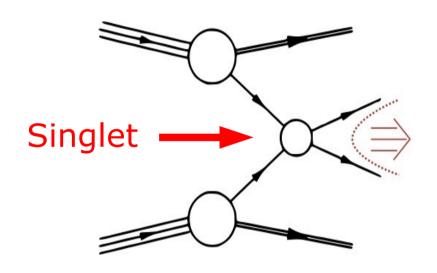
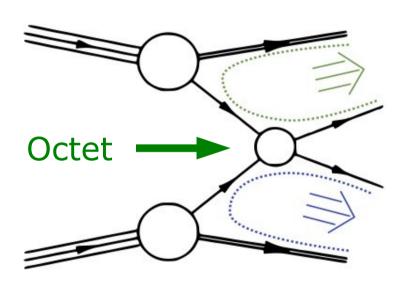


### Using colour flow in analyses

#### Reinhild Yvonne Peters

The University of Manchester



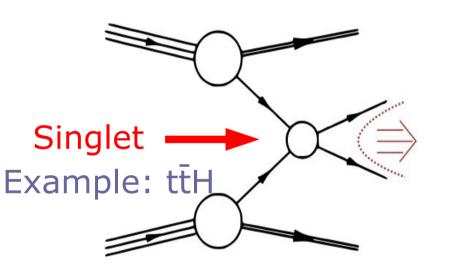



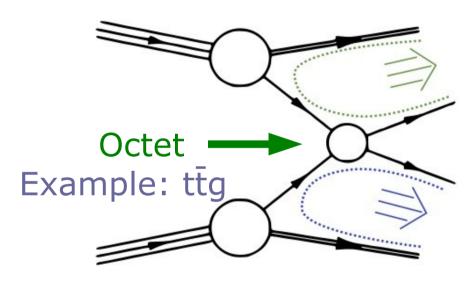



#### **Color Flow between Jets**

- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles







- Particles created during hadronization should be concentrated along angular region spanned by the color connected partons
  - Transverse jet profiles should not be round
  - Shape influenced by direction of color flow!



#### **Color Flow between Jets**

- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles



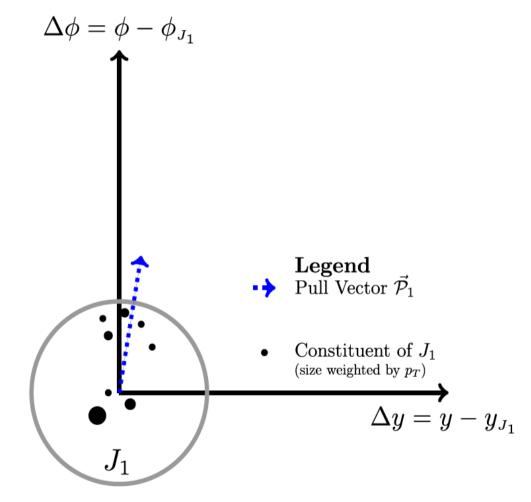


- Particles created during hadronization should be concentrated along angular region spanned by the color connected partons
  - Transverse jet profiles should not be round
  - Shape influenced by direction of color flow!



#### **Color Flow Observable**

Construct a local observable, constructed from particles within a


chosen jet cone: Jet pull

Pick a pair of jets in the event

Build vectorial sum of jet components:

$$\vec{p} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r}_i$$

- $\vec{r}_i$ : position of jet component i relative to center of jet
- E<sub>T</sub><sup>i</sup>: transverse energy of component i
- E<sub>T</sub> Let: transverse energy of jet

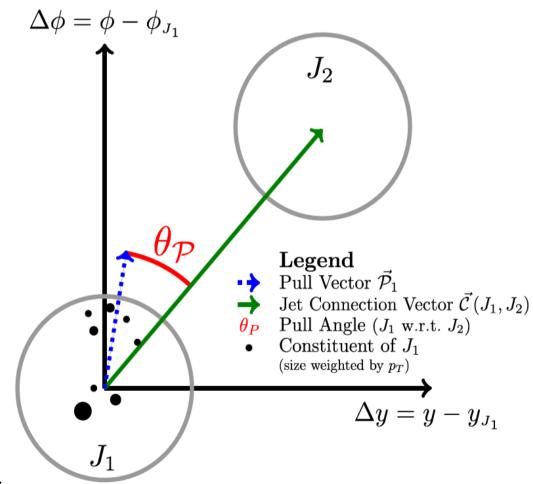


Gallicchio, Schwartz, PRL 105, 022001 (2010)



#### **Color Flow Observable**

Construct a local observable, constructed from particles within a


chosen jet cone: Jet pull

Pick a pair of jets in the event

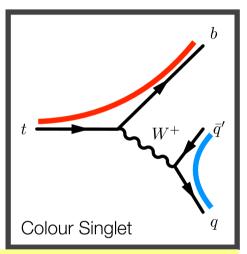
Build vectorial sum of jet components:

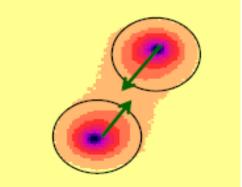
$$\vec{p} = \sum_{i} \frac{p_T^i |r_i|}{p_T^{jet}} \vec{r}_i$$

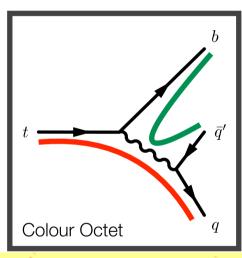
- $\vec{r}_i$ : position of jet component i relative to center of jet
- p<sub>T</sub><sup>i</sup>: transverse momentum of component i
- p<sub>T</sub> jet: transverse momentum of jet

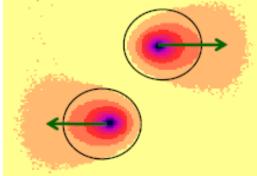


Gallicchio, Schwartz, PRL 105, 022001 (2010)





## **Colour Flow in Top**


- Top events as laboratory to test colour-flow tool
- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles


Gallichio, Schwartz, PRL 105, 022001 (2010)

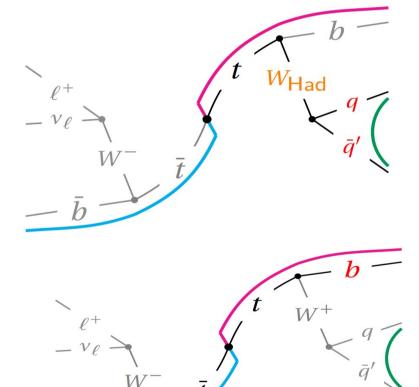
Jet pull: vectorial sum of components within each jet → jet pull angle: angle wrt. connection line of pair of jets











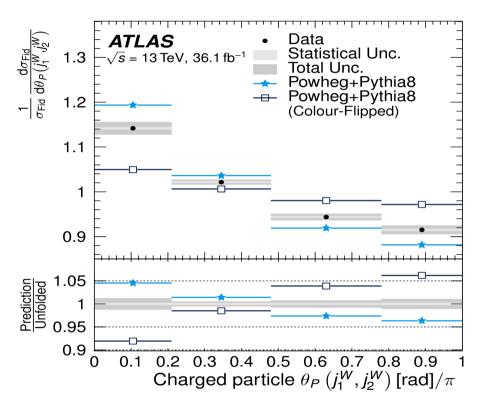

## **Colour Flow in Top**

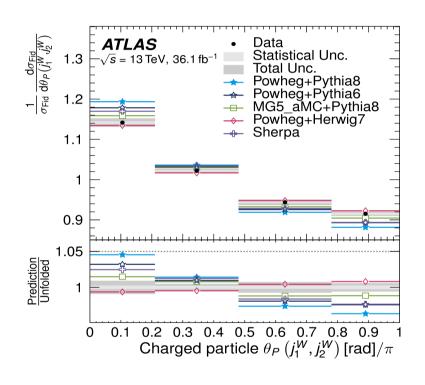
Latest ATLAS analysis:
 Consider 4 variables in semileptonic tt events (>1 b-tagged jet)

- Two non-b-tagged jets:
  - Relative jet pull angles
  - Jet pull magnitude

- Two b-tagged jets
  - Relative jet pull angle




Results corrected back to particle level


arXiv:1805.02935



## **Results for W daughters**

Correction to stable particle-level (iterative Bayesian unfolding)





- Colour-flipped model disfavoured by the data
- MC modeling has room for improvement

arXiv:1805.02935



#### **Discussion**

- What is required to improve modeling?
- Do we need all variables well modeled (or just from "singlet")?

**.** . . ?





#### **Colour Flow and ttH?**

- Jet pull: very subtle "tool"
  - Usage in ttH requires more studies
    - Some studies by J. Raine: use signal region with >3 b-jets

 Compare jet pull of b-jets from Higgs for signal versus all backgrounds

- Shape looks as expected
  - First step (imo): do full jet pull measurement in signal-enriched region

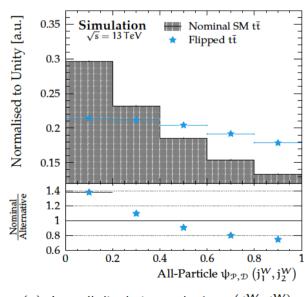




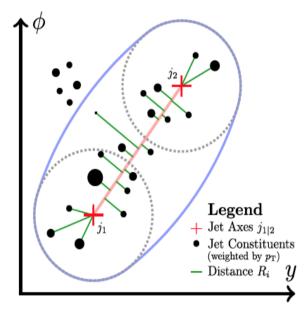
#### **Discussion**

- Any direct application for s/b improvement?
  - What about allhadronic? Potential for reduction of multijet background?
- Use for NP searches?
- **.**..?






## Colour flow and fat jets?


Idea: extra handle to get information of 2 sub-jets from W boson

for top-tagging?

- Jet pull: not ideal on its own
  - → overlapping sub-jets
  - → small cones
- Idea: combine with dipolarity
- Studies by F. Wilk
  - Boosted top-tagged large R jet

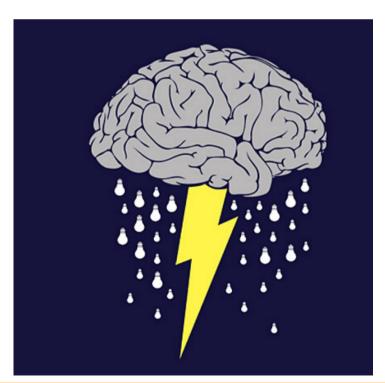


(a) Jet pull-dipolarity angle  $\psi_{\mathcal{P},\mathcal{D}}(j_1^W,j_2^W)$ 



Looks promising

→ more studies needed


30.05.2018 Yvonne Peters 12



#### **Discussion**

- How much can we gain for boosted top-tagging?
  - → further optimized variables?
  - → combination with DeepLearning?
- Other applications for jets/performance/reconstruction?

**...**?





## **Summary**

- Top events: use as laboratory to test colour-flow tools
- Idea: extract extra information beyond kinematics
  - ttH versus ttbb
  - Use for boosted techniques

- Analyses/Studies look promising
  - More studies needed



# BACKUP



## **Colour Flow: Systematics**

| $\Delta\theta_P\left(j_1^W, j_2^W\right) \left[\%\right]$ | $	heta_P\left(j_1^W,j_2^W ight)$ |           |             |            |
|-----------------------------------------------------------|----------------------------------|-----------|-------------|------------|
|                                                           | 0.0 - 0.21                       | 0.21-0.48 | 0.48 - 0.78 | 0.78 - 1.0 |
| Hadronisation                                             | 0.55                             | 0.13      | 0.24        | 0.14       |
| Generator                                                 | 0.32                             | 0.25      | 0.50        | 0.01       |
| b-tagging                                                 | 0.35                             | 0.13      | 0.20        | 0.31       |
| Background model                                          | 0.30                             | 0.16      | 0.16        | 0.27       |
| Colour reconnection                                       | 0.22                             | 0.16      | 0.16        | 0.18       |
| $_{ m JER}$                                               | 0.11                             | 0.12      | 0.23        | 0.02       |
| Pile-up                                                   | 0.19                             | 0.16      | 0.00        | 0.01       |
| Non-closure                                               | 0.14                             | 0.07      | 0.07        | 0.18       |
| $_{ m JES}$                                               | 0.12                             | 0.06      | 0.14        | 0.06       |
| ISR / FSR                                                 | 0.15                             | 0.02      | 0.12        | 0.02       |
| Tracks                                                    | 0.05                             | 0.04      | 0.03        | 0.06       |
| Other                                                     | 0.02                             | 0.01      | 0.01        | 0.02       |
| Syst.                                                     | 0.88                             | 0.44      | 0.71        | 0.51       |
| Stat.                                                     | 0.23                             | 0.19      | 0.19        | 0.25       |
| Total                                                     | 0.91                             | 0.48      | 0.73        | 0.57       |

30.05.2018 Yvonne Peters 16