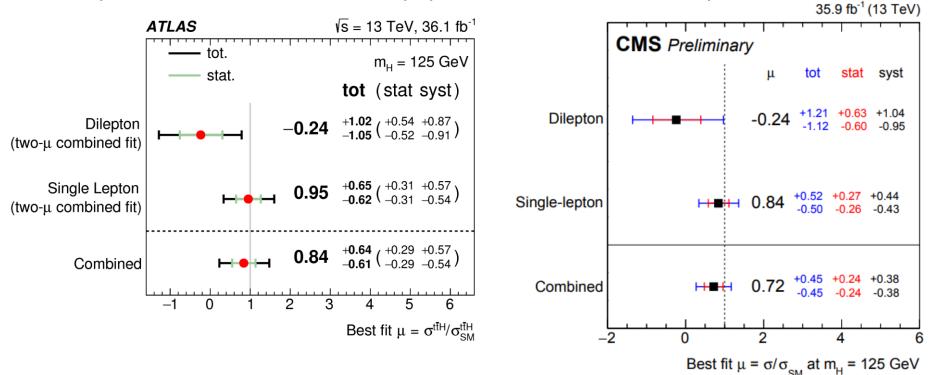
Thoughts on documenting profile likelihood fits in publications

Georges Aad CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

> Higgs Toppings Workshop Probing Top-Higgs Interactions at the LHC May 2018, Benasque, Spain

Subjects for Discussion

- 1. How/what to publish concerning the signal
- 2. Material needed for a minimal understanding of the fit model and the results
- 3. How to interpret results concerning the backgrounds

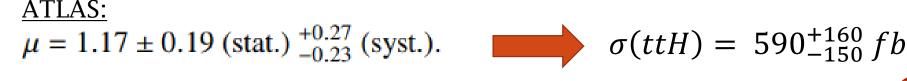


Lets Start by Being Consistent

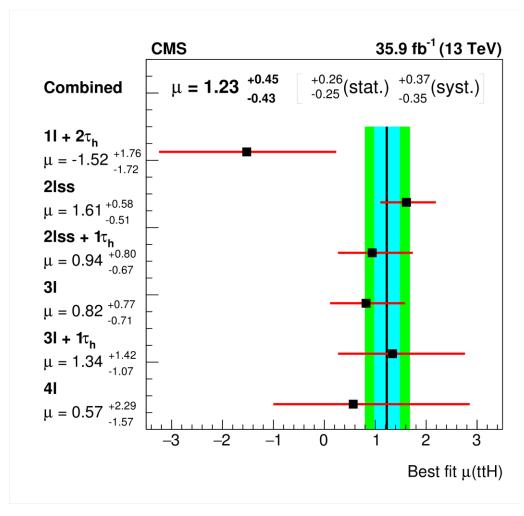
<u>ATLAS</u>

Individual channel mu from combined fit Separate fit results also in the paper <u>CMS</u>

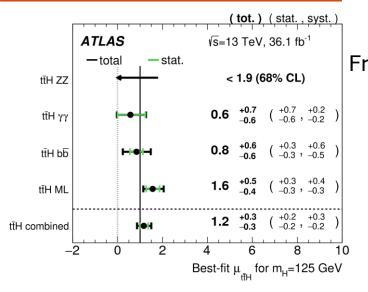
Individual channel mu from separate fits



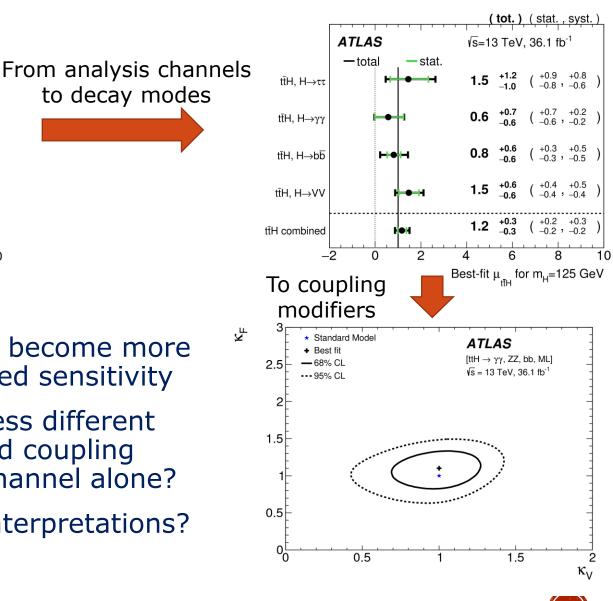
- Interesting to have both in the publications
 - Especially when combining many channels (helps assessing compatibility)
- We can argue what to use for the main results


mu or cross-section

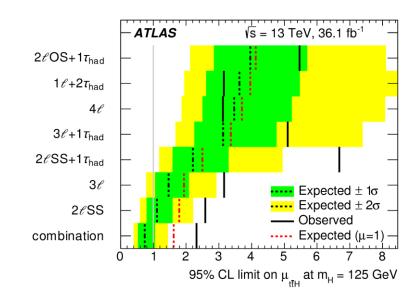
- Publishing mu or signal cross-section is (almost) equivalent
 - Assuming proper systematics are added on the signal acceptance
 - Assuming MC is good enough to extrapolate to the full phase space (like any other measurement anyway)
 - These assumptions become more important as the signal uncertainties become dominant
- Mu allows to directly see possible deviations from the SM
- Cross section does not depend on reference ttH MC
 - Theory cross-section uncertainties removed from measured cross-section
 - Separate values for different center-of-mass energy


Separate mu for Different Final States

- Currently the standard way of presenting results
- Very important to continue to provide this information
- Important to quantify the compatibility between the channels
- Can hint to new physics that is totally independent of ttH
 - Especially for channels with no reconstructed Higgs



Additional Interpretations of the Results



- Physics interpretations become more important with increased sensitivity
- How useful is it to assess different Higgs decay modes and coupling modifiers for the ttH channel alone?
- Is there other useful interpretations?

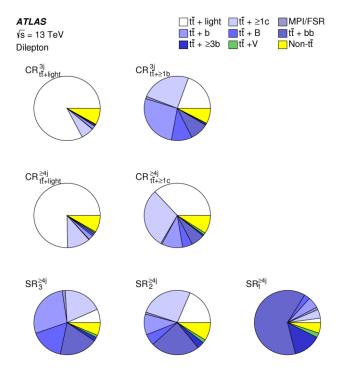
We are Still Publishing Limits

- Publishing a limit on a signal that is observed is weird
- Is this really useful for anything after the discovery?

Subjects for Discussion

- 1. How/what to publish concerning the signal
- 2. Material needed for a minimal understanding of the fit model and the results
- 3. How to interpret results concerning the backgrounds

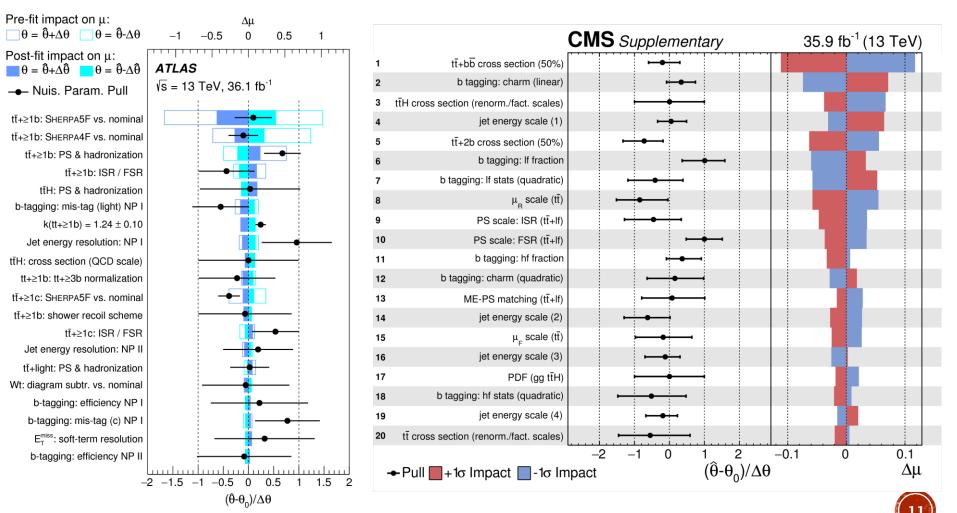
Critics/Feedback are Mandatory


- Very complex analysis for many ttH channels
 - Combination of multiple final states
 - Complex strategies with various MVA techniques
 - Large backgrounds with important systematics
 - Small and very sensitive signal
 - Huge profile likelihood fit: hundreds of bins and nuisance parameters
 - Highly non-trivial to understand and compare the results
- Mandatory information for a minimal understanding
 - Background composition (pre/post fit)
 - Size and impact of important systematics
 - Validation procedures for the modeling and robustness of the fit
 ...?
- This information can be communicated in various ways
- Simplest and efficient way: sharing the workspace
 - Why not?
 - We are going to do it at some point for the combination

Background Composition pre/post fits

- Standard: most analysis provide the yields in various regions pre- and post-fit
- Mandatory to understand the main background components
- Mandatory to see the impact of the fit on individual backgrounds

			pre-fit (post	-fit) yields		
Process	t ī H node	tī+bb node	tī+2b node	tī+b node	tī+cī node	tī+lf node
t ī +lf	1982 (1381)	1280 (897)	852 (595)	916 (661)	243 (172)	50 (36)
tī+cc	1150 (1415)	998 (1230)	636 (805)	444 (567)	115 (147)	16 (19)
tī+b	549 (705)	575 (746)	314 (409)	253 (338)	28 (35)	4 (5)
tī+2b	306 (233)	282 (215)	372 (293)	78 (62)	10 (8)	1 (0.8)
tī+bb	834 (769)	1156 (1082)	299 (266)	145 (129)	17 (15)	3 (2)
Single t	110 (116)	146 (145)	92 (82)	53 (53)	4 (4)	3 (3)
V+jets	38 (37)	78 (76)	34 (30)	10 (9)	7 (6)	0.6 (0.6)
t ī +V	80 (75)	58 (54)	31 (28)	11 (11)	4 (4)	0.4 (0.4)
Diboson	0.9 (0.9)	0.5 (0.5)	0.4 (0.4)	0.4 (0.4)	— (—)	— (—)
Total bkg.	5049 (4733)	4575 (4447)	2629 (2509)	1911 (1831)	429 (392)	77 (67)
\pm tot unc.	$\pm 1216 \ (\pm 186)$	± 1156 (± 142)	± 603 (± 80)	± 422 (± 65)	$\pm 107~(\pm 14)$	±18 (±3)
tīH	142 (108)	53 (40)	24 (18)	10 (7)	2.1 (1.5)	0.30 (0.23)
\pm tot unc.	±19 (±15)	±8 (±6)	±3 (±2)	±1 (±1)	±0.2 (±0.2)	±0.03 (±0.03)
Data	4822	4400	2484	1852	422	76

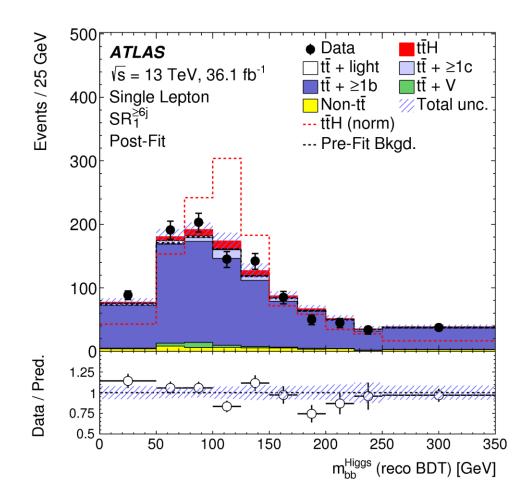

Pre/post fit ratio does not necessary represents cross sections changes

Highly affected by acceptance

Size and Impact of Important Systematics

- Is there a need to motivate this one?
- Should we provide the norm parameters for important backgrounds in addition?

Correlations


Although hard to interpret, large correlations can carry very important information about the fit

	ATLA	45								ſs	= 13	TeV,	36.1	fb⁻¹
ttH signal strength	100.0	-26.3	-0.7	-11.0	2.8	1.6	-4.9	-2.0	-1.9	-1.3	1.7	4.0	-22.4	-1.9
ttH cross section (scale variations)	-26.3	100.0	0.0	0.0	-0.0	-0.0	0.0	-0.2	0.1	-0.1	-0.0	-0.0	0.0	0.0
tZ cross section	-0.7	0.0	100.0	-2.9	0.4	-0.1	-0.4	0.0	0.2	0.1	4.7	-21.1	1.1	-0.3
3ℓ Non-prompt closure	-11.0	0.0	-2.9	100.0	-24.5	-0.2	0.9	0.4	0.2	0.2	3.7	-9.4	4.7	1.3
Non-prompt stat. in $3\ell t \overline{t} CR$	2.8	-0.0	0.4	-24.5	100.0	0.0	-0.3	-0.1	-0.1	-0.1	0.2	4.2	-0.8	0.1
Fake τ_{had} stat. in 1st bin of 1ℓ + $2\tau_{had}$	1.6	-0.0	-0.1	-0.2	0.0	100.0	-58.9	-0.1	-0.0	-0.0	0.0	0.1	-0.4	-0.1
Fake τ_{had} modeling (1 ℓ + 2 τ_{had})	-4.9	0.0	-0.4	0.9	-0.3	-58.9	100.0	0.5	0.1	0.3	-1.7	-2.4	1.2	-0.5
Fake τ_{had} low $p_T (2\ell OS + 1\tau_{had})$	-2.0	-0.2	0.0	0.4	-0.1	-0.1	0.5	100.0	30.4	13.9	-0.3	-0.4	0.1	-0.1
Fake τ_{had} comp. tt (2 ℓ OS+1 τ_{had})	-1.9	0.1	0.2	0.2	-0.1	-0.0	0.1	30.4	100.0	-63.4	-0.1	0.0	0.1	0.3
Fake ग _{had} comp. Z (2ℓOS+1 ī _{had})	-1.3	-0.1	0.1	0.2	-0.1	-0.0	0.3	13.9	-63.4	100.0	-0.2	-0.4	0.3	0.1
VV modeling (shower tune)	1.7	-0.0	4.7	3.7	0.2	0.0	-1.7	-0.3	-0.1	-0.2	100.0	61.4	1.2	-3.3
VV cross section	4.0	-0.0	-21.1	-9.4	4.2	0.1	-2.4	-0.4	0.0	-0.4	61.4	100.0	-1.3	24.9
Jet energy scale (pileup subtraction)	-22.4	0.0	1.1	4.7	-0.8	-0.4	1.2	0.1	0.1	0.3	1.2	-1.3	100.0	-6.1
Jet energy resolution	-1.9	0.0	-0.3	1.3	0.1	-0.1	-0.5	-0.1	0.3	0.1	-3.3	24.9	-6.1	100.0
	ttH signal strength	ttH cross section (scale variations)	tZ cross section	3ℓ Non-prompt closure	Non-prompt stat. in 3 <i>ℓ</i> t ī CR	Fake r_{had} stat. in 1st bin of 1 ℓ +2 r_{had}	Fake τ_{had} modeling (1 ℓ + $2\tau_{had}$)	Fake τ _{had} low <i>p</i> _T (2ℓOS+1τ _{had})	Fake $ au_{had}$ comp. tt (2 ℓ OS +1 $ au_{had}$)	Fake τ _{had} comp. Z (2ℓOS+1τ _{had})	VV modeling (shower tune)	VV cross section	Jet energy scale (pileup subtraction)	Jet energy resolution

Post-fit Plots of Key variables

- Important to check input variables to the MVA post-fit
 - Using the final fit (with MVA)
- Also some key variables are always nice to see
 - E.g. m(b,b) in ttH(bb)
- Very long list of plots
 - Regions x Variables
- An unbiased subset as additional material would be very nice to have

Documenting Analysis Procedure

- **Events** Selection Single lepton Dilepton Categorisation 1 ≥4j, ≥4b 4j, ≥3b 5j, ≥3b ≥6j, ≥3b ≥4j, 3b MVA discriminants DNN (MEM is input) MEM Categorise by most probable process Split at BDT Categorisation 2 tīH. tī+bb/b/2b/cc/lf median Measurement 1 + 2 categories 3 x 6 categories Simultaneous fit
- Complex strategy with many layers
- Not always clear what drives the sensitivity
 - Even for the analyzers themselves
- Important to give hints on what actually matters
- Do we need to go further and quantify the impact of various components
 - Not always feasible
 - Not always useful
 - How to document this in less than 100 pages?
 - Good luck for the editors !!

Nice plot CMS

Documenting Syst Model

Complex systematics mode

- Hard to understand the exa
- Not always trivial to make t correspondence with rankin
- How to explain this clearer 100 pages?

Minimal requirement

Systematic source

Clarify and explain what ma

Description

	Source	Type	Nemarks				
	Integrated luminosity	rate	Signal and all backgrounds				
els	Lepton identification/isolation Trigger efficiency	shape	Signal and all backgrounds Signal and all backgrounds				
_	Pileup	shape shape	Signal and all backgrounds				
ict procedure	Jet energy scale	shape	Signal and all backgrounds				
	Jet energy resolution	shape	Signal and all backgrounds				
	b tag hf fraction	shape	Signal and all backgrounds				
the	b tag hf stats (linear)	shape	Signal and all backgrounds				
	b tag hf stats (quadratic)	shape	Signal and all backgrounds				
ig plots	b tag If fraction	shape	Signal and all backgrounds				
ig plots	b tag If stats (linear)	shape	Signal and all backgrounds				
	b tag lf stats (quadratic) b tag charm (linear)	shape	Signal and all backgrounds Signal and all backgrounds				
	b tag charm (quadratic)	shape shape	Signal and all backgrounds				
in less than	Renorm./fact. scales (tfH)	rate	Scale uncertainty of NLO tH prediction				
	Renorm./fact. scales (tf)	rate	Scale uncertainty of NLO II prediction				
	Renorm./fact. scales (tt+hf)	rate	Additional 50% rate uncertainty of tt+hf predictions				
	Renorm./fact. scales (t)	rate	Scale uncertainty of NLO single t prediction				
	Renorm./fact. scales (V)	rate	Scale uncertainty of NNLO W and Z prediction				
	Renorm./fact. scales (VV)	rate	Scale uncertainty of NLO diboson prediction				
	PDF (gg)	rate	PDF uncertainty for gg initiated processes except tH				
	PDF (gg tiH)	rate	PDF uncertainty for tH				
atters	PDF (qq)	rate	PDF uncertainty of qq initiated processes				
			(tł+W,W,Z)				
	PDF (qg)	rate	PDF uncertainty of qg initiated processes (single t)				
	$t\bar{t}$ categories	ipe	Renormalisation scale uncertainty of the ff ME gen-				
	0	_	erator, independent for additional jet flavours				
	All, correlated	ipe	Factorisation scale uncertainty of the tt ME genera- tor, independent for additional jet flavours				
ation	$t\bar{t} + \geq 1c$	de	Initial state radiation uncertainty of the PS (for th				
ation	$t\bar{t} + \geq 1b$		events), jet multiplicity dependent rate uncertainty,				
vent generator	All, uncorrelated	h	independent for additional jet flavours				
eg+Pythia 8	All, uncorrelated	d 🏘	Final state radiation uncertainty (for tf events), jet				
d A14 Var3c parameters	All, uncorrelated		multiplicity dependent rate uncertainty, indepen- dent for additional jet flavours				
ME prediction $(3F)$ vs. incl. (_ /	de	NLO ME to PS matching, hlamp [?] (for ff events),				
) vs. $POWHEG+PYTHIA 8 (5F)$			jet multiplicity dependent rate uncertainty, indepen-				
			dent for additional jet flavours				

DOM: N

Kernarics

SOUTHER

Up or down by 6% $t\bar{t}$ cross-section $k(t\bar{t}+\geq 1c)$ Free-floating $t\bar{t} + \geq 1c$ normaliza $k(t\bar{t}+>1b)$ Free-floating $t\bar{t} + \geq 1b$ normaliza Sherpa5F vs. nominal Related to the choice of NLO ev PS & hadronization POWHEG+HERWIG 7 vs. POWHE ISR / FSR Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and $t\bar{t} + \geq 1c$ ME vs. inclusive MG5_aMC@NLO+HERWIG++: Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) $t\bar{t} + >1b$ SHERPA4F vs. nominal $t\bar{t} + \geq 1b$ renorm. scale Up or down by a factor of two $t\bar{t} + > 1b$ Vary $\mu_{\rm O}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$ $t\bar{t} + > 1b$ resumm. scale $t\bar{t} + > 1b$ Set μ_{Ω} , μ_{R} , and μ_{F} to μ_{CMMPS} $t\overline{t} + > 1b$ $t\bar{t} + > 1b$ global scales $t\bar{t} + > 1b$ shower recoil scheme Alternative model scheme $t\bar{t} + > 1b$ $t\bar{t} + > 1b$ PDF (MSTW) MSTW vs. CT10 $t\bar{t} + >1b$ $t\bar{t} + > 1b$ $t\bar{t} + \geq 1b$ PDF (NNPDF) NNPDF vs. CT10 $t\bar{t} + \geq 1b$ $t\bar{t} + >1b$ UE Alternative set of tuned parameters for the underlying event $t\bar{t} + >1b$ MPI Up or down by 50% $t\bar{t} + \geq 1b$ $t\bar{t} + > 3b$ normalization Up or down by 50% $t\bar{t} + \geq 1b$

or tf events), jet tainty, indepen-(for tf events), rtainty, independent for additional jet flavours Underlying event (for tf events), jet multiplicity

de: dependent rate uncertainty, independent for additional jet flavours

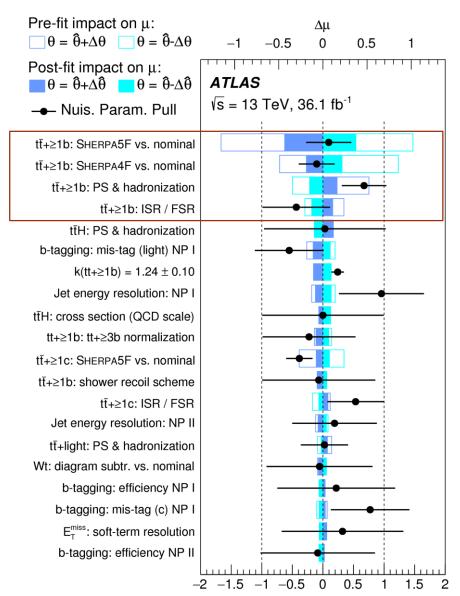
- Based on the NNPDF replicas, same for tiH and additional jet flavours
- upe Statistical uncertainty of the signal and background prediction due to the limited sample size

Fit Validation

- No standardized procedure available
- In general cross-checks are not published or even mentioned
- But cross-checks are mandatory for profile likehood fits with complex systematics model
- How to communicate these checks?
 - Probably impossible to publish the full cross check results
 - But important to clearly explain them
 - and provide a quantitative result when possible
 - Goodness of fit, impact on mu, ...

2018-06

Subjects for Discussion


- 1. How/what to publish concerning the signal
- 2. Material needed for a minimal understanding of the fit model and the results
- 3. How to interpret results concerning the backgrounds

Interpretation of Pulls and Constraints

- Significant pulls and constraints in some nuisance parameters reflecting theory modeling on backgrounds
- Very dangerous to interpret those as measurements
 - Or make exclusion statements about 2-points systematics
 - Highly non trivial fit with complex correlations
 - Use proper unfolded measurements from dedicated analyses

How clear is this in our papers?

2010-00-01

 $(\hat{\theta} - \theta_0) / \Delta \theta$

Interpretation of Normalization Factors

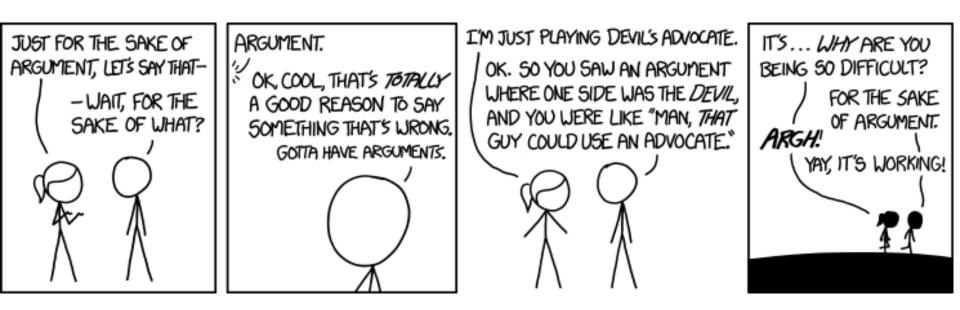
Free normalization factors on background are equivalent to mu

- One can argue that this is also the case if a large prior is applied
- Should these be used as a measured cross sections?
 - Naively yes but ...
 - Do we really want to use MC to extrapolate from the ttH corner of phase space?
 - Are we sure we covered the extrapolation uncertainties?
 - Enough acceptance/shape uncertainties?
- Be careful
 - Should be reflected in papers

		<u>CMS</u>	Sup	plemen	ntary
1	$t\bar{t}$ + $b\bar{b}$ cross section (50%)			••••••••••••••••••••••••••••••••••••••	
2	b tagging: charm (linear)				•
3	ttH cross section (renorm./fact. scales)		-	•	-
4	jet energy scale (1)				
5	tt+2b cross section (50%)		•		
6	b tagging: If fraction			-	•
7	b tagging: If stats (quadratic)		-	• •	
8	$\mu_{_{\rm R}}\text{scale}\;(t\bar{t})$				
9	PS scale: ISR (tt+lf)			•	
10	PS scale: FSR (tt+lf)			-	
11	b tagging: hf fraction				-
12	b tagging: charm (quadratic)				-
13	ME-PS matching (tt+lf)		•		-
14	jet energy scale (2)			•	
15	μ_{F} scale (tt)		ļ		
16	jet energy scale (3)				
7	PDF (gg tīH)		-	•	-
8	b tagging: hf stats (quadratic)			•	
19	jet energy scale (4)				
20	$t\bar{t}$ cross section (renorm./fact. scales)			•	
		-2	-1	0	1 2
-	🗕 Pull 📕 + 1ơ Impact 📃 - 1ơ Im	pact			$(\hat{\theta} - \theta_0) / \Delta$

<u>ATLAS:</u> ttb: 1.24 ± 0.10 ttc: 1.63 ± 0.23 ttW: 0.92 ± 0.32 ttZ: $1.17 \pm 0.25 \pm 0.22$ 2018-06-0

Extending the Analyses for Other Signals


- Measuring ttH, ttW and ttZ simultaneously was discussed
- This will need a modification of analysis strategy to increase sensitivity for those backgrounds
- In general this is not the priority but can be done in specific cases
- Why not providing a more general solution
 We will never cover the wish lists from everyone
- Should the fit results (and whatever needed additional info) go to HEPData?

Conclusion

Don't argue much if you want this discussion to finish fast

Two more talks and you can go hiking ...

