tt+jets/HF model and systematics in ATLAS and questions for CMS

Benasque Higgs Topping - Breakout Session: tt+jets/HF modeling

Timothée Theveneaux-Pelzer

Deutsches Elektronen-Synchrotron (DESY) - Zeuthen

Thursday, May 29th 2018

Atari breakout (1976)

$t\bar{t}$ + HF categorisation

- $t\bar{t} + jets$ process subdivided at truth level depending on origin of the additional jets
- First match not-from-top hadrons to particle-level jets :

Particle-level jet pT	>15 GeV
Particle-level jet η	<2.5
Hadron p _T	>5 GeV
Jet-Hadron matching	Δ <i>R</i> <0.3

• Then, count the number of jets matched to not-from-top HF hadrons :

process	# jets	w/ # hadrons	
$t\overline{t}+\geq$ 1 <i>b</i>	≥ 1	\geq 1 <i>b</i>	
$t\bar{t} + b(MPI/FSR)$	all b-jets from MPI/FSR		
$t\overline{t}+b$	= 1	= 1 <i>b</i>	
$t\overline{t}+bb$	= 2	= 1 <i>b</i>	
$t\overline{t} + B$	= 1	\geq 2b	
$tar{t}+\geq$ 3b	other $t\bar{t} + \ge 1b$ events		
$t\overline{t} + \ge 1c$	≥ 1	\geq 1c	
$t\overline{t}$ + light	other $t\bar{t}$ + jets events		

Nominal $t\bar{t}$ + jets model

- Nominal $t\bar{t}$ + jets MC sample : Powheg+Pythia8
 - ♦ A14 tune, $\alpha_S(ISR) = \alpha_S(FSR) = 0.127$ (see ATL-PHYS-PUB-2014-021)
 - h_{damp} =1.5 m_{top} (optimised on 8 TeV data, see ATL-PHYS-PUB-2016-020)
 - \diamond normalised to NNLO+NNLL prediction 831.76 pb⁻¹
- $t\bar{t} + \ge 1b$, $t\bar{t} + \ge 1c$ fractions taken from PP8, also when comparing to other samples
 - but are let free-floating in the fit
- $t\bar{t} + \ge 1b$ sub-categories fractions reweighted to Sherpa 4FS $t\bar{t} + b\bar{b}$
 - except $t\bar{t} + b(MPI/FSR)$ which isn't included in Sherpa 4FS $t\bar{t} + b\bar{b}$

Uncertainties on measured tTH cross-section

Uncertainty source	$\Delta \mu$	
$t\bar{t} + \geq 1b$ modeling	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modeling	+0.22	-0.05
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t} + \text{light modeling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

• Uncertainties on $t\bar{t}+\geq 1b$ are the largest (in case you didn't know)

Also : size (of MC samples) does matter

$t\bar{t}$ + jets normalisation (N) and shape (S) uncertainties

- N $t\bar{t}$ cross-section uncertainty correlated accross all $t\bar{t}$ + jets components
 - ♦ tt + ≥ 1c/b pre-fit fractions from PP8, free floating in fit
- N $t\bar{t} + b/bb/B/ \ge 3b$ fraction uncertainties from Sherpa (4fs) $t\bar{t} + b\bar{b}$ prediction
 - ◇ plus : additional 50% uncertainties on $t\bar{t}$ + ≥ 3*b* and $t\bar{t}$ + *b*(*MPI*/*FSR*) rates
- S uncertainties on $t\bar{t}$ + jets, uncorrelated accross $t\bar{t}$ + \geq 1*b*, $t\bar{t}$ + \geq 1*c*, and $t\bar{t}$ + light
 - ♦ NLO matching : comparison of Powheg+P8 to Sherpa (5fs) $t\bar{t}$
 - PS and hadronisation model : comparison of Powheg+P8 to Powheg+H7
 - ♦ additional radiations : simultaneous variations of μ_R , μ_F , $\alpha_S(ISR)$, h_{damp} in Powheg+P8
- S $t\bar{t} + \ge 1b$: comparison of Powheg+P8 (5fs) to Sherpa (4fs)
- S $t\bar{t} + \ge 1c$: comparison of aMC@NLO+H++ (5fs) to aMC@NLO+H++ (3fs)

Systematic source	Description	$t\bar{t}$ categories
tt cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \ge 1c)$	Free-floating $t\bar{t} + \ge 1c$ normalization	$t\bar{t} + \ge 1c$
$k(t\bar{t} + \ge 1b)$	Free-floating $t\bar{t} + \ge 1b$ normalization	$t\bar{t} + \ge 1b$
Sherpa5F vs. nominal	Related to the choice of NLO event generator	All, uncorrelated
PS & hadronization	Powheg+Herwig 7 vs. Powheg+Pythia 8	All, uncorrelated
ISR / FSR	Variations of μ_R , μ_F , h_{damp} and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \ge 1c$ ME vs. inclusive	MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \ge 1c$
$t\bar{t} + \ge 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg+Pythia 8 (5F)	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ resumm. scale	Vary μ_Q from $H_T/2$ to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ PDF (MSTW)	MSTW vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{NNPDF})$	NNPDF vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ UE	Alternative set of tuned parameters for the underlying event	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ MPI	Up or down by 50%	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 3b$ normalization	Up or down by 50%	$t\bar{t} + \ge 1b$

T. Theveneaux-Pelzer DESY - Zeuthen

The fit and the fit checks

- We have large constrains on the large
 - $t\bar{t}+\geq$ 1*b* modelling shape systematics
- $t\bar{t}+\geq$ 1*b* and $t\bar{t}+\geq$ 1*c* normalisation pulled

$$k_{t\bar{t}+>1b} = 1.24 \pm 0.10$$

$$k_{t\bar{t}+>1c} = 1.63 \pm 0.23$$

⇒ reflected in post-fit yields

Several checks

- post-fit distributions of MVA inputs
 - \Rightarrow no mismodelling, agreement improved post-fit
- \diamond alternatives for $t\bar{t}+\geq$ 1*b* model and systs
 - \Rightarrow give compatible results
- \diamond fit on pseudo-data with Powheg+P6 for $t\bar{t}$
 - \Rightarrow no bias in μ extraction
- decorrelate NPs accross regions
 - \Rightarrow pulls found to correct bkg. mis-modellings
 - ⇒ same pulls are seen in bkg.-only fits in bkg.-dominated regions
- fix NPs to their pre-fit values, and re-do fit
 - $\Rightarrow \mu$ shift smaller than corresponding uncert.
- fit channels or categories separately

 \Rightarrow fitted μ is compatible

- CMS fit changes $t\bar{t}$ + HF yields significantly : $t\bar{t}$ + light/ $c\bar{c}/b$ go up, $t\bar{t}$ + $b\bar{b}/2b$ go down
 - o why is it changing that much while the prefit Data/MC seems good ?
 - ♦ is it the same when using Sherpa $t\bar{t} + b\bar{b}$ 4fs?
 - o is it the same when fitting with a different variable ?
 - ♦ NB : ATLAS reweights $t\bar{t}$ + ≥ 1*b* sub-fractions to Sherpa $t\bar{t}$ + $b\bar{b}$ 4fs, and $t\bar{t}$ + ≥ 1*b*/*c* go **up**
- CMS test with Sherpa $t\bar{t}+\geq$ 1*b* 4FS as pseudo-data doesn't change μ (much)
 - Is Sherpa 4FS that different from PP8, and closer to data?
 - \diamond are the changes in $t\bar{t}$ + HF yields the same as in the fit on data ?
- Any other check on fit quality ?
 - e.g. post-fit distributions of MVA inputs

