

Event Categorization using Deep Neural Networks for the ttH (H→bb) Analysis at CMS

Marcel Rieger, Martin Erdmann, Yannik Rath

Higgs Toppings Workshop 2018

31 May 2018

2 Simultaneous fit & event categorization

Marcel Rieger - 31.5.18

• Fit expected yields (MC) to data simultaneously in all categories / bins

→ Signal extraction crucially depends on ability to measure backgrounds

- *ttH* situation:
 - Large backgrounds (e.g. *ttlf*)
 - Irreducible backgrounds (e.g. *ttbb*)
 - \rightarrow Create enriched categories for

signal and each background with DNNs

- See Matthias' talk
- b-tagging: ε_b ≅ 70% → 4 b-tags found with only 25% probability

3 DNN-based event categorization

Per event

5 Two-staged training

- Events of same class can have different topologies:
 - Jets out of acceptance
 - Merged jets
 - ...
 - \rightarrow Just training on bare event classes will confuse the network
- Idea:
 - 1. Pre-training on event content from generator % selection (has_H, has_{bH}, has_{blep}, ...
 - 2. Extend network and train on actual classes

Pre-training

Extended training

Marcel Rieger - 31.5.18

~20% improvement

concat

• Network architecture (≥ 6 jets):

Network 1	Network 2	Activation	L2	Dropout (keep prob.)	Learning rate (ADAM)
100,100	100,100	ELU	10-5	0.7	10-4

- Training time ~20 min on 980 Ti
- Implementation using plain TensorFlow

Better network architectures? Maybe physics-motivated?

Classification accuracies

8 Overtraining check and data handling

- Overtraining check:
 - Common trade-off:
 - \rightarrow Network size **vs.** amount of data
 - Artificially force overtraining by reducing statistics

 \rightarrow Results stable down to ~²/₃ of events

- Data handling:
 - ttH(bb): 50% for analysis, 30% training,
 20% validation (for optimization)
 → Main constraint for network design
 - Alternative: n-fold cross validation

Marcel Rieger - 31.5.18

- Check of agreement between data and MC necessary, but 1D not sufficient
 - \rightarrow MVA techniques exploit deep correlations
 - \rightarrow Need to prove agreement of correlations in addition to 1D shapes
- Compare 2D correlation coefficients
 - \rightarrow Mix low- and high-level variables to cover even deeper correlations
- Recipe:
 - 1. Create TH2F's for all pairs of input variables
 - 2. Determine goodness of fit p-value for data MC agreement (frequentist toys)
 - 3. Remove variables that yield a bad correlation agreement with other variables, criterion:

p-value < 0.3 for \geq 50% of variables

Backup

11 Search for ttH production

Marcel Rieger - 31.5.18

- $ttH, H \rightarrow bb$
 - Direct probe of top-Higgs coupling
 - Very rare, $\sigma_{ttH} = 0.51 \text{ pb}$
 - $H \rightarrow bb$: largest BR (0.58)
- Backgrounds from *tt*+jets,
 - Esp. *ttbb* irreducible
 - Relatively large cross section uncertainties
 (≥ 35%)
- Complex final state
 - High combinatorics due to many jets

No "direct" measurement via (e.g.) mass peak→ Simultaneous fit to MVA distribution(s)

- Used in CMS ttH(bb) leptonic analysis (CMS-HIG-PAS-17-026)
 - Results shown at Moriond 2018
 - Two methods:
 - ▷ DNN (with MEM as input variable)
 - \triangleright Combination of BDT + MEM

Channel & Analysis	$\mu \pm \text{tot} (\pm \text{stat} \pm \text{syst})$
single lepton 2D BDT+MEM	$0.35_{-0.62}^{+0.62} \left(\begin{smallmatrix} +0.27 & +0.55 \\ -0.27 & -0.55 \end{smallmatrix}\right)$
single lepton DNN	$0.84_{-0.50}^{+0.52} \begin{pmatrix} +0.27 & +0.44 \\ -0.26 & -0.43 \end{pmatrix}$
primary result	$0.72_{-0.45}^{+0.45} \begin{pmatrix} +0.24 & +0.38 \\ -0.24 & -0.38 \end{pmatrix}$

(excerpt)

From Moriond 2018

"primary result": single lepton DNN & dilepton BDT+MEM

13 Deep Neural Networks (1)

- Map input variables x to outputs y:
 - D is the model which has to be defined
 - W and b are parameters, or weights, to be learned
 - n is the output dimension, BDT: 1, DNN: \geq 1
- One layer network with logistic function f:

 $\vec{x} \to \vec{y} = \vec{D}(\vec{x}; \boldsymbol{W}, \vec{b}) \in \mathbb{R}^n$

14 Deep Neural Networks (2)

- Plug y into cost function, compares to expected outputs y_{exp} (e.g. χ^2)
- Minimize costs using gradient descent algorithms

Direction of minimization \triangleq current slope

Give feedback to weights

- → But: computational too expensive to evaluate all derivations of cost function w.r.t. all weights (O(10⁵))
- \rightarrow Back-propagation: change of weights \propto costs
- Combine layers to build deep networks:
 - 2 layers: $\vec{y} = f(\boldsymbol{W_2} \cdot \vec{y_1} + \vec{b_2})$
 - n layers: $\vec{y} = (f_1 \circ f_2 \circ \ldots \circ f_n)(\boldsymbol{W} \cdot \vec{x} + \vec{b})$
- Many matrix and vector operations
 - \rightarrow GPUs are mandatory!

Marcel Rieger - 31.5.188

15 Deep Neural Networks (3)

- Network architecture
- Layer activations
- Optimization algorithm
- Overtraining suppression:
 - L2 normalization
 - Random unit dropout
- Event weights
- Feature scaling
- ...

Challenging hyper-parameter space

- → Many hyper-parameter combinations but only a few appear to work
- Challenge: "No separation in output distribution. Reason?"
 - BDT: Unfortunate variable selection
 - DNN: Unfortunate variable selection or

network architecture not optimal (more likely)

- Methods to interpret NN predictions, inspired by image recognition
- Define sensitivity via gradient of output w.r.t. inputs
 → "If input is varied, how does the output change?"
 - Determine derivative via tf.gradient()
- Other approaches possible
 (e.g layer-wise relevance propagation)

Image

18 Input variable sensitivity

Apply per event (here: ttH)

- Method to open the network "black box"
- Possible to check impact of 2D correlations with 2nd derivatives
- Sensitivity can be used for variable ranking (e.g. "rank = mean(abs(sensitivity))")

- Well established method in previous Run II analyses (HIG-16-038, HIG-16-004)
- Jet b-tag categorization: (≥4j,3t), (≥4j,≥4t)
 - (≥4j,3t): use BDT output as discriminant
 - (\geq 4j, \geq 4t): combine strengths of BDT and MEM
 - ▷ BDTs trained to discriminate ttH(bb) vs. inclusive tt+jets
 - Matrix element discriminants constructed to separate ttH(bb) and tt+bb
 - \rightarrow Split events at median of signal BDT output
 - → In each *category*, use MEM as discriminant
- 3 categories in total

20 Overall analysis strategy

21 Overall analysis strategy

Marcel Rieger - 31.5.18

