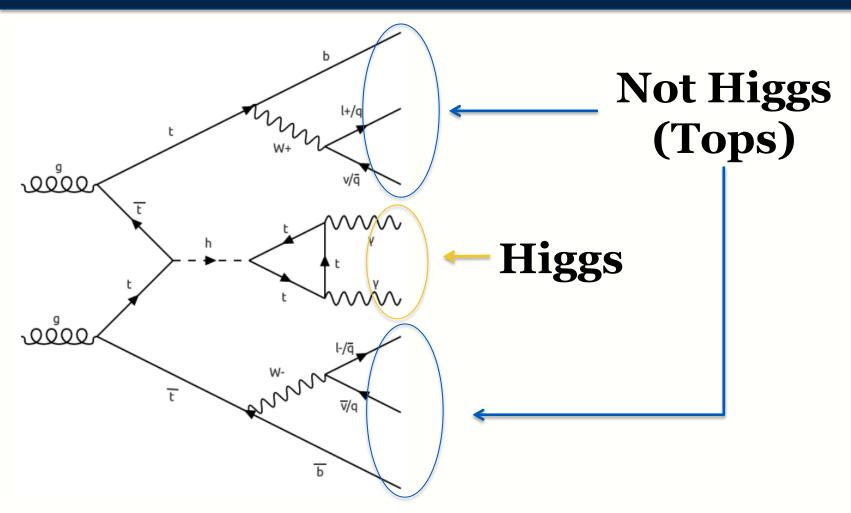
# MVA Techniques in ttH(γγ)

Rachel Hyneman<sup>1</sup> Tom Schwarz<sup>1</sup> Haichen Wang<sup>2</sup>

<sup>1</sup>University of Michigan, <sup>2</sup>LBNL

\*Some of this work supported by NSF




## **Analysis Summary**

- Reminder: this is a diphoton analysis with jets,
  not a top analysis with photons
  - Can reconstruct Higgs well from the two photons
  - Information on tt system extracted from jets, MET, and leptons
  - Base our background estimation on smoothly falling invariant diphoton mass spectrum
- BDT for event selection
- No explicit top reconstruction yet



## What is Special About ttH(yy)?



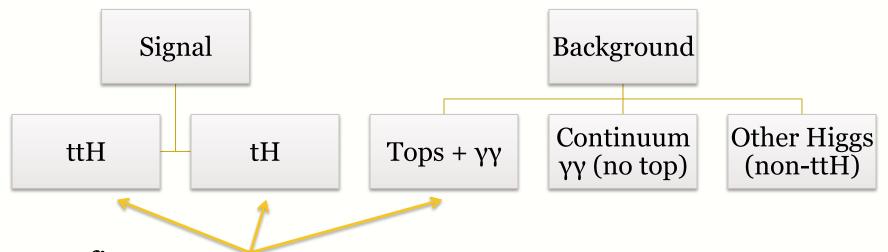
We have no object ambiguity.



## Possible BDT Approach

- Can use separate BDT for "hadronic" (no reconstructed leptons) and "leptonic" (1 or more reconstructed leptons) event types
- We could gain significance by training on both top-related (jet, MET, lepton) and higgsrelated (photon) information as inputs into the same BDT
  - Train on MC ttH signal and data CR events (failing photon ID/Isolation cuts)
- <u>Use expected significance to define BDT</u> <u>category boundaries</u>



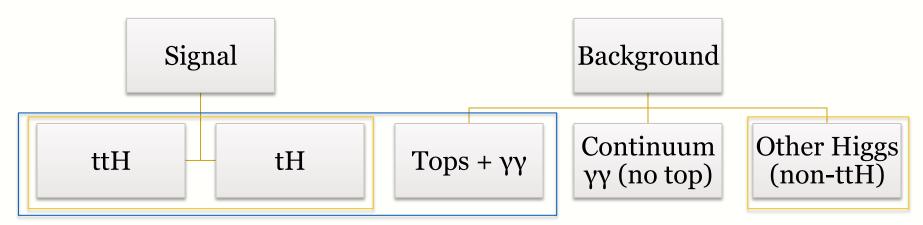

#### How Can We Do Better?

- We need a good control region to use for BDT training
  - Top-related and photon kinematics uncorrelated
  - Can veto photon variables (ID/Isolation) to get
    CR with very similar top-related kinematics
- Secondary concern: does training on photon variables bias the diphoton invariant mass?
  - Important, since we fit this to define our background in signal region
  - Note: can cross-check this easily



# **Possibility: Top Reconstruction**

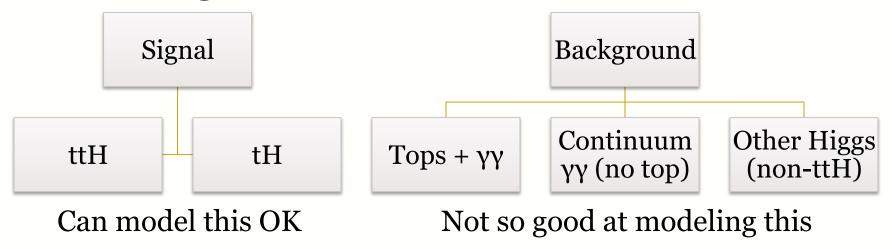
We can borrow insights from our other top+Higgs friends




- Benefits:
  - Already done in many other analyses, can benefit from this work
  - Could be used to better understand tt kinematics
- Challenges:
  - Photon-based analyses don't save as much detailed jet info which could be used for top reconstruction



## Possibility: 2D BDT Approach


 Idea: train one BDT on Higgs kinematics, and another on top kinematics



- - Don't use photon variables here
- "Higgs BDT"→
  - Can use Higgs signal and diphoton continuum MC
    - Note: γγ MC is not always the best, is this a problem?

# **Beyond Classification**

 Another problem: we have a very poor understanding of our backgrounds



- Most MVA techniques require decent training statistics and samples
  - Our MC is maybe not the best here... how can we get around any biases here?