

Boosted tth

Michael Spannowsky

IPPP, Durham University

Connecting measurements with UV physics

Operators in top-Higgs sector

Starting from a subset:

$O_{t \phi}=y_{t}^{3}\left(\phi^{\dagger} \phi\right)(\bar{Q} t) \tilde{\phi}$
$O_{\phi G}=y_{t}^{2}\left(\phi^{\dagger} \phi\right) G_{\mu \nu}^{A} G^{A \mu \nu}$
$O_{t G}=y_{t} g_{s}\left(\bar{Q} \sigma^{\mu \nu} T^{A} t\right) \tilde{\phi} G_{\mu \nu}^{A}$

See also

Degrande et al. arXiv:1205.1065
Grojean et al. arXiv:1312.3317
Azatov et al arXiv:1608.00977

ttH

Thanks to Eleni
Vryonidou

Higgs Toppings
Benasque

Problem flat direction flat direction

[Grojean, Salvioni, Schlaffer '13]
[Schlaffer, MS, Weiler, Takeuchi '14]

tth breaks degeneracy

[Degrande, Gerard, Maltoni, Servant '13]

Boost is huge benefit for high-energy hadron collider

[Englert, Kogler, Schulz, MS '15]
[Englert, Kogler, Schulz, MS '17]
Coefficients multiplied by 10^{3}
Grey: signal strength only
Orange: differential distributions at 14 TeV and 3000 ifb

66\% CL (dark), 95\% CL (middle), 99\% CL (light)

Parametrisation of cross sections with Professor and fit using Gfitter

tth

as busy as it gets in the SM

Motivation: - sizable cross-section

- Higgs discovery contribution in low mass range - access to t- and b-Yukawa couplings

High expectations:

[ATLAS TDR 1999]

pT distributions relevant for tth

[Plehn, Salam, MS '09]

Problems in event reconstruction:

- (b-)jet multiplicity
- reconstruction efficiency

Boost should help but
need tagger for this environment

Higgs tagger

Start with 'fat jet'
Reverse merging procedure with the condition

$$
\max m_{j}^{\mathrm{soft}}<0.8 m^{\text {hard }}
$$

Sort the constituents according to $J=p_{T, 1} p_{T, 2}\left(\Delta R_{12}\right)^{4}$ and book the first three combinations after filtering

Ask for two b-tags in the reconstructed Higgs jet

'fat' jet constituents

HEPTopTagger - a low-pT Tagger
 (Plehn, Salam, MS, Takeuchi)

I. Find fat jets ($C / A, R=1.5, p T>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion Undo clustering, $m_{j_{1}}<0.8 m_{j}$ to keep j_{1} and j_{2}

jet 2: throw away

- jet l: keep
III. Filter and choose pairing

Take 3 hard objetcs, filter them, take 5 filered subjets, keep pairing with best top mass
top candidate $\left|m_{j j j}-172.3 \mathrm{GeV}\right|<25 \mathrm{GeV}$
no b-tag, no W mass cut yet

IV. check mass ratios

Cluster top candidate into 3 subjets j_{1}, j_{2}, j_{3}

$$
m_{t}^{2} \equiv m_{123}^{2}=\left(p_{1}+p_{2}+p_{3}\right)^{2}=\left(p_{1}+p_{2}\right)^{2}+\left(p_{1}+p_{3}\right)^{2}+\left(p_{2}+p_{3}\right)^{2}=m_{12}^{2}+m_{13}^{2}+m_{23}^{2}
$$

$$
\begin{aligned}
& R_{\min }<\frac{m_{23}}{m_{123}}<R_{\max } \text { and } 0.2<\arctan \frac{m_{13}}{m_{12}}<1.3 \\
& R_{\min }^{2}\left(1+\left(\frac{m_{13}}{m_{12}}\right)^{2}\right)<1-\left(\frac{m_{23}}{m_{123}}\right)^{2}<R_{\max }^{2}\left(1+\left(\frac{m_{13}}{m_{12}}\right)^{2}\right) \text { and } \frac{m_{23}}{m_{123}}>0.3 \\
& R_{\min }^{2}\left(1+\left(\frac{m_{12}}{m_{13}}\right)^{2}\right)<1-\left(\frac{m_{23}}{m_{123}}\right)^{2}<R_{\max }^{2}\left(1+\left(\frac{m_{12}}{m_{13}}\right)^{2}\right) \text { and } \frac{m_{23}}{m_{123}}>0.3 \\
& R_{\min }=85 \% \times m_{W} / m_{t} \quad R_{\max }=115 \% \times m_{W} / m_{t}
\end{aligned}
$$

IV. check mass ratios

Cluster top candidate into 3 subjets j_{1}, j_{2}, j_{3}

No fix pairing for W mass reconstruction

Only invariants for reconstruction

Analysis proceeds along following lines

Cluster 2 fatjets with $\mathrm{R}=1.5 \mathrm{CA}, \mathrm{pTj}>200 \mathrm{GeV}$ [Moretti, Petrov,

1. Each fatjet tagged as $t_{\text {had }}$ or non- $t_{\text {had }}$ by applying HEPTopTagger
-> require at least 1 top-tag, (2 possible Higgs can be mis-id as top)
2. If more than one top tag use $\Delta m_{\mathrm{tot}} \equiv\left|m_{\mathrm{t}, \mathrm{reco}}-m_{\mathrm{t}}\right|+\min _{\mathrm{ij}}\left|m_{\mathrm{ij}}-m_{\mathrm{W}}\right|$ to identify top candidate
3. For all remaining fat jets use Higgs tagger from [Plehn, Salam, MS '09] to identify the Higgs candidate.
Require exactly 2 tagged b-jets from filtered subjets
4. Remove tagged Higgs and top constituents and require exactly 1 additional b-tag in the event
5. Identify Higgs if its invariant mass m_{c} is in $[100,130] \mathrm{GeV}$ window

Results for tth

- 5 sigma sign. with 100 1/fb
- Development of Higgs and top tagger for busy final state
- Improvement of S / B from $1 / 9$ to $1 / 2$
\longrightarrow tth might contribute to Higgs discovery
\longrightarrow tth might be a window to Higgs-top coupling

In detail study of configurations contributing to boosted tth
[Moretti, Petrov, Pozzorini, MS '15]

Categorisation of top reconstruction from fat jet:

1. $t_{\text {had }}$: the hadronic top quark is boosted $\left(p_{\mathrm{T}, \mathrm{t}_{\text {had }}}>150 \mathrm{GeV}\right)$
2. $t_{\text {had }}$: the hadronic top quark overlaps with the jet $\left(\Delta R_{\text {jet }, \mathrm{t}_{\text {had }}}<R_{\mathrm{fat}}\right)$
3. $t_{\text {lep }} \rightarrow b \ell \nu:$ the b-quark from $t_{\text {lep }}$ belongs to the jet
4. $H \rightarrow b \bar{b}$: the harder b from the Higgs belongs to the jet
5. $H \rightarrow b \bar{b}$: the softer b from the Higgs belongs to the jet
6. $t_{\text {had }} \rightarrow b j j$: the b-quark from $t_{\text {had }}$ belongs to the jet
7. $t_{\text {had }} \rightarrow b j j:$ the harder light quark from $t_{\text {had }}$ belongs to the jet
8. $t_{\text {had }} \rightarrow b j j$: the softer light quark from $t_{\text {had }}$ belongs to the jet
normalised distr. of fat jets

label	bin	before top tag	after top tag	tagging efficiency	
A_{1}	11000111	0.12	0.32	0.40	
A_{2}	11001111	0.03	0.08	0.42	
A_{3}	10111000	0.06	0.07	0.18	HEPTopTagger
A_{4}	11010111	0.02	0.06	0.40	eff. very stable
A_{5}	11100111	0.02	0.04	0.41	
A_{6}	11011111	0.01	0.04	0.39	

Categorisation of Higgs reconstruction from fat jet:

1. H : the Higgs boson is boosted $\left(p_{\mathrm{T}, \mathrm{H}}>150 \mathrm{GeV}\right)$
2. H : the Higgs boson overlaps with the jet $\left(\Delta R_{\mathrm{jet}, \mathrm{H}}<R_{\mathrm{fat}}\right)$
3. $t_{\text {had }} \rightarrow b j j$: the b quark from $t_{\text {had }}$ belongs to the jet
4. $t_{\text {lep }} \rightarrow b \ell \nu$: the b quark from $t_{\text {lep }}$ belongs to the jet
5. $H \rightarrow b \bar{b}$: the number of b-quarks from the Higgs decay the jet contains is $0 / 1 / 2$
6. $H \rightarrow b \bar{b}$: the number of $b \bar{b}$ Higgs candidates in the fat jet is $0 / 1 / 3$

Improved reconstruction for difficult kinematics

T1: ≥ 2 fat jets, 1 tagged boosted top, 1 Higgs candidate
T2: ≥ 2 fat jets, 1 tagged boosted top, 3 Higgs candidates
$\}$ standard boosted analysis

T3: ≥ 1 fat jets, no tagged boosted tops, 1 Higgs candidate
T4: ≥ 1 fat jets, no tagged boosted tops, 3 Higgs candidates
T5: exactly 1 fat jet, 1 tagged boosted top, unboosted Higgs candidate

\}boosted \dagger
OR
boosted h

Measures to improve individual topologies

Categories T1 and T2 (boosted top and Higgs)

Categories T3 - T5 (only boosted top or Higgs)

- In case of unboosted hadronic top use chi2 minimisation to resolve degeneracy to assign b-quarks

$$
\begin{aligned}
\chi^{2} & =\chi_{\mathrm{top}}^{2}+\chi_{\mathrm{W}}^{2}+\chi_{\mathrm{Higgs}}^{2} \\
\chi_{\mathrm{top}}^{2} & =\frac{\left(m_{\mathrm{t}_{\mathrm{had}}, \text { reco }}-m_{\mathrm{t}_{\mathrm{had}}, \mathrm{max}}\right)^{2}}{\sigma_{\mathrm{t}_{\mathrm{had}}}^{2}} \\
\chi_{\mathrm{W}}^{2} & =\frac{\left(m_{\mathrm{W}_{\mathrm{had}}, \text { reco }}-m_{\mathrm{W}_{\mathrm{had}}, \max }\right)^{2}}{\sigma_{\mathrm{W}_{\mathrm{had}}}^{2}}
\end{aligned}
$$

(d) Analysis of Sec. IV including all topologies (T1-T5).

Reconstruction of boosted tth can be improved

Experiments want:

- obtain sensitivity from whole phase space
- want optimal separation of signal and background
- not to have to optimise S / B by hand
- use established idea to ease approval process ;-)

Matrix Element Method way to go
however LO MEM not ideal for tth

Different scenarios based on pT vs mass

Scenario 2

Scenario 3
$m_{t \bar{t}} \gg 2 m_{t}$

Michael Spannowsky
30.05.2018

Can improve reconstruction for tops and Higgs

make use of many properties of the top for reconstruction (top mass, W mass, EW structure of decay)

However, QCD radiation pattern are left mostly aside.

One can be more quantitative...

use emission prob. from [Soper, MS PRD 87]

$$
\mathcal{P}=1-e^{-S_{t t g}}
$$

PT top quark [GeV]
Dead cone region around top

PT top 500 GeV , pT gluon 20 GeV

Radiation off bottom quark down to hadronization scale

$$
\mathcal{P}=1-e^{-S_{b b g}}
$$

pT bottom $=$ pT top $/ 3$
angular distribution for radiation off H/W decay products

H/W decay products

Analogously for the top decay (more involved as top colored)

Conceptional difference compared to Higgs from last year:

- Splitting functions for massive emitter and spectator
- Full matrix element for top decay
$\chi\left(\{p, t\}_{N}\right)=\frac{P\left(\{p, t\}_{N} \mid \mathrm{S}\right)}{P\left(\{p, t\}_{N} \mid \mathrm{B}\right)}=\frac{\sum_{\text {histories }} H_{I S R} \cdots \sum_{\text {histories }}|\mathcal{M}|^{2} H_{\text {top }} e^{-S_{t_{1}}} H_{t g}^{s} e^{-S_{g}} \cdots}{\sum_{\text {histories }} H_{I S R} \cdots \sum_{\text {histories }} H_{g}^{b} e^{S_{g}} H_{g g g} \cdots}$

〈 μ

Results by CMS

- Shower deconstruction best single variable

- Efficiencies matched if taggers combined

Event Deconstruction = Matrix. Method + Shower Deconstruction

Event Deconstruction = Matrix. Method + Shower Deconstruction

Event Deconstruction = Matrix. Method + Shower Deconstruction

Event Deconstruction = Matrix. Method + Shower Deconstruction

First application of Event Deconstruction

[Soper, MS '14]

fully hadronic Z^{\prime}-> $\dagger \dagger$

Signal

$\dagger \bar{\dagger}$

dijets

$$
\chi=\frac{P\left(X \mid Z^{\prime}\right)}{P(X \mid t \bar{t}+\text { dijets })}
$$

Event Dec: eff : 0.109538
fkr : 3.20063e-05
1/fkr: 31243.8

HTT: eff: 0.104659
fkr: 0.000259946
1/fkr: 3846.95

Summary

> Studying Higgs-top interactions most important deliverable during upcoming LHC runs

direct impact on BEH mechanism, SM extensions, global fit

Boosted category important to improve our understanding of nature

However, final states highly complex!
Need combination of channels and different phase space regions to get optimal result

Backup

Detailed comparison between LO analysis sample and NLO samples from Openloops+Sherpa
[Moretti, Petrov, Pozzorini, MS '15]

(a)

(c)

(b)

(d)

