

What to do with the two-point systematics?

Pietro Vischia¹

Benasque — Higgs Toppings 2018

• We model our problem using profile likelihoods (See Michele's talk)

$$egin{aligned} \mathcal{L}(m{n},m{lpha^0}|\mu,m{lpha}) &= \prod_{i\in \textit{bins}} \mathcal{P}(n_i|\mu \mathcal{S}_i(m{lpha}) + m{B}_i(m{lpha})) imes \prod_{j\in \textit{syst}} \mathcal{G}(lpha_j^0|lpha_j,\deltalpha_j) \ \lambda(\mu) &= rac{\mathcal{L}(\mu,\hat{m{lpha}}_{\mu})}{\mathcal{L}(\hat{\mu},m{lpha})} \end{aligned}$$

From sidebands to systematic uncertainties

- Subsidiary measurement of the background rate:
 - 8% systematic uncertainty on the MC rates
 - b: measured background rate by MC simulation
 - $\mathcal{G}(\tilde{b}|b, 0.08)$: our

$$\mathcal{L}_{\textit{full}}(s,b) = \mathcal{P}(N_{SR}|s+b) imes \mathcal{G}(ilde{b}|b,0.08)$$

Renormalization of the subsidiary measurement

$$\mathcal{L}(\boldsymbol{n}, \boldsymbol{\alpha}^{\boldsymbol{0}} | \boldsymbol{\mu}, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \boldsymbol{\mu} S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{j \in syst} \mathcal{G}(\alpha_j^0 | \alpha_j, \delta \alpha_j)$$

$$\downarrow$$

$$\mathcal{L}(\boldsymbol{n}, 0 | \boldsymbol{\mu}, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \boldsymbol{\mu} S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{i \in syst} \mathcal{G}(0 | \alpha_j, 1)$$

- Subsidiary measurement often labelled constraint term
- It is not a PDF in α : $\mathcal{G}(\alpha_j|0,1) \neq \mathcal{G}(0|\alpha_j,1)$
- Response function: B̃_i(1 + 0.1α) (a unit change in α –e.g. 5% JES– changes the acceptance by 10%)

Interpolation needed between template models - 1

- Can fail dramatically if the change in shape is comparable with or smaller than MC statistical fluctuations
- Sometimes we may want to avoid adding this new degree of freedom in the model
- Decoupling rate and shape effects is always possible, even when not neglecting the shape ones)

Graphics from W. Verkerke

- Cross section uncertainty: easy, assuming a gaussian for the constraint term $\mathcal{L}_{full}(s, b) = \mathcal{P}(N_{SR}|s+b) \times \mathcal{G}(\tilde{b}|b, 0.08)$
- Factorization scale: what distribution \mathcal{F} is meant to model the constraint??? $\mathcal{L}_{full}(s, b) = \mathcal{P}(N_{SR}|s + b(\alpha_{FS}) \times \mathcal{F}(\alpha_{FS}^{\sim}|\alpha_{FS})$
 - "Easy" case, there is a single parameter α_{FS} , clearly connected to the underlying physics model
- Hadronization/fragmentation model: run different generators, observing different results
 - Difficult! Not just one parameter, how do you model it in the likelihood?
 - 2-point systematics: you can evaluate two (three, four...) configurations, but underlying reason for difference unclear

Define an empirical response function

- Counting experiment: easy extend to other generators
- There must exist a value of α corresponding to SHERPA

- Shape experiment: ouch!
- SHERPA is in general not obtainable as an interpolation of PYTHIA and HERWIG

Graphics from W. Verkerke

- Attempting to quantify our knowledge of the models
- There is no single parameter, difficult to model the differences within a single underlying model
- Which of these is the "correct" one?

Solving the delta functions issue: discrete profiling

- UNIVERSIDAD DE OVIEDO
- Label each shape with an integer, and use the integer as nuisance parameter
- Can obtain the original log-likelihood as an envelope of different fixed discrete nuisance parameter values
- How do you define the various shapes?
 - Need many additional generators!
 - Interpolation unlikely to work (SHERPA is not midway between PYTHIA and POWHEG)

The issue of over-constraining

- How to interpret constraints?
- Not as measurements
- Correlations in the fit make interpretation complicated
- Avoid statements when profiling as a nuisance parameter

For discussion

- Are the shape variations big w.r.t. MC statistical uncertainties?
 - If so, decoupling rate and shape is probably fine
- How to model response and constraint?
 - Interpolation between generators works badly in the shape case
 - Discrete profiling likely affected by the same issue, but can help if there is a sufficient number of additional generators
- What to do in case of over-constraints of the parameter?
 - If you don't even cover the two generators you have, how can you cover others/Nature?

• Statistical problem looks to be well defined. The issue lies in the physics modelling!

 Is it feasible to go towards a global description of the physics model, with common parameters and easily interpretable transformations between generators?

Best solution: solve the modelling issue!

THANKS FOR THE ATTENTION!