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Problem statement
- In a nutshell: given observed data y ∈ {jets, 

leptons, ...}, exclude alternate hypotheses  

- Search: signal (tt+H, H1) and bkg (tt+jets, H0)

4 Matrix Element Method

In the search for tt̄H(! bb̄), the irreducible tt̄+bb̄ background presents an experimental challenge,
as no single observable clearly distinguishes between the signal and background processes. There-
fore, the information in multiple observables needs to be combined using multivariate analysis
techniques (MVA), where the joint distribution of the observables is used to construct a classifier
between the signal and background process hypotheses.

In the following chapter, we describe the implementation of a multivariate technique that is
based on the direct computation of theory-motivated ab initio likelihoods for the observations
using the underlying matrix element for the hard scattering process. The matrix element method
(MEM) thus allows to connect the observable quantities at the detector level, such as the momenta
of jets and charged leptons, to the dynamics of the scattering process. We show that the MEM
provides a suitable framework for interpreting data from multi-parton final states and can be used
to construct a discriminator between irreducible processes that is both theoretically motivated and
practical for analysis.

We motivate the MEM approach from a statistical point of view and describe the implemen-
tation of the MEM likelihood. Furthermore, we discuss in detail the improvements made to the
MEM as applied to the tt̄H(! bb̄) analysis in Run 2, where we have extended the method to
incorporate effects from mis-reconstructed jets and additional QCD radiation. This considerably
extended the phase space which can be analysed using the MEM. Finally, we study the expected
performance of the MEM in simulation and propose an analysis strategy for the tt̄H(! bb̄) search
based on the method.

4.1 Hypothesis testing

We can formulate the problem of deciding whether an event arose from a signal or background pro-
cess as performing a hypothesis test. We distinguish between the background hypothesis (H0) and
the signal hypothesis (H1) on an event-by-event basis based on the event-level observables y, the
momenta of the final state particles. We classify an event as signal by rejecting the hypothesis H0

in favour of H1. In the framework of statistical hypothesis testing, we define the test statistic �(y)
as a scalar function of the observables, such that the sampling distributions under the hypotheses
can be estimated using MC simulation. Based on the observed value of �(y) for an event, we
decide if it should be interpreted as signal or background. In practice, we use the continuous value
of the test statistic in a template fit, as described further in section 5.3.9. The choice of the test
statistic is determined by the desired size of the test ↵, i.e. the probability of falsely rejecting H0

if it is true (Type I error), and the power of the test 1 � �, where � is the probability of accepting
the null hypothesis in case it is false (Type II error).

In the case of two simple hypotheses that do not depend on additional parameters, the Neyman-
Pearson lemma [112] states that the likelihood ratio

�(y) =
L(y|H1)

L(y|H0)
(4.1)

is the most powerful test statistic, meaning that the probability of Type II errors is minimised.
Therefore, the task of computing the likelihood L(y|Hi) of an observation characterised by y under
a given hypothesis is central to a simple hypothesis test. Naively, this could be achieved using MC
simulation to estimate the multidimensional probability density f(y|Hi) and using it as the likeli-
hood, however, this quickly becomes intractable as the dimensionality of y increases. Fortunately,
the underlying theory of particle physics provides a way to compute probability densities in the
form of differential cross sections for processes involving scattering and interactions. In the next
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Neyman-Pearson lemma: given observable event 
y and two hypotheses, the ratio

is the most powerful test statistic, with L(y | H) being the 
likelihood of data given observation
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Methods

(I) Choose clever observable d=f(y), estimate 
L(d(y) | H) from simulation events: templates 

(II) Compute approximate L(y | H) directly 
given theory ideas

We cannot directly compute the likelihood L(y | H) given 
an observed event y!

intractable integral: L(y | H) ~ ∫ L(y | z) p(z | H) dz
parton level

theory amplitude

parton to detector 
transfer

detector level
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We have sets of MC simulation events with different H: 
{y1,0} ~ L(y | H1,0)
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Clever observables
- Most analyses: d(y) is a parametric function (BDT, 

DNN), numerically optimized to discriminate 
signal from background based on MC samples

- Amount of MC statistics needed? Half a billion full-
MC per experimental conditions is routine... 

- Which features exploited? Study shaping of inv. 
masses, interpretability... 

- What if MC does not accurately represent data? 
Cover with systematic uncertainties, but any bias?
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"Modelling studies can be seen which tend to overestimate certainty, 
pretending to produce crisp numbers precise to the third decimal digits even 
in situation of pervasive uncertainty or ignorance."
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scattering amplitude
transfer function

recoil
PDFs

jet-to-parton 
associations

hypothesis

4.3 Implementation

• the presence of non-zero final transverse momentum caused by large-angle initial state radi-
ation, spoiling the momentum balance in eq. (4.4).

To address the first issue, we need to use parton density functions g(x1,2) to weight the differ-
ential cross-section, integrating over the momentum fractions x1,2 = Eq

1,2
/Ebeam. In order to take

into account detector effects, we integrate over unmeasured or poorly measured quantities using
a transfer function W (y,p). The transfer function relates final state parton-level quantities p to
measurable quantities on the detector level y and encodes our knowledge about detector resolution
and reconstruction efficiencies.

Jet-to-parton matching is addressed by summing over the Na possible combinations of jet-to-
parton matching, which depends on assumptions about the process and the number of observed
final state particles and is encoded in the exact form of the transfer function W (y,p), further
described in section 4.3.1.

The modelling of the non-zero transverse recoil ⇢T = �
Pn

i=1 pi,T is treated empirically using
a transfer function R(⇢̃T ,⇢T ) determined on simulation that relates the parton-level transverse
momentum of the system ⇢T to the observed recoil ⇢̃T .

The evaluation of the scattering amplitude |M✓(p)|2 requires full knowledge of the initial and
final state momenta p, as well as the parameters of the model, summarised in ✓. In particular,
the parameters of the model consist of the hypothesis H 2 {tt̄H, tt̄ + bb̄} about the underlying
process and the assumptions about which of the partons formed reconstructed jets C, such that ✓ =
(. . . , H, C). In the case of tt̄H with the top quark pair decaying semileptonically (SL) as tt̄H !
(`�⌫̄`b) (qq0b̄) (bb̄), we may consider the fully reconstructed category where all six of the final
state partons are reconstructed as jets, denoted as 2W 2H2t, the case where one of the quarks
from the hadronic decay W ! qq0 is out of acceptance, denoted as 1W 2H2t and so forth, such
that CSL 2 {2W 2H2t, 1W 2H2t, . . . }. The number of unknown quantities to be integrated over
depends on the reconstruction category C, as described in detail in the next section. Thus, the
per-event probability density takes the form

P (y,✓) =
NaX

k=1

Z
dx1dx2

2x1x2s

Z nY

i=1

d3pi
(2⇡)32Ei

(4.5)

⇥ �4(q1 + q2 �
nX

i=1

pi) (4.6)

⇥ g(x1)g(x2) (4.7)
⇥ R(⇢̃T ,⇢T ) (4.8)
⇥ |M✓(q1, q2, p1, . . . , pn)|2 (4.9)
⇥ W (y,p). (4.10)

After having been first proposed for reconstructing events with missing momentum [114], the
MEM has been used in Tevatron for Higgs boson searches [115, 116], in a precise measurement
of the top quark mass [117] and in the analysis that saw evidence for single top quarks [118] at
D;. After first phenomenological studies showed that MEM could be used effectively for tt̄H in a
multi-parton final state [119], it has been used in searches for tt̄H(! bb̄) by the CMS and ATLAS
experiments at the LHC [120, 121]. The MEM approach is closely related to the matrix element
likelihood approach (MELA) [122] that has been extensively used in H ! ZZ ! 4` searches
and JP measurements, however, in MELA, unreconstructed particles and transfer functions are
not considered and the matrix elements generally have simple analytical forms. In the following
sections, we discuss in detail the implementation and improvements that were made to the MEM
in the search for tt̄H(! bb̄) during Run 2.

4.3 Implementation
In the case of the semileptonic or dileptonic tt̄H final state, the observables y consist of the
energies (or equivalently transverse momenta) and the directions of the jets, the momenta of the
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observed event

parton level 
momenta

Integrate numerically on the LHC computing grid.
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Transfer functions

• Transition from parton-level event p (a few 4-momenta) to detector-level event 
y (~50-100 high-level quantities): showering, hadronization, detector effects, 
acceptance 

• Assumptions, e.g. Gaussian quark-to-jet smearing 

• Determined from MC simulation by max likelihood fitting 

• Need to hand-code event-to-event transfer function, combination of possible 
jet-to-quark assignments 

• In practice, integration becomes very expensive
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ideal

real

unresolved 
events

Reconstruction effects

In ttH(bb), MEM performance is far from ideal due to 
detector effects & missed quarks!

loss due to 
acceptance
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4j, 5j events



Joosep Pata31.05.2018

Questions for MEM

- Which hypothesis? ttH(bb) SL ≥6j, ≥4b fully matched ~30% of times, 30% 
miss quark from W 

- need to "degrade gracefully", but not implement MC by hand 

- Which assumptions? Need to reduce integration space by assuming e.g. b-
tagging, top tagging 

- More complex analyses? Multi-hypothesis, multi-parameter EFT fits 

- NLO: given computational cost, how to make use in experiment besides 
samples?
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L(y | H) ~ ∫ L(y | z) p(z | H) dz
Use ML to approximate hadronization, showering, acceptance in L(y | z). 

Bonus: differentiable wrt. exp systematics, no reimplementation of MC.

MEM + ML combination

If possible to generate samples cheaply, can integrate scattering ME efficiently.

Or, replace per-event integral with regression over full MC: 
[Brehmer, Cranmer, Louppe, Pavez 2018]
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observed (y) parton level: p(z | y)

∫p(z | y) p(z | H) dz

https://arxiv.org/abs/1805.00020
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Bonus slides
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MEM hypotheses
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MEM permutations
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CPU cost
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