations in tt̄H production
in SMEFT by computing the NLO QCD corrections. Besides, we will also present SMEFT
results for processes that are top-loop induced in the SM, such as pp ! H, pp ! Hj and
Higgs pair production pp ! HH. Selected Feynman diagrams at the leading order (LO) are
shown in Figure 1 and 2 for the tt̄H and loop-induced processes, respectively. The relevant
effective operators in these processes, i.e. those modifying ttH, ttg, and ggH vertices, are
both physically interesting and practically important, because they connect the top-quark
sector with the Higgs-boson sector in the SMEFT at dimension-six. Studying these pro-
cesses and interactions will allow us to investigate how much we can learn about the top
quark from Higgs measurements, and vice versa. In particular, the chromo-magnetic dipole
operator OtG, which gives rise to a dipole interaction in the gtt vertex and introduces ggtt,
gttH, and ggttH vertices, is often left out in Higgs operator analyses (see, for example,
[52–60]), because it is often considered as part of top-quark measurements. Here we will
show that the current tt̄H and pp ! H measurements already provide useful information
about the chromo-dipole moment, comparable to what we can learn from top-pair pro-
duction, and that future measurements will improve the limits. This observation implies
that Higgs measurements are becoming sensitive to this interaction and therefore it should
not be neglected. Furthermore, the extraction of the Higgs self-coupling from pp ! HH

measurements relies on a precise knowledge of the top-Higgs interactions. Here we com-
pute for the first time the contribution from the chromo-dipole moment OtG to Higgs pair
production. As it will be shown in the following, this operator gives a large contribution
to this process, even taking into account the current constraints from tt̄ production on the
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Figure 2. Example diagrams for H, Hj, and HH production. The inserted operators are: (a) Ot'

(b) O'G (c) OtG. LO contributions from O'G are at the tree level, while those from the other two
operators are induced by a top-quark loop.

size of its coefficient.
Let us briefly discuss the motivations for having NLO SMEFT predictions.

• First, the impact of QCD corrections on the central values, which can be convention-
ally estimated by a K factor (the ratio of NLO central prediction to LO), is often
large at the LHC, and for an inclusive measurement this will improve the exclusion
limit on the effective operators. In addition, NLO corrections improve not only the
accuracy of the predictions by modifying the central value, but also the precision by
reducing the theoretical uncertainties due to missing higher-order corrections, which
leads to a further improvement on the limits. For example, the current limit on the
chromo-magnetic dipole operator from tt̄ is improved by a factor of 1.5 by including
QCD corrections [43], and the effects are even larger in the flavor-changing neutral
sector [42, 61–65].

• Second, QCD corrections often change the distributions due to effective operators
in a nontrivial way, not captured by the LO scale uncertainty. As the distribution
measurements start to play an important role in the EFT global analyses both in the
top-quark and in the Higgs sector [57–60, 66, 67], reliable predictions for the distribu-
tions are needed as theory inputs. In fact, Ref. [44] has shown that in an operator fit,
missing QCD corrections to the shapes could lead to a biased interpretation in terms
of new physics models. For this reason our final goal is to use the NLO predictions in
a global EFT fit, including differential measurements, to extract maximal information
on the operator coefficients.

• Third, unlike in the SM where all the gauge couplings are known, the SMEFT has
many operator coefficients, and several of them remain to be constrained. Higher
order effects are important in that respect as they can be enhanced by the ratio of

– 3 –

0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045

(LO)φtO (NLO)φtO
(LO)GφO (NLO)GφO
(LO)tGO (NLO)tGO

SM(NLO)

]-1 [GeV(t)
T

dpiσ
iσd

ttH production
LHC13, f(N)LO

0.5
1

1.5
2

LO NLOSM

0.5
1

1.5
2

LO NLOφtO

0.5
1

1.5
2

LO NLOGφO

0 50 100 150 200 250 300 350 400
0.5

1
1.5

2
LO NLOtGO

(t) [GeV]
T

p
M

ad
G

ra
ph

5_
aM

C@
NL

O

0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045

(LO)φtO (NLO)φtO
(LO)GφO (NLO)GφO
(LO)tGO (NLO)tGO

SM(NLO)

]-1 [GeV(t)
T

dpiiσ
iiσd

ttH production
LHC13, f(N)LO

0.5
1

1.5
2 LO NLOSM

0.5
1

1.5
2 LO NLOφtO

0.5
1

1.5
2 LO NLOGφO

0 50 100 150 200 250 300 350 400
0.5

1
1.5

2 LO NLOtGO

(t) [GeV]
T

p

M
ad

G
ra

ph
5_

aM
C@

NL
O

0

0.001

0.002

0.003

0.004

0.005

0.006
(LO)φtO (NLO)φtO
(LO)GφO (NLO)GφO
(LO)tGO (NLO)tGO

SM(NLO)

]-1 [GeV(H)
T

dpiσ
iσd

ttH production
LHC13, f(N)LO

0.5
1

1.5
LO NLOSM

0.5
1

1.5
LO NLOφtO

0.5
1

1.5
LO NLOGφO

0 50 100 150 200 250 300 350 400
0.5

1
1.5

LO NLOtGO

(H) [GeV]
T

p

M
ad

G
ra

ph
5_

aM
C@

NL
O

0

0.001

0.002

0.003

0.004

0.005

0.006
(LO)φtO (NLO)φtO
(LO)GφO (NLO)GφO
(LO)tGO (NLO)tGO

SM(NLO)

]-1 [GeV(H)
T

dpiiσ
iiσd

ttH production
LHC13, f(N)LO

0.5
1

1.5
2 LO NLOSM

0.5
1

1.5
2 LO NLOφtO

0.5
1

1.5
2 LO NLOGφO

0 50 100 150 200 250 300 350 400
0.5

1
1.5

2 LO NLOtGO

(H) [GeV]
T

p

M
ad

G
ra

ph
5_

aM
C@

NL
O

Figure 5. Transverse momentum distributions of the top quark (up) and the Higgs boson
(down), normalised. Left: interference contributions from �i. Right: squared contributions �ii. SM
contributions and individual operator contributions are displayed. Lower panels give the K factors
and µR,F uncertainties.
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Figure 5. Transverse momentum distributions of the top quark (up) and the Higgs boson
(down), normalised. Left: interference contributions from �i. Right: squared contributions �ii. SM
contributions and individual operator contributions are displayed. Lower panels give the K factors
and µR,F uncertainties.
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Figure 5. Transverse momentum distributions of the top quark (up) and the Higgs boson
(down), normalised. Left: interference contributions from �i. Right: squared contributions �ii. SM
contributions and individual operator contributions are displayed. Lower panels give the K factors
and µR,F uncertainties.
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Figure 5. Transverse momentum distributions of the top quark (up) and the Higgs boson
(down), normalised. Left: interference contributions from �i. Right: squared contributions �ii. SM
contributions and individual operator contributions are displayed. Lower panels give the K factors
and µR,F uncertainties.
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(d) Scale variation

Figure 2: Figures (a)-(c) show the 95% CL contours obtained from the �2 in Eq. (2.12) for

di↵erent choices of the actual parameters 0
t
and 0

g
, or equivalently of µ0

incl and R
0. The

colors blue, red and black correspond to 0
t
= 0.8, 1.0 and 1.2, respectively, or equivalently to

the indicated values of R0 = R(0
t
,
p
µ0
incl � 0

t
). The gray band is obtained by considering

only the inclusive measurement. The SM point is indicated by the black star. Figure (d)

shows the variation of the 95% CL contours for di↵erent choices of the renormalization and

factorization scale µ. For all plots we assumed an integrated luminosity of
R
L dt = 3 ab�1

and
p
s = 14TeV.
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FIG. 8: In blue, the region allowed by the Higgs production constraints at 7 TeV for mH = 125 GeV. The green lines delimit
the 2 allowed tiny bands obtained if the Higgs cross-section is measured at its SM value with a precision of 20 %. The yellow
region is obtained by assuming a 40% precision on the tt̄h cross-section at 14 TeV with the measured central value matching the
SM prediction and cG = 0. The three plots correspond respectively to cy(TeV/⇤)2 =0, -4, +5. The upper plots are obtained
when neglecting the O(1/⇤4) terms in the tt̄H cross section. The bottom plots instead include these higher order terms.

1/⇤4 contributions are also shown for comparison. They
are clearly stretched to high energy while the interference
and the SM contributions have a very similar behavior.
The interference with the diagrams in which the Higgs is
connected at the e↵ective vertex do not vanish but are
apparently suppressed. The shape e↵ects are only ex-
pected if the new physics scale ⇤ is close to the maximal
energy probed because they are due only to the 1/⇤4

contributions. The plots on the right show how the dis-
tributions can di↵er with respect to the SM in the case
chg(TeV2/⇤2) = 1.

Finally, spin correlations could exhibit some depen-
dence on chg. In the case of tt̄ production, the deviations
due to chg were of the order of a few percents [5]. For tt̄h,
the measurement will be much more challenging and we
therefore do not compute the associated spin correlations
here but might return to them in due time.

V. CONCLUSION

Only one dimension-six operator, OHG, generates a
tree level coupling between the Higgs boson and the
gluons. This operator has the largest contribution to
Higgs production. Nevertheless, the three operators
modifying the contribution from the top loop also have
sizable e↵ects compared to the SM one and, in a large

class of models, can be comparable to the e↵ect of OHG

due to the hierarchy between their coe�cients. All those
operators are already constrained by the present limits
on Higgs production at hadron colliders. However, Higgs
production by gluon fusion only constrains a linear
combination of these operators and cannot discriminate
between them. Interestingly, a light Higgs makes real the
possibility of partially solving this issue by using Higgs
production in association with a pair of top quarks.
Contrary to Higgs production, the leading contribution
in this process comes from the chromomagnetic operator
Ohg, which can therefore be further constrained from
the measurement of the total tt̄h cross-section. Shape
e↵ects do not come from the interference terms and are
dominated by the square of the amplitude involving an
e↵ective vertex and could thus be observable for large
chg values only.
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Figure 19-i ATLAS sensitivity for the discovery of a Standard Model Higgs boson. The statistical significances

are plotted for individual channels, as well as for the combination of all channels, assuming integrated luminosi-

ties of 30 fb-1 (top) and 100 fb-1 (bottom). Depending on the numbers of signal and background events, the sta-

tistical significance has been computed as S/ or using Poisson statistics. In the case of the H ! WW*

channel, a systematic uncertainty of #5% on the total number of background events has been assumed (this

uncertainty has been included in this case, since no mass peak can be reconstructed and the Higgs boson sig-

nal has therefore to be extracted from an excess of events).
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tth - using boosted jets
[T. Plehn, G. Salam, MS]

Motivation: • sizable cross-section
• Higgs discovery contribution in low mass range
• access to t- and b-Yukawa couplings

High expectations:

[ATLAS TDR 1999]

tth major channel

giv en the amount of Monte Carlo data av ailable (out to q0 between around 9 to 16, i.e., to the lev el of a
3 to 4 ! discov ery). At present it is not practical to v erify directly that the chi-square formula remains
v alid to the 5! lev el (i.e., out to q0 = 25). Thus the results on discov ery significance presented here rest
on the assumption that the asymptotic distribution is a v alid approximation to at least the 5! lev el.
The v alidation exercises carried here out indicate that the methods used should be v alid, or in some

cases conserv ativ e, for an integrated luminosity of at least 2 fb−1. At earlier stages of the data taking,
one will be interested primarily in exclusion limits at the 95% confidence lev el. For this the distributions
of the test statistic qµ at different v alues of µ can be determined with a manageably small number of
ev ents. It is therefore anticipated that we will rely on Monte Carlo methods for the initial phase of the
experiment.

4 Results of the combination

4.1 Combined discovery sensitivity

The full discov ery likelihood ratio for all channels combined, "s+b(0 ), is calculated using Eq. 33. This
uses the median likelihood ratio of each channel, "s+b,i(0 ), found either by generating toy experiments
under the s+b hypothesis and calculating the median of the "s+b,i distribution or by approximating the
median likelihood ratio using the Asimov data sets with µA,i = 1. Both approaches were v alidated to
agree with each other. The discov ery significance is calculated using Eq. 36, i.e., Z ⇥

√

�2ln" (0 ),
where " (0 ) is the combined median likelihood ratio.
The resulting significances per channel and the combined one are shown in Fig. 16 for an integrated

luminosity of 10 fb−1.
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Figure 16: The median discovery significance for the various channels and the combination with an integrated
luminosity of 10 fb−1 for (a) the lower mass range (b) for masses up to 600 GeV.

Themedian discov ery significance as a function of the integrated luminosity and Higgs mass is shown
colour coded in Fig. 17. The full line indicates the 5! contour. Note that the approximations used do
not hold for v ery low luminosities (where the expected number of ev ents is low) and therefore the results
below about 2fb−1 should be taken as indications only. In most cases, howev er, the approximations tend
to underestimate the true median significance.

4.2 Combined exclusion sensitivity

The full likelihood ratio of all channels used for exclusion for a signal strength µ , "b(µ), is calculated
using Eq. 34 with the median likelihood ratios of each channel, "b,i(µ), calculated, either by generating
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Figure 16: The median discovery significance for the various channels and the combination with an integrated
luminosity of 10 fb−1 for (a) the lower mass range (b) for masses up to 600 GeV.

Themedian discov ery significance as a function of the integrated luminosity and Higgs mass is shown
colour coded in Fig. 17. The full line indicates the 5! contour. Note that the approximations used do
not hold for v ery low luminosities (where the expected number of ev ents is low) and therefore the results
below about 2fb−1 should be taken as indications only. In most cases, howev er, the approximations tend
to underestimate the true median significance.

4.2 Combined exclusion sensitivity

The full likelihood ratio of all channels used for exclusion for a signal strength µ , "b(µ), is calculated
using Eq. 34 with the median likelihood ratios of each channel, "b,i(µ), calculated, either by generating
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2

Signal and backgrounds — We consider associated top
and Higgs production with one hadronic and one leptonic
top decay. The latter allows the events to pass the Atlas
and CMS triggers. The main backgrounds are

pp → tt̄bb̄ irreducible QCD background

pp → tt̄Z irreducible Z-peak background

pp → tt̄ + jets include fake bottoms (2)

To account for higher-order effects we normalize our to-
tal signal rate to the next-to-leading order prediction of
702 fb for mH = 120 GeV [21]. The tt̄bb̄ continuum back-
ground we normalize to 2.6 pb after the acceptance cuts
|yb| < 2.5, pT,b > 20 GeV and Rbb > 0.8 of Ref. [22]. This
conservative rate estimate for very hard events implies a
K factor of σNLO/σLO = 2.3 which we need to attach
to our leading-order background simulation — compared
to K = 1.57 for the signal. Finally, the tt̄Z background
at NLO is normalized to 1.1 pb [23]. For tt̄ plus jets
production we do not apply a higher-order correction be-
cause the background rejection cuts drives it into kine-
matic configuration in which a constant K factor cannot
be used. Throughout this analysis we use an on-shell top
mass of 172.3 GeV. All hard processes we generate using
MadEvent [24], shower and hadronize via Herwig++ [25]
(without g → bb̄ splitting) and analyze with FastJet [26].
We have verified that we obtain consistent results for sig-
nal and background using Alpgen [27] and Herwig 6.5 [28]

An additional background is W+jets production. The
Wjj rate starts from roughly 15 nb with pT,j > 20 GeV.
Asking for two very hard jets, mimicking the boosted
Higgs and top jets, and a leptonic W decay reduces this
rate by roughly three orders of magnitude. Our top
tagger described below gives a mis-tagging probability
around 5% including underlying event, the Higgs mass
window another reduction by a factor 1/10, i.e. the final
Wjj rate without flavor tags ranges around 100 fb.

Adding two bottom tags we expect a purely fake-
bottom contribution around 0.01 fb. To test the gen-
eral reliability of bottom tags in QCD background re-
jection we also simulate the Wjj background including
bottom quarks from the parton shower and find a re-
maining background of O(0.1 fb), well below 10% of the
tt̄+jets background already for two bottom tags. For
three bottom tags it is essentially zero, so we neglect it
in the following.

The charm-flavored Wcj rate starts off with 1/6 of
the purely mis-tagged Wjj rate. A tenfold mis-tagging
probability still leaves this background well below the
effect of bottoms from the parton shower. Finally, a
lower limit mrec

bb > 110 GeV keeps us safely away from
CKM-suppressed W → bc̄ decays where the charm is
mis-identified as a bottom jet.

Search strategy — The motivation for a tt̄H search
with boosted heavy states can be seen in Fig. 1: the
leading top quark and the Higgs boson both carry size-
able transverse momentum. We therefore first cluster

10
-4

10
-3

10
-2

10
-1

0 100 200 300 400 500 600 700

1/σtot dσ/dpT

pT[GeV]

ttH: pT,t

ttH: pT,H

WH: pT,HWjj: pT,j

FIG. 1: Normalized top and Higgs transverse momentum
spectra in tt̄H production (solid). We also show pT,H in
W−H production (dashed) and the pT of the harder jet in
W−jj production with pT,j > 20 GeV (dotted).

the event with the Cambridge/Aachen (C/A) jet algo-
rithm [29] using R = 1.5 and require two or more hard
jets and a lepton satisfying:

pT,j > 200 GeV |y(H)
j | < 2.5 |y(t)

j | < 4

pT,ℓ > 15 GeV |yℓ| < 2.5 . (3)

The maximum Higgs jet rapidity y(H)
J is limited by the

requirement that it be possible to tag its b-content. For
lepton identification and isolation we assume an 80% ef-
ficiency, in agreement with what we expect from a fast
Atlas detector simulation. The outline of our analysis is
then as follows (cross sections at various stages are sum-
marized in Tab. I):

(1) one of the two jets should pass the top tagger (de-
scribed below). If two jets pass we choose the one whose
top candidate is closer to the top mass.
(2) the Higgs tagger (also described below) runs over all
remaining jets with |y| < 2.5. It includes a double bottom
tag.
(2’) a third b tag can be applied in a separate jet analysis
after removing the constituents associated with the top
and Higgs.
(3) to compute the statistical significance we require
mrec

bb = mH ± 10 GeV.

In this analysis, QCD tt̄ plus jets production can fake
the signal assuming three distinct topologies: first, the
Higgs candidate jet can arise from two mis-tagged QCD
jets. The total rate without flavored jets exceeds tt̄bb̄
production by a factor of 200. This ratio can be balanced
by the two b tags inside the Higgs resonance. Secondly,
there is an O(10%) probability for the bottom from the
leptonic top decay to leak into the Higgs jet and combine
with a QCD jet, to fake a Higgs candidate. This topology
is the most dangerous and can be essentially removed by
a third b tag outside the Higgs and top substructures.
Finally, the bottom from the hadronic top can also leak

pT distributions relevant for tth

background

signal
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Problems in event reconstruction:

- (b-)jet multiplicity
- reconstruction efficiency
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FIG. 2: Individually normalized mrec
W and mrec

t distributions
for signal and background (without underlying event).

If this is not fulfilled we identify mhard ⇥ max msoft
j and

proceed with the next splitting. Substructures are kept
intact once they real a jet mass below 30 GeV. In this
tree of hard substructures we first test all filtered [9]
two-constituent combinations as W candidates, asking
for mrec

W = 65 · · · 95 GeV (shown in Fig. 2) and the he-
licity angle constraint cos � < 0.7 [19]. To tag the top
quark, we then add a third constituent and, again after
filtering [9], require mrec

t = 150 · · · 200 GeV. For more
than one top tag we choose the one with the smaller
|mrec

t �mpole
t | + |mrec

W �mpole
W |.

The top tagging e⇤ciency in the signal and including
underlying event we can increase from from 43% to 58%
by focussing on events with a 150 · · · 200 GeV jet mass.
Those would be top quarks without hard QCD activity,
so we skip the mass drop criterion and simply analyze
the hardest substructures. Again, we require the W mass
window and the helicity constraint [19]. Because this ad-
ditional step also roughly quadruples the top mis-tagging
probability in the Wjj background we do not apply it in
the following.

In contrast to the top tagger which identifies a top
quark using its known mass and properties, our Higgs
tagger [9] has to search for a Higgs peak in the recon-
structed mrec

bb without any knowledge of the Higgs mass.
The mass drops described above (but with a soft cuto⇥
at 40 GeV and a mass drop criterion of 0.9) we now order
by the modified Jade distance [16]

J = pT,1pT,2 (�R12)
4 , (5)

similar to a transverse mass of the hard splitting, but
shifted towards larger jet separation. The three leading
pairings we filter and keep for the Higgs mass reconstruc-
tion. For these events we can check that indeed we are
dominated by pT,H

>⇤ 200 GeV.
At this stage we have not yet included any flavor tags,

of which we know we need two to control the tt̄jj and
W+jets backgrounds. Requiring two bottom tags for the
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FIG. 3: Reconstructed bottom-pair mass mrec
bb for signal

(mH = 120 GeV) and backgrounds without (upper) and in-
cluding (lower) underlying event.

substructure pairings reconstructing the Higgs we can
now safely get rid of both QCD backgrounds.

In Fig. 3 we show the signal from the three leading
(by Jade distance) mrec

bb entries of double-b-tagged
combinations; our Higgs tagger returns a sharp mass
peak. We apply a ±10 GeV mass window, after checking
that the tails of the signal distribution drop sharply in
particular towards larger mass values. The bigger tail
towards small mrec

bb we can reduce by only including the
two leading jet combinations. This does not change the
significance but sculpts the background more. Assuming
we at this stage will know the Higgs mass, we estimate
the background from a clean right and a reasonably
clean left side bin combined with a next-to-leading order
prediction. A way to further improve S/B we describe
in the next section. We find for an integrated lumi-
nosity of 100 fb�1 and including underlying event (the
number in parentheses are without the underlying event):

S[fb�1] B[fb�1] S/B S/
⌅

B
mH = 115 GeV 0.92 2.14 1/2.3 6.3 (6.8)

120 GeV 0.76 2.01 1/2.6 5.3 (5.7)
130 GeV 0.45 1.76 1/3.9 3.4 (3.5)

QCD features — One of the problems in this analysis
is that higher-order QCD e⇥ects harm its reach. Turning
this argument around, we can use the additional QCD
activity in the tt̄bb̄ background to improve our search.
Before starting with the fat-jet analysis we can for exam-
ple analyze the four leading jets with a radius R < 0.6
and pT < 40 GeV and require a set of jet-jet and jet-
lepton separation criteria similar to Ref. [30]. At this
stage and with our limited means of detector simulation
this QCD pre-selection hardly changes the statistical sig-
nificance but improves the ratio S/B from 1/2.6 to 1/2.

Outlook — In this paper we have presented a new

and book the first three combinations after filtering
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FIG. 1: Normalized top and Higgs transverse momentum
spectra in tt̄H production (solid). We also show pT,H in
W�H production (dashed) and the pT of the harder jet in
W�jj production with pT,j > 20 GeV (dotted).

top decay. The latter allows the events to pass the Atlas

and CMS triggers. The main backgrounds are

pp� tt̄b¯b irreducible QCD background

pp� tt̄Z irreducible Z-peak background (2)

To account for higher-order e�ects we normalize our to-

tal signal rate to the next-to-leading order prediction of

702 fb for mH = 120 GeV [21]. The tt̄b¯b continuum back-

ground we normalize to 2.6 pb after bottom acceptance

cuts |yb| < 2.5, pT,b > 20 GeV and Rbb > 0.8 [22]. This

conservative rate estimate for very hard events implies a

K factor of �NLO/�LO = 2.2 which we need to attach to

our leading-order background simulation — compared to

K = 1.3 for the signal. Finally, the tt̄Z background at

NLO is normalized to is 1.1 pb [23]. All hard processes

we generate using MadEvent [24], shower and hadronize

via Herwig++ [25] and analyze with FastJet [26].

The QCD background tt̄jj exceeds the tt̄b¯b rate by

about a factor 200; unless we apply flavor tagging outside

the top quarks we will be swamped by QCD jets. Requir-

ing two b tags will suppress tt̄jbjb by a factor 1/2500, i.e.
below the scale dependence of the tt̄b¯b rate. In our par-

ticular analysis there is a few-percent chance of the b jet

from the leptonic top ending up in the fat Higgs jet. Com-

bined with one b tag this gives a reduction factor around

1/1000, again good enough to neglect it. For charm-

flavored tt̄cbc̄b the mis-tag probability is only 1/25, but

the starting rate is already at the same level as tt̄b¯b.
Another obvious background is Wjj production. Its

rate drops from roughly 15 nb to 40 pb when we in-

crease the jets’ minimum transverse momentum from 20

to staggered 200/300 GeV, mimicking our boosted Higgs

and top jets. The leptonic W branching ratio and two

bottom tags then reduces it to 3.2 fb. Our top tagger

described below gives a mis-tagging probability around

5.5% (including underlying event), the Higgs mass win-

dow another 10%, i.e. the final Wjj rate is only 0.016 fb.

The charm-flavored Wcj rate starts o� with 1/6 of the

signal tt̄bb̄ tt̄Z
events after acceptance eq.(3) 24.4 222.6 7.0
events with one top tag 10.5 83.8 3.0
events with one mrec

bb = 110 · · · 130 GeV 3.0 14.7 0.43
subjet pairings mrec

bb = 110 · · · 130 GeV 3.2 15.9 0.47
subjet pairings after b tags 0.76 1.95 0.06

TABLE I: Number of events or mrec
bb histogram entries per

1 fb�1 including underlying event. Counting the three lead-
ing subjet pairings in the modified Jade distance means that
below row four the number is only approximately the number
of events in 1 fb�1.

Wjj rate, but a tenfold mis-tagging probability, which al-

together leaves us with a total W+jets background well

below 0.05 fb.

Finally, a lower limit mrec
bb > 110 GeV keeps us safely

away from CKM-suppressed W � bc̄ decays where the

charm is mis-identified as a bottom jet.

Search strategy — The motivation for a tt̄H search

with boosted heavy states we see in Fig. 1: the leading

top quark and the Higgs boson both carry sizeable trans-

verse momentum. In our search we first require two hard

jets with a cone radius R =

�
y2

+ ⇥2 < 1.5 and a lepton:

pT,j > 200 GeV |y(H)
j | < 2.5 |y(t)

j | < 4

pT,� > 15 GeV |y�| < 2.5 . (3)

The maximum jet rapidity y is limited by the two bot-

tom tags inside the fat Higgs jet. We then focus on the

structure of the two jets, as shown in Tab. I:

(1) one of the two jets passes the top tagger. If two jets

pass we choose the one closer in the two masses.

(2) the Higgs tagger runs over all remaining jets with

|y| < 2.5. It includes a double bottom tag.

(3) to compute the statistical significance we require

mrec
bb = mH ± 10 GeV.

Top and Higgs taggers — In contrast to other Higgs

physics [9] or new physics [15, 16] applications our Higgs

and top taggers cannot rely on a clean QCD environ-

ment: on the one hand their initial cone size has to be

large enough to accommodate only mildly boosted top

and Higgs states, so additional QCD jets will contam-

inate our fat jets [28]. On the other hand, the small

number of signal events does not allow any sharp rejec-

tion cuts for dirty QCD events. Therefore, the taggers

need to be built to survive busy LHC events.

Our starting point is a C/A jet algorithm with R =

1.5 [27]. For a top candidate which typically has a jet

mass above 200 GeV we assume that there be a complex

hard substructure inside the fat jet and apply a mass

drop selection to all splittings mhard � msoft
j forming

the fat jet; among all splitting we search for those with

maxmsoft
j < 0.8 mhard . (4)

Reverse merging procedure with the 
condition

Higgs tagger



HEPTopTagger - a low-pT Tagger
(Plehn, Salam, MS, Takeuchi)

I. Find fat jets (C/A, R=1.5, pT>200 GeV) 

II. Find hard substructure using mass drop criterion

III. Filter and choose pairing

Undo clustering,

pi + pj (177)

ZZ�/WW� (178)

S/B ⌅ 1/9 (179)

S/
⇧

B ⌅ 2.2 (180)

30 fb�1 (181)

⇤NLO = 702 fb (182)
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tt̄bb̄ (185)

tt̄jbjb̄ (186)

Wjj (187)

tt̄z (188)

⇤ 0.1 fb (189)
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T (190)

m2
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⇥X,Y =
E[(X � E[X])(Y � E[Y ])]
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mj1 < 0.8 mj to keep j1 and j2 (194)
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tt vs. QCD, W+jets
.   4 checkmass ratios

  Cluster top candidate constituents into 3 subjets 
   
   After imposing top mass cut, 2 independent mass ratios.

                          tt                             W+jets                         QCD

IV. check mass ratios
Cluster top candidate into 3 subjets
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,�Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:

0.2 < arctan
m13

m12
< 1.3 and Rmin <

m23

m123
< Rmax

R2
min

⇤
1 +

�
m13

m12

⇥2
⌅

< 1�
�

m23

m123

⇥2

< R2
max

⇤
1 +

�
m13

m12

⇥2
⌅

and
m23

m123
> 0.35

R2
min

⇤
1 +

�
m12

m13

⇥2
⌅

< 1�
�

m23

m123

⇥2

< R2
max

⇤
1 +

�
m12

m13

⇥2
⌅

and
m23

m123
> 0.35 (A1)

with Rmin = 85%⇥mW /mt and Rmax = 115%⇥mW /mt. The numerical soft cuto⇥ at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest �mt +AW �mW +Ah� cosh. In that case, the tagging e⇤ciency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply e⇤cient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ⌅ 0 give

m2
t ⇤ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,�Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:

0.2 < arctan
m13

m12
< 1.3 and Rmin <

m23

m123
< Rmax

R2
min

⇤
1 +

�
m13

m12

⇥2
⌅

< 1�
�
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⇥2
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�
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and
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> 0.35
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�
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⇤
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�
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m13

⇥2
⌅

and
m23

m123
> 0.35 (A1)

with Rmin = 85%⇥mW /mt and Rmax = 115%⇥mW /mt. The numerical soft cuto⇥ at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest �mt +AW �mW +Ah� cosh. In that case, the tagging e⇤ciency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply e⇤cient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ⌅ 0 give

m2
t ⇤ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,�Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12,m13,m23) satisfy one of the following three criteria, accept them as a top candidate:

0.2 < arctan
m13

m12
< 1.3 and Rmin <

m23

m123
< Rmax

R2
min

⇤
1 +
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m13
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⌅
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m23

m123
> 0.35

R2
min

⇤
1 +
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⌅
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m23
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< R2
max

⇤
1 +
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m13

⇥2
⌅

and
m23

m123
> 0.35 (A1)

with Rmin = 85%⇥mW /mt and Rmax = 115%⇥mW /mt. The numerical soft cuto⇥ at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest �mt+AW�mW +Ah� cosh. In that case, the tagging e⇤ciency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply e⇤cient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2i ⌅ 0 give

m2
t ⇤ m2

123 = (p1 + p2 + p3)
2 = (p1 + p2)

2 + (p1 + p3)
2 + (p2 + p3)

2 = m2
12 +m2

13 +m2
23 , (A2)
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,�Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12,m13,m23) satisfy one of the following three criteria, accept them as a top candidate:
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with Rmin = 85%⇥mW /mt and Rmax = 115%⇥mW /mt. The numerical soft cuto⇥ at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest �mt+AW�mW +Ah� cosh. In that case, the tagging e⇤ciency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply e⇤cient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2i ⌅ 0 give
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Analysis proceeds along following lines

Cluster 2 fatjets with R=1.5 CA, pTj > 200 GeV

1. Each fatjet tagged as       or             by applying HEPTopTagger 
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FIG. 3: Distributions in the Higgs-candidate mass, mc, for signal (left) and signal plus tt̄+X backgrounds (right)
after step 6 (third b-tag) of the standard boosted analysis of Sec. III.

into Cambridge/Aachen (C/A) [66] R = 1.5 fat jets with pTj > 200 GeV, excluding events with less than two such
fat jets. The fat jets are handled as hadronic-top and Higgs candidates.

After preselection cuts the selection enters the main stage, which is based on following jet-substructure analysis:

1. Each fat jet is tagged as thad (hadronic top) or non-thad jet using a top tagger, and we require at least one
top-tag in the event. Specifically, the HEPTopTagger is used instead of the top-tagging method described in [7].
Although two hadronic top-tags in a semi-leptonic tt̄ event are unlikely, there is a significant probability to
misidentify a Higgs boson as a top quark (see Sec. III A). Thus, more than one fat jet can be top-tagged at this
stage.

2. In the interest of retaining as much signal as possible, instead of vetoing events with more than one top-tagged jet,
we identify as unique top candidate the top-tagged jet that minimises �mtot ⌘ |mt,reco�mt|+minij|mij�mW|.
Here mt,reco is the mass of the reconstructed top and mij is the invariant mass of the pair of subjets closest to
the W mass.

3. A rapidity cut |⌘| < 2.5 is applied to all remaining fat jets, including top-tagged jets that have not been selected
as top candidates in the previous step.

4. For each fat jet (except the top candidate) we apply the mass drop filter proposed in [7]. If the fat jet has less
than two subjets after mass drops it is ignored. Otherwise the pairs of 4-momenta that survive the mass drop
represent possible H(bb̄) structures. They are ordered according to a variant of the Jade distance [67],

dij = pTipTj�R
4

ij
, (1)

and only the first three such pairs in descending distance dij are retained. Next, the constituents of each subjet
pair are filtered into C/A jets of radius Rfilt = min(0.3,�Rij) and pT > 20 GeV. Only the first 3 filtered jets
are kept and combined into what we refer to as a Higgs candidate.

5. We require exactly two b-tags from the filtered subjets of the Higgs candidate.

6. We request exactly one additional b-tag in the event. This condition is applied after removing the reconstructed
Higgs and top, which are supposed to involve three of the four b-quarks of a signal event, and after clustering
the remaining final state objects of the Higgs fat jet into C/A jets with R = Rfilt and pT > 20 GeV (inner jets),
and the objects outside the Higgs fat jet into C/A jets with R = 0.4 and pT > 30 GeV (outer jets). As the Higgs
fat jet was already processed by a mass drop/grooming procedure, we choose a more aggressive jet definition.

7. We identify a Higgs candidate as tagged if its invariant mass mc lies in the [100, 130]GeV mass window.

A first picture of the quality of the Higgs reconstruction in the boosted analysis described above is provided in Fig. 3,
which displays the invariant-mass distribution of the Higgs candidate after step 6. The normalised mc distribution
for the tt̄H signal (left plot) features a sharp cut-o↵ at large mc and a rather long low-mass tail. There we observe
a bulky structure that points to Higgs misidentification, i.e. Higgs candidates that involve b-quarks from top decays.
Moreover, the Higgs peak lies about 15GeV below the true Higgs mass of 125 GeV, mainly due to uncorrected
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after step 6 (third b-tag) of the standard boosted analysis of Sec. III.

into Cambridge/Aachen (C/A) [66] R = 1.5 fat jets with pTj > 200 GeV, excluding events with less than two such
fat jets. The fat jets are handled as hadronic-top and Higgs candidates.

After preselection cuts the selection enters the main stage, which is based on following jet-substructure analysis:

1. Each fat jet is tagged as thad (hadronic top) or non-thad jet using a top tagger, and we require at least one
top-tag in the event. Specifically, the HEPTopTagger is used instead of the top-tagging method described in [7].
Although two hadronic top-tags in a semi-leptonic tt̄ event are unlikely, there is a significant probability to
misidentify a Higgs boson as a top quark (see Sec. III A). Thus, more than one fat jet can be top-tagged at this
stage.

2. In the interest of retaining as much signal as possible, instead of vetoing events with more than one top-tagged jet,
we identify as unique top candidate the top-tagged jet that minimises �mtot ⌘ |mt,reco�mt|+minij|mij�mW|.
Here mt,reco is the mass of the reconstructed top and mij is the invariant mass of the pair of subjets closest to
the W mass.

3. A rapidity cut |⌘| < 2.5 is applied to all remaining fat jets, including top-tagged jets that have not been selected
as top candidates in the previous step.

4. For each fat jet (except the top candidate) we apply the mass drop filter proposed in [7]. If the fat jet has less
than two subjets after mass drops it is ignored. Otherwise the pairs of 4-momenta that survive the mass drop
represent possible H(bb̄) structures. They are ordered according to a variant of the Jade distance [67],
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and only the first three such pairs in descending distance dij are retained. Next, the constituents of each subjet
pair are filtered into C/A jets of radius Rfilt = min(0.3,�Rij) and pT > 20 GeV. Only the first 3 filtered jets
are kept and combined into what we refer to as a Higgs candidate.

5. We require exactly two b-tags from the filtered subjets of the Higgs candidate.

6. We request exactly one additional b-tag in the event. This condition is applied after removing the reconstructed
Higgs and top, which are supposed to involve three of the four b-quarks of a signal event, and after clustering
the remaining final state objects of the Higgs fat jet into C/A jets with R = Rfilt and pT > 20 GeV (inner jets),
and the objects outside the Higgs fat jet into C/A jets with R = 0.4 and pT > 30 GeV (outer jets). As the Higgs
fat jet was already processed by a mass drop/grooming procedure, we choose a more aggressive jet definition.

7. We identify a Higgs candidate as tagged if its invariant mass mc lies in the [100, 130]GeV mass window.

A first picture of the quality of the Higgs reconstruction in the boosted analysis described above is provided in Fig. 3,
which displays the invariant-mass distribution of the Higgs candidate after step 6. The normalised mc distribution
for the tt̄H signal (left plot) features a sharp cut-o↵ at large mc and a rather long low-mass tail. There we observe
a bulky structure that points to Higgs misidentification, i.e. Higgs candidates that involve b-quarks from top decays.
Moreover, the Higgs peak lies about 15GeV below the true Higgs mass of 125 GeV, mainly due to uncorrected
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into Cambridge/Aachen (C/A) [66] R = 1.5 fat jets with pTj > 200 GeV, excluding events with less than two such
fat jets. The fat jets are handled as hadronic-top and Higgs candidates.

After preselection cuts the selection enters the main stage, which is based on following jet-substructure analysis:

1. Each fat jet is tagged as thad (hadronic top) or non-thad jet using a top tagger, and we require at least one
top-tag in the event. Specifically, the HEPTopTagger is used instead of the top-tagging method described in [7].
Although two hadronic top-tags in a semi-leptonic tt̄ event are unlikely, there is a significant probability to
misidentify a Higgs boson as a top quark (see Sec. III A). Thus, more than one fat jet can be top-tagged at this
stage.

2. In the interest of retaining as much signal as possible, instead of vetoing events with more than one top-tagged jet,
we identify as unique top candidate the top-tagged jet that minimises �mtot ⌘ |mt,reco�mt|+minij|mij�mW|.
Here mt,reco is the mass of the reconstructed top and mij is the invariant mass of the pair of subjets closest to
the W mass.

3. A rapidity cut |⌘| < 2.5 is applied to all remaining fat jets, including top-tagged jets that have not been selected
as top candidates in the previous step.

4. For each fat jet (except the top candidate) we apply the mass drop filter proposed in [7]. If the fat jet has less
than two subjets after mass drops it is ignored. Otherwise the pairs of 4-momenta that survive the mass drop
represent possible H(bb̄) structures. They are ordered according to a variant of the Jade distance [67],
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and only the first three such pairs in descending distance dij are retained. Next, the constituents of each subjet
pair are filtered into C/A jets of radius Rfilt = min(0.3,�Rij) and pT > 20 GeV. Only the first 3 filtered jets
are kept and combined into what we refer to as a Higgs candidate.

5. We require exactly two b-tags from the filtered subjets of the Higgs candidate.

6. We request exactly one additional b-tag in the event. This condition is applied after removing the reconstructed
Higgs and top, which are supposed to involve three of the four b-quarks of a signal event, and after clustering
the remaining final state objects of the Higgs fat jet into C/A jets with R = Rfilt and pT > 20 GeV (inner jets),
and the objects outside the Higgs fat jet into C/A jets with R = 0.4 and pT > 30 GeV (outer jets). As the Higgs
fat jet was already processed by a mass drop/grooming procedure, we choose a more aggressive jet definition.

7. We identify a Higgs candidate as tagged if its invariant mass mc lies in the [100, 130]GeV mass window.

A first picture of the quality of the Higgs reconstruction in the boosted analysis described above is provided in Fig. 3,
which displays the invariant-mass distribution of the Higgs candidate after step 6. The normalised mc distribution
for the tt̄H signal (left plot) features a sharp cut-o↵ at large mc and a rather long low-mass tail. There we observe
a bulky structure that points to Higgs misidentification, i.e. Higgs candidates that involve b-quarks from top decays.
Moreover, the Higgs peak lies about 15GeV below the true Higgs mass of 125 GeV, mainly due to uncorrected
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into Cambridge/Aachen (C/A) [66] R = 1.5 fat jets with pTj > 200 GeV, excluding events with less than two such
fat jets. The fat jets are handled as hadronic-top and Higgs candidates.

After preselection cuts the selection enters the main stage, which is based on following jet-substructure analysis:

1. Each fat jet is tagged as thad (hadronic top) or non-thad jet using a top tagger, and we require at least one
top-tag in the event. Specifically, the HEPTopTagger is used instead of the top-tagging method described in [7].
Although two hadronic top-tags in a semi-leptonic tt̄ event are unlikely, there is a significant probability to
misidentify a Higgs boson as a top quark (see Sec. III A). Thus, more than one fat jet can be top-tagged at this
stage.

2. In the interest of retaining as much signal as possible, instead of vetoing events with more than one top-tagged jet,
we identify as unique top candidate the top-tagged jet that minimises �mtot ⌘ |mt,reco�mt|+minij|mij�mW|.
Here mt,reco is the mass of the reconstructed top and mij is the invariant mass of the pair of subjets closest to
the W mass.

3. A rapidity cut |⌘| < 2.5 is applied to all remaining fat jets, including top-tagged jets that have not been selected
as top candidates in the previous step.

4. For each fat jet (except the top candidate) we apply the mass drop filter proposed in [7]. If the fat jet has less
than two subjets after mass drops it is ignored. Otherwise the pairs of 4-momenta that survive the mass drop
represent possible H(bb̄) structures. They are ordered according to a variant of the Jade distance [67],
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and only the first three such pairs in descending distance dij are retained. Next, the constituents of each subjet
pair are filtered into C/A jets of radius Rfilt = min(0.3,�Rij) and pT > 20 GeV. Only the first 3 filtered jets
are kept and combined into what we refer to as a Higgs candidate.

5. We require exactly two b-tags from the filtered subjets of the Higgs candidate.

6. We request exactly one additional b-tag in the event. This condition is applied after removing the reconstructed
Higgs and top, which are supposed to involve three of the four b-quarks of a signal event, and after clustering
the remaining final state objects of the Higgs fat jet into C/A jets with R = Rfilt and pT > 20 GeV (inner jets),
and the objects outside the Higgs fat jet into C/A jets with R = 0.4 and pT > 30 GeV (outer jets). As the Higgs
fat jet was already processed by a mass drop/grooming procedure, we choose a more aggressive jet definition.

7. We identify a Higgs candidate as tagged if its invariant mass mc lies in the [100, 130]GeV mass window.

A first picture of the quality of the Higgs reconstruction in the boosted analysis described above is provided in Fig. 3,
which displays the invariant-mass distribution of the Higgs candidate after step 6. The normalised mc distribution
for the tt̄H signal (left plot) features a sharp cut-o↵ at large mc and a rather long low-mass tail. There we observe
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In detail study of configurations contributing to boosted tth
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FIG. 4: Schematic representation of typical tt̄H event topologies. The ellipses indicate how partons are clustered to
form two fat jets. Topology 4a is the cleanest one: the Higgs products and the hadronic top products form two

separate fat jets without pollution from other hard particles. Topology 4b features misassignements of the Higgs and
hadronic top products. In topology 4c the hadronic top decay products form a fat jet, and the Higgs decay products
form another fat jet with the leptonic top b-quark falling within it. In topology 4d the b-quark from the leptonic top
decay does not pollute the Higgs fat jet, but there is a gluon radiation strong enough to form a substructure within

the Higgs fat jet.

energy losses via neutrinos in B-meson decays. Superimposing the tt̄H(bb̄) signal and the dominant tt̄ + jets and
tt̄bb̄ backgrounds (right plot) illustrates how the latter are dominated by the low mass region. Nevertheless, also due
to a certain dilution of the H ! bb̄ peak, the background contamination of the signal region remains quite serious.
In particular, as discussed in detail in Sec. VI, when comparing to the analysis in [7] we find a sizeable reduction
of S/B in the signal region, which can be attributed to the changes in the Monte Carlo simulations of signal and
background processes and to the b-jet mistagging in tt̄+jet events. As a consequence, the systematic (theoretical and
experimental) uncertainty on the background rate and shape may be as large or even larger than the signal. Hence
for an optimal signal strength measurement in tt̄H(bb̄) a further reduction of the background level through improved
selection strategies, as well as a reduction of the related uncertainties, are of crucial importance.

As a preliminary step towards the improved tt̄H(bb̄) selection strategies proposed in Section IV, in the following we
present a detailed study of the quality of top and Higgs reconstruction in the standard boosted analysis. Specifically,
we attempt to identify the patterns that dominate the reconstruction, i.e. the most probable ways how tt̄H(bb̄) decay
products are grouped into two fat jets. Such configurations will be referred to as event topologies, and some typical
examples are illustrated in Figure 4. The boosted selection is targeted at the topology in Fig. 4a, where the three
quarks from the thad decay and the bb̄ pair from the Higgs decay form two separate fat jets, which do not overlap with
the extra b-jet from the decay of the leptonic top, tlep. However, given the number of final state objects and the size of
the fat jets, the probability is large that the quarks group up in a di↵erent way to form two fat jets with pT > 200 GeV.
In particular, we are interested in topologies that contribute the most to Higgs candidate misidentification, resulting
in signal dilution and tt̄H sensitivity losses. In the following subsection we categorise the signal events according to
their quality of Higgs and top reconstruction.
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FIG. 4: Schematic representation of typical tt̄H event topologies. The ellipses indicate how partons are clustered to
form two fat jets. Topology 4a is the cleanest one: the Higgs products and the hadronic top products form two

separate fat jets without pollution from other hard particles. Topology 4b features misassignements of the Higgs and
hadronic top products. In topology 4c the hadronic top decay products form a fat jet, and the Higgs decay products
form another fat jet with the leptonic top b-quark falling within it. In topology 4d the b-quark from the leptonic top
decay does not pollute the Higgs fat jet, but there is a gluon radiation strong enough to form a substructure within

the Higgs fat jet.
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Categorisation of top reconstruction from fat jet:
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label bin before top tag after top tag tagging e�ciency
A1 11000111 0.12 0.32 0.40
A2 11001111 0.03 0.08 0.42
A3 10111000 0.06 0.07 0.18
A4 11010111 0.02 0.06 0.40
A5 11100111 0.02 0.04 0.41
A6 11011111 0.01 0.04 0.39

TABLE III: The normalised distributions of fat jets before top tagging (column 2) and top-tagged fat jet (column 3)
in the dominant bins of the 8-dimensional jet-category histogram. The top-tagging e�ciency (column 4) is defined
as the probability that a fat jet is top-tagged in step 2 of the boosted selection. The rows are ordered by decreasing
fraction after the top-tag. The bin is identified by specifying the conditions that are true (1) and false (0) in the

order listed in the text. The left-most digit corresponds to the first condition.
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FIG. 5: Distributions of the mthad (left) and mW (right) invariant masses for the cleanest topology A1 of Table III,
after step 2 of the boosted analysis of Sec. III.

A. Quality of hadronic top reconstruction

To define categories that reflect the goodness of fat jets as hadronic top candidates the following 8 binary conditions
(true/false) are used:

1. thad: the hadronic top quark is boosted (pT,thad > 150GeV)

2. thad: the hadronic top quark overlaps with the jet (�Rjet,thad < Rfat)

3. tlep ! b`⌫: the b-quark from tlep belongs to the jet

4. H ! bb̄: the harder b from the Higgs belongs to the jet

5. H ! bb̄: the softer b from the Higgs belongs to the jet

6. thad ! bjj: the b-quark from thad belongs to the jet

7. thad ! bjj: the harder light quark from thad belongs to the jet

8. thad ! bjj: the softer light quark from thad belongs to the jet

This characterisation is applied to the ensemble of fat jets in the tt̄H signal sample at two levels of the boosted
selection: considering all fat jets just before top tagging and, alternatively, only for the jet that has been successfully
top-tagged and selected as top candidate in step 2. In practice a tt̄H event corresponds to at least two fat jets before
top tagging and exactly one top-tagged fat jet. Each one of these fat jets falls into one bin of the 8-dimensional
discrete space defined by the above conditions. Overall this amounts to 256 fat-jet categories, which will be referred
to also as jet topologies in the following. It turns out that more than 60% of the top-tagged fat jets correspond to
one of the six jet topologies presented in Table III.

The A1 topology corresponds to the optimal configuration, where all thad decay products make up one fat jet, while
the Higgs products and the tlep b-quark end up in another direction. As illustrated in Fig. 5, this topology features
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A. Quality of hadronic top reconstruction

To define categories that reflect the goodness of fat jets as hadronic top candidates the following 8 binary conditions
(true/false) are used:

1. thad: the hadronic top quark is boosted (pT,thad > 150GeV)

2. thad: the hadronic top quark overlaps with the jet (�Rjet,thad < Rfat)

3. tlep ! b`⌫: the b-quark from tlep belongs to the jet
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This characterisation is applied to the ensemble of fat jets in the tt̄H signal sample at two levels of the boosted
selection: considering all fat jets just before top tagging and, alternatively, only for the jet that has been successfully
top-tagged and selected as top candidate in step 2. In practice a tt̄H event corresponds to at least two fat jets before
top tagging and exactly one top-tagged fat jet. Each one of these fat jets falls into one bin of the 8-dimensional
discrete space defined by the above conditions. Overall this amounts to 256 fat-jet categories, which will be referred
to also as jet topologies in the following. It turns out that more than 60% of the top-tagged fat jets correspond to
one of the six jet topologies presented in Table III.

The A1 topology corresponds to the optimal configuration, where all thad decay products make up one fat jet, while
the Higgs products and the tlep b-quark end up in another direction. As illustrated in Fig. 5, this topology features
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label bin before b-tags after b-tags after mc cut tag e�ciency
B1 110021 0.05 0.08 0.17 0.77
B2 110023 0.10 0.16 0.24 0.53
B3 110123 0.09 0.40 0.38 0.32
B4 111023 0.01 0.03 0.03 0.31

TABLE IV: The fraction of the signal cross section at di↵erent steps of the analysis in four of the 144 bins in the
6-dimensional Higgs-jet category histogram. The tag e�ciency of the topology is reported in the last column, and

the bins are ordered by decreasing tag e�ciency. Each row corresponds to a bin identified by specifying the
conditions that are true and false (or a numerical value if applicable) in the order listed in the text. The left-most

digit corresponds to the first condition.

an excellent top- and W-mass reconstruction. However, it corresponds to only one third of all events with a top-tag.
For the A5 topology, where the b-quark from tlep enters the fat jet of the hadronic top, we find a tagging e�ciency
of roughly 40%, similarly as for A1. In fact, the top tagger is built in such a way that a top is recovered with the
same e�ciency irrespectively of the presence of additional structure in the fat jet. The A1 and A5 topologies allow
for a good Higgs identification, since the Higgs decay products are contained in the remaining fat jet. However they
represent less than 40% of the total signal after top tagging. There are other configurations, like A2, A4 and A6,
where parts of the Higgs boson as well as the whole top form a fat jet, for which we find again a tagging e�ciency
around 40% as for a fat jet containing only the top quark.

The A3 topology, where a Higgs fat jet is mistagged as a top, represents another significant contribution. The
related mistag rate is around 20%, and the corresponding events often involve a second top tag associated with the
correct hadronic top. Thus events with more than one top tag should not be vetoed, and it is important to select the
“best” top candidate (step 2 of our selection). Obviously topologies where the reconstructed top contains one or more
quarks from the Higgs decay (A2, A4, A5, A6) do not allow for a correct Higgs tag. Such configurations amounts to
55% of the signal after the top-tag stage. However, this problem is alleviated by the request of two b-tags within the
Higgs candidate fat jet: if one of the Higgs b-quarks fall within the top tagged jet, then the Higgs jet will be unlikely
to contain two b-quarks, and such events will be strongly suppressed in the final selection.

B. Quality of Higgs reconstruction

To assess the the goodness of fat jets as Higgs candidates we employ categories based on the following criteria:

1. H: the Higgs boson is boosted (pT,H > 150GeV)

2. H: the Higgs boson overlaps with the jet (�Rjet,H < Rfat)

3. thad ! bjj: the b quark from thad belongs to the jet

4. tlep ! b`⌫: the b quark from tlep belongs to the jet

5. H ! bb̄: the number of b-quarks from the Higgs decay the jet contains is 0/1/2

6. H ! bb̄: the number of bb̄ Higgs candidates in the fat jet is 0/1/3

Note that fat jets containing at most one, two, or three b-quarks, can yield zero, one or three H(bb̄) candidates,
respectively. Conditions number 5 and 6 have three possible outcomes. This makes a total of 144 categories, but
again only few of them yield significant contributions to the accepted cross section. The relative weight of the four
most important topologies is reported in Table IV at three levels of the analysis of Sec. III: before and after b-tagging
(before step 5 and after 6), and after themc mass cut (step 7). These four leading topologies, ordered according to their
relative weight after the mc cut, account for 80% of the tt̄H signal within the mc mass window. The corresponding
distributions in the invariant mass of the Higgs candidate are displayed in Figure 6. We see that, whenever the Higgs
fat jet contains both Higgs b-quarks and no other partons (B1 topology), the mc distribution features a clear peak. Of
course the missing neutrinos from the B-meson decays skew and shift the peak. If, however, QCD radiation produces
a third hard structure (B2 topology), the peak is smeared out due to additional continuum contributions from false
Higgs candidates. This continuum contribution is greatly diminished by the double b-tag requirement for the Higgs
candidate’s subjets.

The B3 topology, where the H ! bb̄ products in the fat jet are contaminated by a third b-quark from the leptonic
top, is the main contributor after step 6 of the analysis. Since all subjets used to reconstruct the Higgs candidates are
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FIG. 6: Distributions of the Higgs candidate mass, mc, for di↵erent Higgs-jet topologies after requesting three
b-tags, i.e. after step 6 of the boosted analysis. The figures correspond to the topologies shown in Table IV.

b-jets, the continuum distribution from a false Higgs candidate is comparable to the true peak-shaped distribution
in the mass range of interest. Moreover, the continuum distribution has a similar shape as the irreducible tt̄bb̄

background. Therefore, as discussed in the next section, in order to trim this addition to the background from falsely
tagged signal and to sharpen the peak structure in presence of three-candidate fat jets, we will optimise the Higgs
tag by attempting a reconstruction of the leptonic top.

IV. IMPROVEMENTS AND NEW AVENUES

In this section we propose new selection strategies targeted at a better reconstruction of topologies that are the
major contributors to misidentified Higgs- or top-candidate fat jets. In Sec. IVA we present improvements of the
standard boosted analysis of Sec. III as well as new boosted analyses that exploit phase space regions with a single
fat jet. Such boosted selection strategies will be compared to a more inclusive multi-variate analysis presented in
Sec. IVB.

A. Boosted final state configurations

The standard boosted analysis of Sec. III is targeted at Higgs candidates with topology B1, which provides optimal
Higgs reconstruction and low mistag rates (see Tab. IV and Fig. 6a). The intrinsic di�culty of any reconstruction
approach is to maximise the selection e�ciency for this particular topology and to optimise Higgs reconstruction in
fat jet topologies that feature a less trivial substructure. To this end, it is useful to perform independent analyses
depending on the number of possible Higgs candidates inside Higgs fat jets. If the fat jet contains only two hard
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FIG. 6: Distributions of the Higgs candidate mass, mc, for di↵erent Higgs-jet topologies after requesting three
b-tags, i.e. after step 6 of the boosted analysis. The figures correspond to the topologies shown in Table IV.
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background. Therefore, as discussed in the next section, in order to trim this addition to the background from falsely
tagged signal and to sharpen the peak structure in presence of three-candidate fat jets, we will optimise the Higgs
tag by attempting a reconstruction of the leptonic top.
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In this section we propose new selection strategies targeted at a better reconstruction of topologies that are the
major contributors to misidentified Higgs- or top-candidate fat jets. In Sec. IVA we present improvements of the
standard boosted analysis of Sec. III as well as new boosted analyses that exploit phase space regions with a single
fat jet. Such boosted selection strategies will be compared to a more inclusive multi-variate analysis presented in
Sec. IVB.
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The standard boosted analysis of Sec. III is targeted at Higgs candidates with topology B1, which provides optimal
Higgs reconstruction and low mistag rates (see Tab. IV and Fig. 6a). The intrinsic di�culty of any reconstruction
approach is to maximise the selection e�ciency for this particular topology and to optimise Higgs reconstruction in
fat jet topologies that feature a less trivial substructure. To this end, it is useful to perform independent analyses
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FIG. 7: The single-isolated-lepton event phase space with the explored regions labelled as in the text.

substructure objects it can only form one Higgs candidate. In this case, even though there are ways to fake the Higgs
candidate (by forming a fat jet from one Higgs decay product and the leptonic top b-quark for example), our results
indicate that the final selection is dominated by the desired topology, i.e. by a correctly tagged Higgs boson. In the
following, we will propose improved selection strategies for the more challenging configurations with additional hard
substructure objects. Furthermore, in order to increase the statistical sensitivity to the tt̄H signal, we will complement
the standard boosted analysis with extra channels without tagged hadronic tops or without boosted Higgs candidates.
Thus we will slice the phase space of single-lepton tt̄H events into the categories illustrated in Fig. 7:

T1: � 2 fat jets, 1 tagged boosted top, 1 Higgs candidate

T2: � 2 fat jets, 1 tagged boosted top, 3 Higgs candidates

T3: � 1 fat jets, no tagged boosted tops, 1 Higgs candidate

T4: � 1 fat jets, no tagged boosted tops, 3 Higgs candidates

T5: exactly 1 fat jet, 1 tagged boosted top, unboosted Higgs candidate

Configurations T1 and T2, which will be handled separately here, cover the entire phase space of the standard
boosted analysis of Sec. III. In categories T3 and T4 we look for a boosted Higgs and an unboosted hadronic top, and
in T5 we anticipate an unboosted Higgs after reconstructing the boosted top. All in all we examine five statistically
independent phase space regions that, when combined, can enhance the sensitivity to tt̄H events. Note that here we
will not study events without fat jets.

1. Topologies T1 and T2: Boosted thad and boosted H

In the following we describe dedicated selections for event categories with one (T1) and more (T2) Higgs candidates
after step 4 of the standard boosted analysis of Sec. III.

As the Higgs mass peak in the T1 channel is already fairly narrow, one way to further separate signal from tt̄+X

backgrounds is to exploit the colour singlet nature of the Higgs boson. The colour dipole, formed by the bb̄ pair,
disfavours radiation away from the Higgs decay products, while bb̄ pairs originating from the QCD background feature
a di↵erent radiation pattern. In order to take advantage of this distinctive signal feature we use the ellipticity jet-
shape variable t̂ [68] computed in terms of the Higgs candidate’s constituents. Figure 8 shows the di↵erent mass
distributions of the Higgs candidate in the T1 selection channel with and without a cut t̂ < 0.2. As discussed in
Sec. VI, the ellipticity cut allows one to achieve an appreciable improvement in S/B with minor losses in terms of
signal yield. However, given its fairly small cross section, the T1 channel alone does not provide substantial sensitivity
to tt̄H at Run 2.

The complementary category T2 has a four times higher rate. Thus, increasing S/B in this channel, which is
dominated by the Higgs-jet topology B3 in Tab. IV, can boost the sensitivity of tt̄H(bb̄). To this end, after step 4 of
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shape variable t̂ [68] computed in terms of the Higgs candidate’s constituents. Figure 8 shows the di↵erent mass
distributions of the Higgs candidate in the T1 selection channel with and without a cut t̂ < 0.2. As discussed in
Sec. VI, the ellipticity cut allows one to achieve an appreciable improvement in S/B with minor losses in terms of
signal yield. However, given its fairly small cross section, the T1 channel alone does not provide substantial sensitivity
to tt̄H at Run 2.
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substructure objects it can only form one Higgs candidate. In this case, even though there are ways to fake the Higgs
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Configurations T1 and T2, which will be handled separately here, cover the entire phase space of the standard
boosted analysis of Sec. III. In categories T3 and T4 we look for a boosted Higgs and an unboosted hadronic top, and
in T5 we anticipate an unboosted Higgs after reconstructing the boosted top. All in all we examine five statistically
independent phase space regions that, when combined, can enhance the sensitivity to tt̄H events. Note that here we
will not study events without fat jets.
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shape variable t̂ [68] computed in terms of the Higgs candidate’s constituents. Figure 8 shows the di↵erent mass
distributions of the Higgs candidate in the T1 selection channel with and without a cut t̂ < 0.2. As discussed in
Sec. VI, the ellipticity cut allows one to achieve an appreciable improvement in S/B with minor losses in terms of
signal yield. However, given its fairly small cross section, the T1 channel alone does not provide substantial sensitivity
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FIG. 8: mc distribution from the selection channel with a single Higgs candidate in the fat jet and a tagged boosted
hadronic top (T1). The left(right) figure is without(with) a t̂ cut on the Higgs candidate constituents.

the standard boosted analysis, we try to tag the leptonic top, tlep, as well as the Higgs if the fat jet has more than
one Higgs candidate. The reconstruction of tlep helps to uniquely identify the origin of the three b-tagged jets and
ameliorates the combinatorial smearing of the Higgs peak evident in Fig. 6c. The reconstruction is implemented by
minimising a �

2 score computed for all combinations of final state objects that can form a Higgs–tlep pair. For each
of the three Higgs candidates there are a number of possible combinations, and the relevant physical objects are:

1. two subjets reconstructed from the hadrons of the filtered Higgs candidate using the exclusive-kT algorithm.

2. the inner and outer jets with respect to the current Higgs candidate (see definition in Sec.III);

3. the isolated lepton;

4. the missing transverse momentum of the event /ET.

The neutrino momentum can be reconstructed from the lepton momentum and /ET imposing the on-shell condition
for the corresponding W boson. The ambiguity related to the two solutions of the quadratic equation is not resolved
at this point, i.e. both possibilities are taken into account in the following steps. Since a leptonic top consists of a b-
quark, a charged lepton and a neutrino, we call a Htlep configuration any unique choice of one out of n inner and outer
jets, one of the two neutrino candidates, the isolated lepton and the two exclusive Higgs candidate subjets. Therefore,
any 3-Higgs-candidate fat jet has a number 2

P
3

i=1
ni of Htlep configurations. We define �

2 for a configuration in the
following way:

�
2 = �

2

top
+ �

2

Higgs
,

�
2

top
=

(mtlep,reco �mthad,max)2

�
2
thad

,

�
2

Higgs
=

(mH,reco �mH,max)2

�
2

H+

⇥(mH,reco �mH,max) +
(mH,reco �mH,max)2

�
2

H�
⇥(mH,max �mH,reco), (2)

where ⇥ is the Heaviside step function. The errors �H± are the standard deviations of Gaussian fits to the data to
the right (+) and left (-) of the peak in T1 (Fig. 6a). We make this choice because the reconstructed Higgs mass
distribution is heavily skewed to lower values, thus a single Gaussian fit will overestimate one and underestimate the
other deviation. We take mH,max as the position of the peak. The thad mass distribution from the topology A1 in
Table III is much more symmetric. Therefore, a single Gaussian fit su�ces to extract �thad and mthad,max. We order all
configurations in ascending �

2 and choose the first quarter of unique configurations. Then we keep the configurations
with two successful b-tags in the Higgs candidate and another for the inner or outer jet (there is only one such object
per configuration). We record the Higgs candidate mass mc of each of the configurations remaining after the �

2 and
b-tag cuts.

The �2 ordering complements the b-tagging in the following way. Assume the Higgs fat jet contains both the b-quark
of tlep and the two Higgs decay products. Without ranking the di↵erent configurations, all three Higgs candidates
will certainly contribute to the mc distribution. We ameliorate combinatorial issues by removing configurations with
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FIG. 8: mc distribution from the selection channel with a single Higgs candidate in the fat jet and a tagged boosted
hadronic top (T1). The left(right) figure is without(with) a t̂ cut on the Higgs candidate constituents.

the standard boosted analysis, we try to tag the leptonic top, tlep, as well as the Higgs if the fat jet has more than
one Higgs candidate. The reconstruction of tlep helps to uniquely identify the origin of the three b-tagged jets and
ameliorates the combinatorial smearing of the Higgs peak evident in Fig. 6c. The reconstruction is implemented by
minimising a �

2 score computed for all combinations of final state objects that can form a Higgs–tlep pair. For each
of the three Higgs candidates there are a number of possible combinations, and the relevant physical objects are:

1. two subjets reconstructed from the hadrons of the filtered Higgs candidate using the exclusive-kT algorithm.

2. the inner and outer jets with respect to the current Higgs candidate (see definition in Sec.III);

3. the isolated lepton;

4. the missing transverse momentum of the event /ET.

The neutrino momentum can be reconstructed from the lepton momentum and /ET imposing the on-shell condition
for the corresponding W boson. The ambiguity related to the two solutions of the quadratic equation is not resolved
at this point, i.e. both possibilities are taken into account in the following steps. Since a leptonic top consists of a b-
quark, a charged lepton and a neutrino, we call a Htlep configuration any unique choice of one out of n inner and outer
jets, one of the two neutrino candidates, the isolated lepton and the two exclusive Higgs candidate subjets. Therefore,
any 3-Higgs-candidate fat jet has a number 2

P
3

i=1
ni of Htlep configurations. We define �

2 for a configuration in the
following way:
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2 = �

2

top
+ �

2

Higgs
,

�
2

top
=

(mtlep,reco �mthad,max)2

�
2
thad

,

�
2

Higgs
=

(mH,reco �mH,max)2

�
2

H+

⇥(mH,reco �mH,max) +
(mH,reco �mH,max)2

�
2

H�
⇥(mH,max �mH,reco), (2)

where ⇥ is the Heaviside step function. The errors �H± are the standard deviations of Gaussian fits to the data to
the right (+) and left (-) of the peak in T1 (Fig. 6a). We make this choice because the reconstructed Higgs mass
distribution is heavily skewed to lower values, thus a single Gaussian fit will overestimate one and underestimate the
other deviation. We take mH,max as the position of the peak. The thad mass distribution from the topology A1 in
Table III is much more symmetric. Therefore, a single Gaussian fit su�ces to extract �thad and mthad,max. We order all
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with two successful b-tags in the Higgs candidate and another for the inner or outer jet (there is only one such object
per configuration). We record the Higgs candidate mass mc of each of the configurations remaining after the �

2 and
b-tag cuts.

The �2 ordering complements the b-tagging in the following way. Assume the Higgs fat jet contains both the b-quark
of tlep and the two Higgs decay products. Without ranking the di↵erent configurations, all three Higgs candidates
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FIG. 8: CLs obtained from the ellipticity t̂ (left) and ⌧21 (right) distributions calculated from the constituents of the W
candidates that pass the BDRS cut on the second boosted subjet. pTJ > 750 GeV. The background is the SM emission rate
(f = 1), signal + background sample is f = 1.1.
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FIG. 9: CLs obtained from the W transverse mass mT reconstruction in the leptonic analysis. The background sample is the
SM emission rate (f = 1). The signal plus background sample is f = 1.1.
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Appendix A: Ellipticity

To calculate the ellipticity t̂ of a jet we define the particles’ three-momentum components kTi transverse to the jet
it is part of. Thus, it is defined in the plane transverse to the momentum pJ =

P
i pi, where pi are the three-momenta

of the jet constituents, as

kTi = pi � (pJ · pi)
pJ

|pJ |
2 . (A1)

While we take pJ to be the thrust axis, we calculate thrust major Tmaj and and thrust minor Tmin using the kTi as
input

Tmaj = max
nmaj

P
i |kTi · nmaj|P

i |pTi|
and Tmin =

P
i |kTi · nmin|P

i |pTi|
, (A2)

where n2
maj = n2

min = 1, nmin · nmaj = 0 and nmin · pJ = 0. We then define the ellipticity to be the ratio

t̂ =
Tmin

Tmaj
. (A3)

• In case of unboosted hadronic top use chi2 minimisation to resolve degeneracy to assign 
b-quarks
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FIG. 11: mc distribution obtained from the selection channels without any top tags - T3 (top) and T4 (bottom).
The left figures show the tt̄H signal only and the figures to the right contain signal and background.

If there is one or more fat jets in the event but neither is top-tagged, we will test for a boosted Higgs among them
and aim to reconstruct a top using the radiation outside the Higgs candidate (channel T3–T4). Vice versa, if there is
only one fat jet and it has been top-tagged, we will look for a non-boosted Higgs among the remaining particles in the
event (channel T5). In the first case (T3 and T4) we follow Sec. IVA1 for the reconstruction of the Higgs candidate.
For each fat jet we find the mass drop subjets and we group them into Higgs candidates. Then we keep fat jets with
up to three candidates, but we separate the 1-candidate (T3) from the 3-candidate (T4) fat jets. We again construct
inner and outer jets after removing the Higgs candidates, see step 6 of the boosted analysis in Sec. III. As we would
like to reconstruct the unboosted hadronic top as well, we require at least four inner or outer jets, accounting for the
hadronic decay products of the leptonically and hadronically decaying top quarks.

There is a three-fold way to assign the b-quark within the hadronic top. To remove this ambiguity, we first
reconstruct the hadronic W by minimising �mW = |mWreco �mW|. Eventually, a �

2 value of every thad and Higgs
candidate configuration is calculated, i.e.

�
2 = �

2

top
+ �

2

W
+ �

2

Higgs
,

�
2

top
=

(mthad,reco �mthad,max)2

�
2
thad

,

�
2

W
=

(mWhad,reco �mWhad,max)2

�
2

Whad

. (3)

The �
2

Higgs
and �

2

top
are identical to the ones defined in Sec. IVA1. The �

2

W
parameters are extracted in the

same way as the �
2

top
parameters, i.e. using a Gaussian fit to the mass distribution (right plot in Fig. 5) of the two

W subjets in the reconstructed hadronic top, in the case when it falls into the cleanest topology (A1) in Table III.
The configurations are ordered by �

2 and the highest 75% are rejected. From each remaining configuration, three
successful b-tags are required—two among the Higgs candidate filtered subjets and another for the leptonic top. We
do not require an additional b-tag for the hadronic top candidate. As before, the Higgs candidates’ masses of all
surviving configurations are recorded, and the resulting distributions plotted in Figure 11. Results in Sec. VI confirm
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(a) Analysis of Sec. III including all relevant topologies (T1
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(b) Analysis of Sec. IV limited to topology T1.
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(c) Analysis of Sec. IV including topologies T1 and T2.
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(d) Analysis of Sec. IV including all topologies (T1–T5).
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(e) Analysis of Sec. IV including all topologies (T1–T5) and
neutrinos in B-decay reconstruction.
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(f) Unboosted BDT analysis of Sec. IVB.

FIG. 16: Two-sided 95% CL limit of the signal strength µ as a function of the integrated luminosity assuming a
normalisation uncertainty for the SM background that remains constant at 15% level up to 300 fb�1 and scales as

1/
p
L for higher integrated luminosities.
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FIG. 14: Distributions in the Higgs-candidate mass mc after three b-tags for the various selection topologies as in
Figs. 8–12, but including neutrinos in the reconstructed B-hadrons.

To a very large extent, this loss of discriminating power can be attributed to the di↵erences in signal and background
rates between the two analyses. In particular, the dominant e↵ects are a 35% increase—driven by tt̄+jets—of the
overall background level, and a 30% reduction of the tt̄H signal within final selection cuts. As for the modified top
taggers and the inclusion of B-meson decays with related neutrino-energy losses (which require a modified Hiss-mass
window), we checked that the impact on S/B is relatively small.

The NLO tools used in the present study (see Sect. II) provide more reliable signal and background simulations
as compared to the LO+PS samples employed in [7]. In the case of the tt̄+jets background we observe a very large
enhancement—close to one order of magnitude in the signal region—that can be in part attributed to the usage
of a rather crude approximation based on tt̄ + 1 jet LO matrix elements matched to Herwig++ in [7]. Moreover,
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FIG. 14: Distributions in the Higgs-candidate mass mc after three b-tags for the various selection topologies as in
Figs. 8–12, but including neutrinos in the reconstructed B-hadrons.

To a very large extent, this loss of discriminating power can be attributed to the di↵erences in signal and background
rates between the two analyses. In particular, the dominant e↵ects are a 35% increase—driven by tt̄+jets—of the
overall background level, and a 30% reduction of the tt̄H signal within final selection cuts. As for the modified top
taggers and the inclusion of B-meson decays with related neutrino-energy losses (which require a modified Hiss-mass
window), we checked that the impact on S/B is relatively small.

The NLO tools used in the present study (see Sect. II) provide more reliable signal and background simulations
as compared to the LO+PS samples employed in [7]. In the case of the tt̄+jets background we observe a very large
enhancement—close to one order of magnitude in the signal region—that can be in part attributed to the usage
of a rather crude approximation based on tt̄ + 1 jet LO matrix elements matched to Herwig++ in [7]. Moreover,
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FIG. 14: Distributions in the Higgs-candidate mass mc after three b-tags for the various selection topologies as in
Figs. 8–12, but including neutrinos in the reconstructed B-hadrons.

To a very large extent, this loss of discriminating power can be attributed to the di↵erences in signal and background
rates between the two analyses. In particular, the dominant e↵ects are a 35% increase—driven by tt̄+jets—of the
overall background level, and a 30% reduction of the tt̄H signal within final selection cuts. As for the modified top
taggers and the inclusion of B-meson decays with related neutrino-energy losses (which require a modified Hiss-mass
window), we checked that the impact on S/B is relatively small.

The NLO tools used in the present study (see Sect. II) provide more reliable signal and background simulations
as compared to the LO+PS samples employed in [7]. In the case of the tt̄+jets background we observe a very large
enhancement—close to one order of magnitude in the signal region—that can be in part attributed to the usage
of a rather crude approximation based on tt̄ + 1 jet LO matrix elements matched to Herwig++ in [7]. Moreover,
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Figs. 8–12, but including neutrinos in the reconstructed B-hadrons.

To a very large extent, this loss of discriminating power can be attributed to the di↵erences in signal and background
rates between the two analyses. In particular, the dominant e↵ects are a 35% increase—driven by tt̄+jets—of the
overall background level, and a 30% reduction of the tt̄H signal within final selection cuts. As for the modified top
taggers and the inclusion of B-meson decays with related neutrino-energy losses (which require a modified Hiss-mass
window), we checked that the impact on S/B is relatively small.

The NLO tools used in the present study (see Sect. II) provide more reliable signal and background simulations
as compared to the LO+PS samples employed in [7]. In the case of the tt̄+jets background we observe a very large
enhancement—close to one order of magnitude in the signal region—that can be in part attributed to the usage
of a rather crude approximation based on tt̄ + 1 jet LO matrix elements matched to Herwig++ in [7]. Moreover,
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FIG. 14: Distributions in the Higgs-candidate mass mc after three b-tags for the various selection topologies as in
Figs. 8–12, but including neutrinos in the reconstructed B-hadrons.

To a very large extent, this loss of discriminating power can be attributed to the di↵erences in signal and background
rates between the two analyses. In particular, the dominant e↵ects are a 35% increase—driven by tt̄+jets—of the
overall background level, and a 30% reduction of the tt̄H signal within final selection cuts. As for the modified top
taggers and the inclusion of B-meson decays with related neutrino-energy losses (which require a modified Hiss-mass
window), we checked that the impact on S/B is relatively small.

The NLO tools used in the present study (see Sect. II) provide more reliable signal and background simulations
as compared to the LO+PS samples employed in [7]. In the case of the tt̄+jets background we observe a very large
enhancement—close to one order of magnitude in the signal region—that can be in part attributed to the usage
of a rather crude approximation based on tt̄ + 1 jet LO matrix elements matched to Herwig++ in [7]. Moreover,
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Using these six jets (b1, b2, b3, b4, q1, q2)¶, as well as the isolated lepton ` and missing energy /ET, we define
simple kinematic variables: �mH = minij

��mH,max �mbibj

��, pTq2/pTq1 , maxij�Rbibj , mini�RW,bi , ��/ET,b3
, �R`,b3 ,

�RW,b4 . We found these seven variables to have highest rank, as defined in [70], after running all possible kinematic
combinations of our input objects, using a BDT. Signal and background distributions in the BDT discriminant are
plotted in Figure 13, and detailed results of this analysis are presented in Sec. VI.

V. EFFECTS FROM B-JET ENERGY CORRECTION

Throughout Secs. III and IV we have neglected energy corrections of b-tagged (sub)jets. As a result, the mass of the
reconstructed Higgs candidate and the top quark show a broad, smeared-out distribution. ATLAS and CMS apply
jet-energy corrections to compensate for energy losses from unobserved neutrinos in the decay of B-mesons. While
the correct inclusion of these corrections requires a full detector simulation and is beyond the scope of this analysis,
at the end of Sect. VI we will present the most optimistic results for the tt̄H reconstruction by including the neutrino
momenta in the jet finding.

Distributions in the Higgs-candidate invariant mass with full B-reconstruction are illustrated in Figure 14 for all
analysis channels (T1–T5). As compared to Figs. 8–12, including the neutrino momenta results in a narrower and
more pronounced mass peak at mH = 125 GeV. This e↵ect is especially pronounced in the T1 channel. In this case,
using an optimal mass window can increase the S/B ratio up to 40% without losing signal yield. Moreover, for the
T1 channel a side-band analysis appears to be possible where the signal strength can be estimated by comparing
the Z boson peak with the adjacent Higgs peak, while the signal depleted regions can be exploited for a data driven
background determination. However, the T1 channel collects only a modest fraction of the tt̄H signal (see Sect. VI),
while it is evident from Fig. 14 that the other channels do not benefit in a similar way from an improved reconstruction
of B-decays.

VI. RESULTS

We present the results of the analyses described in the previous three sections in terms of S/B ratios in signal
enriched regions and in the form of 95% CL limits on the signal strength µ. We define µ as the observed deviation

from the signal plus background SM hypothesis as a fraction of the SM tt̄H cross section, µ =
�
obs��

SM
S+B

�
SM
S

. Therefore,

µ = 0 represents no deviation from the SMk, while coupling modifications due to new physics could result in µ < 0 or
µ > 0. The limits are obtained from the final discriminating observables of the various selections, i.e. the mc or vBDT

distributions. More precisely, we perform a two-sided frequentist test with the profile likelihood test statistic and the
CLs variant of the p-value using the RooStats framework [72]. We use the expected number of signal plus background
SM events in each bin of the relevant distribution as the null hypothesis and we look for the limits this analysis could
impose on BSM contributions to the signal strength (both positive and negative). The results from the statistical
analysis are presented in Fig. 15 under the assumption of a constant normalisation uncertainty of 15% for the SM
background. In Fig. 16 a more optimistic scenario is presented, where the background uncertainty starts decreasing
as the inverse square root of the integrated luminosity above 300 fb�1. The green bands in Figs. 15–16 cover the µ

values that cannot be excluded at 95% CL assuming the data is exactly as predicted by the SM. The yellow bands
extend this region to include an upward (downward) fluctuation by 1� of the SM median when calculating the upper
(lower) 95% confidence limit.

A. Standard boosted analysis

Let us start discussing the results of the analysis of Sec. III, which represents a standard boosted selection along the
lines of [7]. The signal and background contributions at various steps of the selection are presented in Table V, and
the overall picture is qualitatively similar to the original boosted analysis [7]. However the quantitative di↵erences are
quite notable. In particular, for the S/B ratio after the mc-cut we observe a reduction from about⇤⇤ 35% in [7] to 14%.

¶The numbering scheme signifies the pT in descending order.
kNote that the usual tt̄H signal strength corresponds to 1 + µ.

⇤⇤To be precise, the S/B ratios reported in [7] are 42% and 28% for mH = 120GeV and 130GeV, respectively.
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Reconstruction of boosted tth can be improved

• obtain sensitivity from whole phase space

• want optimal separation of signal and background

Experiments want:

• not to have to optimise S/B by hand

• use established idea to ease approval process ;-)

Matrix Element Method way to go

however LO MEM not ideal for tth



Different scenarios based on pT vs mass
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Can improve reconstruction for tops and Higgs

make use of many properties of the top for reconstruction 
(top mass, W mass, EW structure of decay)

However, QCD radiation pattern are left mostly aside.

top QCD QCD
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One can be more quantitative...
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Radiation off bottom quark down 
to hadronization scale

angular distribution for radiation 
off H/W decay products
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we will have the best statistical significance for a measurement if we make �C(B) as small as
possible. Thus we seek to choose the cut so as to minimize �C(B) with �C(S) held constant.
The solution to this problem is to choose C({p, t}N) such the surface C({p, t}N) = 0 is
a surface of constant ⇥MC({p, t}N). That is, we should use signal and background cross
sections in which the function that defines the cut is taken to be

C({p, t}N) = ⇥MC({p, t}N)� ⇥0 (8)

for some ⇥0. If we make any small adjustment to this by removing an infinitesimal region
with ⇥MC({p, t}N) > ⇥0 from the cut and adding a region having the same signal cross
section but with ⇥MC({p, t}N) < ⇥0, we raise the total background cross section within the
cut while keeping the signal cross section the same. Thus using contours of ⇥MC({p, t}N) to
define our cut is the best that we can do.

What value of ⇥0 should one choose? For a simple optimized cut based analysis with a
given amount of integrated luminosity, one would choose ⇥0 so as to maximize the ratio of the
expected number of signal events to the square root of the expected number of background
events. We discuss this further in Sec. XI.

Instead of using an optimized cut on ⇥MC to separate signal from background, one could
imagine using a log likelihood ratio constructed from ⇥MC. We do not discuss that method
in this paper.

Now we must face the fact that to construct ⇥MC({p, t}N), we would need two things:
the di�erential cross section to find microjets {p, t}N in background events and then the
di�erential cross section to find microjets {p, t}N in signal events. In each case, we would
consider this di�erential cross section in a parton shower approximation to the full theory.
Unfortunately for us, a parton shower produces d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N by
producing Monte Carlo events at random according to these distributions. If we have 10
microjets described by 4 momentum variables each and we divide each of these 40 variables
into 12 bins, then we have approximately 1240/10! ⇥ 1036 total bins (accounting for the
interchange symmetry among the 10 microjets). The parton shower Monte Carlo event
generator will fill these bins with events, but it will be a long time before we have of order
100 counts per bin in order to estimate d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N at each bin
center. Thus it is not practical to calculate ⇥MC({p, t}N) numerically by generating Monte
Carlo events. It is also not practical to calculate ⇥MC({p, t}N) analytically using the shower
algorithms in Pythia or Herwig. These programs are very complicated, so that we have
no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

D. Probabilities according to simplified shower

What we need is an observable ⇥({p, t}N) that is an approximation to ⇥MC({p, t}N) such
that we can calculate ⇥({p, t}N) analytically for any given {p, t}N . For this purpose, we
define a simple, approximate shower algorithm, which we will call the simplified shower
algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-
crojet configuration {p, t}N in, respectively, signal and background events according to the
simplified shower algorithm. Define

⇥({p, t}N) =
P ({p, t}N |S)
P ({p, t}N |B)

. (9)

6

Analogously for the top decay (more involved as top colored)
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[Soper, MS ’11]

[Soper, MS ’12]



Chi distribution insensitive to pileup

Shower 
deconstruction 

improves on best 
taggers by factor 

2-4 in S/B

shower 

deconstruction
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Results by CMS

• Shower deconstruction 
best single variable

• Efficiencies matched if 
taggers combined
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that
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and
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of
the
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and
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the
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on
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is
the
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let

h
be

the
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of
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and

s
be

the
label of
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k
s <
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s <
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first
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the
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in
the
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k
s ⇤

k
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probability
is
then
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inated

by
graphs

in
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s
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em
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of
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and
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=
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the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and
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=
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approxim
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for
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µ 2h =
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dip

ole ⇥
C

A �
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s · p
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p
s · p
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p
s · p
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=
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s k
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s �
y
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s �
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y
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⇤
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caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
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⇤
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on
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of
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is

the
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let
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e
the
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of
the

harder
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and
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the
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of

the
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s
<
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hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
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and

som
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other
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if
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=

B
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then
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and
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he
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of

k
dep

ends
on
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of
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parton

s,
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w
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the
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ole
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H
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p
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=
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s �

y
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s �

⇤
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y
h ) 2

+
(⇤

s �
⇤
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approxim
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b
e
th
e
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el
of
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softer

d
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p
arton

:
k
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<

k
h.

B
y
d
efi
n
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,
k
s
<

k
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fi
rst

look
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sp
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g
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th
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lim
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h
e
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littin

g
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ab
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th
en
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ich

p
arton

s
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em

itted
from

a
d
ip
ole

con
sistin
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of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
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arton

k
=

k
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w
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=

B
,
th
en

th
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form
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=
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=
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so
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e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.
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H
,
w
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start

w
ith

th
e
d
ip
ole

ap
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roxim

ation
for

th
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squ

ared
m
atrix

elem
ent
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ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
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�
s

2
2
p
h·p
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2
p
s·p

h
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p
s·p

k
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(30)
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e
u
se
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p
s·p

h
=

2k
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(y

s�
y
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⇤
h)]

⇥
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⇤
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,
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by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
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g
p
rob
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for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)

13

F
IG
. 6:

Splitting
functions

for
final state

Q
C
D
splittings

that
are

m
odeled

as
g ⌅

g
+
g

V
I.

F
IN

A
L
S
T
A
T
E
Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
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the
conditional splitting
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H
ere
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is
that

the
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other

parton
has

not
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at

a
higher
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Let
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take
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to
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that
the

daughter
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and
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A
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color
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the

m
other

and
is
draw
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the
3
color

of
the
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other

and
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draw
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right.
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form
of
the

splitting
probability
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on
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hich

of
the

tw
o
daughter

partons
is
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e
let

h
be

the
label

of
the

harder
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parton
and

s
be
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label of

the
softer

daughter
parton:

k
s <

k
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B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
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T
he

splitting

probability
is
then

dom
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by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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is
represented

by
a
function
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as
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F
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W
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call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine
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hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on
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right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be
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label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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if
s
=
B
, then
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W
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p
s · p

h
=
2k
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s �
y
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⇤
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s �
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F
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W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition
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that

the
m
other

parton
has

not
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already
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a
higher
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et

us
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w
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choose
for

H
ggg

for
a
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+
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splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
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that

the
daughter

partons
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lab
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A
and

B
,
w
here

A
caries

the
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color

of
the

m
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and
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draw
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3
color

of
the
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is
draw
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form
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the
splitting

probability

dep
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on
w
hich

of
the

tw
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partons
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the
softer.

W
e
let

h
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e
the

lab
el

of
the

harder
daughter

parton
and

s
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the

lab
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of

the
softer

daughter
parton:

k
s
<

k
h .

B
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W
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look
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the
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lim
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k
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T
he

splitting

probability
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then
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inated
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graphs

in
w
hich
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em
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a
dip

ole
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of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
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form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole
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form
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from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start
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the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent
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µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2
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p
h · p

k
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p
s · p

h
2
p
s · p

k

.
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W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
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k
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h
⇥
2sh
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2
p
s · p

k ⇥
k
s k

k
⇥
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p
h · p

k ⇥
k
h k

k
⇥
2h
k
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⌅
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by
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the
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that
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⌅
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caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
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the
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b
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b
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=
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=
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=
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p
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ow
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A
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S
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ro

b
a
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g
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g
+
g

T
h
e
sp
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g
vertex
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a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)
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dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,
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of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro
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ility

fo
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g
+
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T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
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call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher
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L
et

us
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hat

w
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should
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for

H
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for
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take
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to
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the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
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the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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In
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w
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define
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ain

part
of

the
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splittings.
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.

S
p
littin

g
p
ro

b
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ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
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parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on
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left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on
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right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,
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for
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+
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is
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W
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the
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that
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and
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that
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,
w
here

A
caries
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and
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w
hile

B
caries

the
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of
the
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and
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form
of

the
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probability

dep
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on
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hich

of
the
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softer.

W
e
let

h
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e
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lab
el

of
the

harder
daughter
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and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
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W
e
first

look
at

the
splitting

in
the
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it
k
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k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
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from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
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ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
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h
⇥
2sh

,

2
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k
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⇥
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In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
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raw
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e
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raw
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p
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e
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e
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b
e
th
e
lab

el
of
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b
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e
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el
of

th
e
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d
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ghter
p
arton

:
k
s
<

k
h.

B
y
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efi
n
ition

,
k
s
<

k
h.

W
e
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rst
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at

th
e
sp
littin

g
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e
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s⇤

k
h.

T
h
e
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littin

g

p
rob
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ility

is
th
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s
is
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s
=
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e
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=
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=

k
(J
)L,

w
h
ile

if
s
=
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=
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=
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p
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w
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n
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w
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th
e
n
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k
(s)
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k
.

F
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H
,
w
e
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w
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th
e
d
ip
ole

ap
p
roxim
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for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]
=

k
sk

h
⇥
2sh

,
2
p
s·p

k
⇥

k
sk

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)
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In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
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2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk
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s�
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⇤
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h
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⇥
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W
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use
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s·p
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=
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sk
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s�
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cos(⇤
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⇤
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+
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is
represented

by
a
function

H
ggg
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in
F
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W
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the
conditional splitting
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H
ere
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condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on
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left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on
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right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be
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label of

the
softer

daughter
parton:

k
s <

k
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B
y
definition, k

s <
k
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W
e
first

look
at

the
splitting

in
the

lim
it
k
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k
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T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and
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=
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the
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⇤
h ) 2
]

=
k
s k
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=
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w
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p
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s �
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⇤
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s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

Proton

Proton

ISR jet

ISR jet

Anti-top

Higgs

top

W

W

electron

b-jet

b-jet

b-jet

b-jet

jet

jet

FIG
.6:Splitting

functionsforfinalstate
Q
CD

splittingsthatare
m
odeled

asg⌅
g+

g

V
I.

FIN
A
L
STAT

E
Q
C
D
SH

O
W
ER

SP
LIT

T
IN
G
S

In
thissection,wedefinethem

ain
partofthesim

plified
shower,QCD

showersplittings.

A
.

Splitting
probability

for
g⌅

g+
g

Thesplitting
vertex

fora
QCD

splitting
g⌅

g+
g
isrepresented

by
a
function

H
ggg
as

illustrated
in
Fig.6.W

ecallthesetheconditionalsplittingprobabilities.Herethecondition

isthatthem
otherparton

hasnotsplitalready
ata

highervirtuality.

Letusexam
ine

whatwe
should

choose
forH

ggg
fora

g⌅
g+

g
splitting.

W
e
take

the

m
otherparton

to
carry

the
labelJ

and
we

suppose
thatthe

daughterpartonsare
labelled

A
and

B
,whereA

cariesthe3̄
colorofthem

otherand
isdrawn

on
theleft,whileB

caries

the
3
colorofthe

m
otherand

isdrawn
on

the
right.

The
form

ofthe
splitting

probability

dependson
which

ofthe
two

daughterpartonsisthe
softer.

W
e
leth

be
the

labelofthe

harderdaughterparton
and

s
bethelabelofthesofterdaughterparton:ks

<
kh.

By
definition,ks

<
kh.W

efirstlook
atthesplitting

in
thelim

itks⇤
kh.Thesplitting

probabilityisthen
dom

inated
bygraphsin

which
parton

sisem
itted

from
adipoleconsisting

ofparton
J
and

som
e
otherparton,callitparton

k.
Ifs

=
A,then

the
em
itting

dipole
is

form
ed
from

parton
h
=
B
and

parton
k
=
k(J)L,whileifs=

B
,then

theem
itting

dipole

isform
ed
from

parton
h
=
A
and

parton
k
=
k(J)R.

The
choice

ofk
dependson

which
of

thetwo
daughterpartonsisparton

s,so
whereneeded

wewillusethenotation
k(s)instead

ofsim
ply

k.

For
H
,we

start
with

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(with

µ
2
s
=
µ
2
h
=
0),

H
dipole⇥

C
A�s

2

2ph·pk

2ps·ph
2ps·pk

.

(30)

W
euse

2ps·ph
=
2kskh[cosh(ys�

yh)�
cos(⇤s�

⇤h)]

⇥
kskh[(ys�

yh)
2+

(⇤s�
⇤h)

2]

=
kskh

⇥
2
sh
,

2ps·pk⇥
kskk⇥

2
sk
,

2ph·pk⇥
khkk⇥

2
hk
,

(31)

13

jet

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]
=

k
sk

h
⇥
2sh

,
2
p
s·p

k
⇥

k
sk

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]
=

k
sk

h
⇥
2sh

,
2
p
s·p

k
⇥

k
sk

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

ISR jet

neutrino

Event Deconstruction = Matrix. Method + Shower Deconstruction
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First application of Event Deconstruction

fully hadronic Z’ -> tt

Signal tt dijets

Z ′

q q̄

t̄ t
t̄ t

g g

-

g g

g g

[Soper, MS ’14]
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Efficiency for tagging Z’
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Event Dec:

HTT: eff: 0.104659 
fkr: 0.000259946 
1/fkr: 3846.95

eff : 0.109538  
fkr : 3.20063e-05  
1/fkr : 31243.8

Discovery 9 times faster or for 
3 times smaller cross section
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Summary

Studying Higgs-top interactions most important deliverable 
during upcoming LHC runs

direct impact on BEH mechanism, SM extensions, global fit

However, final states highly complex!

Need combination of channels and different phase space regions to 

get optimal result
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Boosted category important to improve our understanding of nature
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Backup
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FIG. 1: Comparison of LO+PS and S-MC@NLO predictions for pT of first b-jet in the inclusive ttb subsample (1a)
and various observables in the ttbb subsample: invariant mass of first two b-jets (1b), pT of first b-jet (1c), �R of
first two b-jets (1d), total pT of first two b-jets (1e) and pT of second b-jet (1f). In this comparison top decays,
hadronisation and underlying event are switched o↵. A constant K-factor of 1.65 is applied to the LO+PS tt̄bb̄

simulation.

[Moretti, Petrov, 
Pozzorini, MS ’15]

Detailed comparison between LO analysis sample and NLO samples 
from Openloops+Sherpa


